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In the present article the Kelvin-V oigt model of linear viscoelasticity which describes the viscoelagtic nature
of a material is used to investigate the forced vibrations due to mechanical loads acting on the boundary of a
thermoviscoelagtic continuum. The Laplace and Harkel transform technique has been employed to solve the
boundary value problem in the transform domain, in the context of various theories of generalized
thermoelasticity. The inverse transform integrals are evaluated by using Romberg integration in order to obtain
the results in the physical domain. The temperature and stresses so obtained in the physical domain are computed
numerically and presented graphically in different situations for a copper materid. The comparison of results for
different theories of generalized thermoviscoelagticity isalso presented at appropriate stages of this work.
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1. Introduction

The theory of thermoelasticity deals with the effects of mechanical and thermal disturbances on an
eastic body. There are two defects in the Uncoupled Thermod asticity Theory (UCT). First, the mechanical
state of an éastic body has no effect on the temperature is not consistent with true physical experiments.
Second, the heat equation being parabolic predicts an infinite speed of heat propagation, a physicaly
unredlistic phenomenon. The theory of coupling of therma and strain fields gives rise to Coupled
Thermoeasticity (CT) and was first postulated by Duhamel (1837), shortly after the theory of dasticity. He
derived the equations for the distribution of strains in an eastic medium subjected to temperature gradient
and introduced the dilatation term in the heat conduction equation, but the equation was not based on a
thermodynamical grounds. Neumann (1855), made an attempt on thermodynamical justification of
Duhamel’s theory. The work of Biot (1956), gave a satisfactory derivation of heat conduction equation,
which included the dilaation term based on thermodynamics of irreversible processes. This devel opment
removed the first defect of uncoupled thermodasticity. However, this theory shares the second defect of
infinite speed of heat wave propagation. During the last three decades, non-classica theories have been
developed to remove the paradox of infinite velocity of heat transportation. Lord and Shulman (1967),
incorporated a heat flux-rate term into Fourier's law to formulate a generalized theory that admits finite
speed for thermd signals. Also Green and Lindsay (1972), by induding the temperature rate, violated the
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classical Fourier's law of heat conduction when the body under consideration has a center of symmetry. This
theory a so predicts a finite speed of heat propagation. According to these theories (hereinafter called LS and
GL theories, respectivey), heat propagation is to be viewed as a wave phenomenon rather than a diffusion
one. A wave like thermal disturbance is referred to as “second sound” by Chandrasekharaiah (1986). Some
researchers such as Ackerman et al. (1966), Guyer and Krumhansl (1966), and Ackerman and Overtone
(1969), proved experimentally for solid Helium that thermal waves (second sound) propagating with afinite,
though quite large, speed also exi<.

The most recent and relevant theoretical deve opments on this subject are due to Green and Nagdhi
(1991; 1993; 1992), which provide sufficient basic modifications in the constitutive equations that permit
treatment of a much wider class of heat flow problems. Li and Dhaliwa (1996), solved a boundary value
problem of an isotropic eastic half space with its plane boundary either held rigidly fixed or stress free and
subjected to a sudden temperature increase. The approximate smal time solutions, for displacement,
temperature, and stress fields have been obtained by employing the Laplace transform technique in the
context of thermoel asticity developed by Green and Nagdhi (1993), Chandrasekharaiah (1996), studied one-
dimensional waves in a homogeneous isotropic half-space due to a sudden input of temperature and stress on
the boundary by employing the Laplace transform method in the context of thermoe asticity without energy
dissipation. The exact closed form solution for displacement, temperature, strain and stress fields has been
obtained and analyzed in the light of their counterparts in earlier works. Harinath (1975), considered the
problems of surface point and line loads over a homogeneous isotropic generaized thermoel astic half space.
Nayfeh and Nasser (1972) used the Cagniard and De Hoop method (De-Hoop, 1959) to develop the
displacements and temperature fields in a homogeneous isotropic generalized thermoedastic halfspace
subjected to an instantaneously applied heat source on the free surface. Sharma (1986) used the Cagniard
(1962) method to study the transient behaviour of thermoelastic waves in a transversely isotropic solid half-
space subjected to an instantaneous line load that is applied on its free surface. Sharma et al. (2000)
investigated the disturbance due to norma point load and therma source acting on the free surface of the
half space by applying the Hankel transform technique in the context of various theories of generalized
thermoel asticity. Sharma and Chauhan (2001) studied the disturbance in a halfspace due to mechanical loads
and heat sources. Sharma and Sharma (2001) worked on the transient thermod astic waves by employing
Cagniard (1962) method of sei smic wave propagation.

The effect of internd friction on the propagation of plane waves in an elastic medium may also be
considered owing to the fact that dissipation accompanies vibrations in solid media due to the conversion of
elastic energy to heat energy (Ewing et al., 1957). Several mathematical models have been used by authors
(Ewing et al., 1957; Hunter, 1960; Lord and Schulman, 1967; Flugge, 1967), to accommodate the energy
dissipation in vibrating solids where it is observed that internal friction produces attenuation and dispersion
and hence the effect of the viscodastic nature of the materid medium in the process of wave propagation
cannot be neglected. The viscodadtic nature of a medium has special significance in wave propagation in a
solid medium. Acharya and Mondal (2002), investigated the propagation of Rayleigh surface waves in a
Voigt (1887), type viscodastic solid under the linear theory of non-loca dasticity. As pointed out by
Freudenthal (1954), most of the solids when subjected to dynamic loading, exhibit viscous effects. The
Kevin-Voigt modd is one of the macroscopic mechanical models often used to describe the visco-dastic
behaviour of a materid. This mode represents the ddayed eastic response subjected to stress when the
deformation is time dependent but recoverable. The dynamical interaction of thermal and mechanical fields
in solids has great practica applications in modern aeronautics, astronautics, nuclear reactors, and high-
energy particle accelerators, for example. Mukhopadhyay (2000) studied the thermal relaxation effects and
compared the various theories of generalized thermoeasticity for thermoviscodagtic interactions in an
infinite viscodastic solid of Kevin-Voigt type with a spherical cavity. Mukhopadhyay and Bera (1989)
investigated the effect of distributed instantaneous continuous heat sources in an infinite conducting
magneto-thermoviscoe asti ¢ solid with relaxation time.

In the present article, the Kevin-Voigt modd of linear viscodasticity which describes the
viscod astic nature of the material is used to investigate the forced vibrations due to mechanical loads acting
on the boundary of a generalized thermoviscodastic continuum by applying the Laplace and Hanke
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transform technique. The results in the physical domain are attained by inverting the integral transforms with
the help of a numerical technique (Sharma and Chauhan, 2001). The results obtained theoretically have been
computed numericaly and are presented graphicdly for a copper material. A complete and comprehensive
analysis and comparison of results in various theories are presented.

2. Formulation of the problem

We consider a homogenous isotropic thermoviscodastic half space initially undisturbed and at
uniform temperature T,. The Kevin-Voigt mode of linear viscodasticity which describes the viscod astic
nature of the material has been employed to study the problem. We take the origin of cylindrical coordinate
system (r, a, z) as any point on the surface z=0 and z-axis pointing verticaly downward into the medium
so that the half-space occupiestheregion z3 0. Itisassumed that anormal point forceisacting a apoint on
the surface z=0 of the medium and hence al the quantities are independent of the q co-ordinate. The basic

governing equations of motion and heat conduction, in the context of the generdized theory of
thermoel asticity, in the absence of body forces and heat sources are given by

20+ (1 +mRR - bR(T +t,dy ) =r @, @2.1)
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Here u(r, Z, t):(u,O,W) isthe displacement vector; T(r, z,t) is the temperature change; | ., m, are
the Lame's parameters; r,C, and a; are the density, specific heat at constant strain and co-efficient of
linear expansion respectively; K is the thermal conductivity; a,,a; are viscoeastic relaxation times and
ty,t, are thermal relaxation times; d,, is the Kronecker's delta in which k=1 for Lord-Shulman (LS)
theory and k =2 in the case of Green-Lindsay (GL) theory. The thermal relaxation time parameters t, and
t, satisfy theinequalities (Green, 1972)

th31,°0, (2.4)

in the case of GL theory only. However, it has been proved by Strunin (2001) that the inequalities (2.4) are
not necessary to be satisfied.

2.1. Initial and regularity conditions
Theinitial and regularity conditions are given by

u(r, z,O):O:l&(r, z,O), vv(r, z,O):O:\&/(r, z,O),
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T(r,z,0)=0=%(r,20), for z30, r30,
(2.5)
u(r,z,t):O W(r,z,t):O, T(r,z,t):O for t>0, Z® ¥ .

2.2. Boundary conditions

The surface z=0 of the thermoviscod astic solid is subjected to the action of an instantaneous
norma point load at the origin and assumed ether thermally insulated or isothermal. Therefore, the
corresponding boundary conditions are given as

(- Pd(r)f (t)

T
, t,;=0, —+hT=0 26
2pr rz 2 (2.6)

where d(r) denotes the Dirac delta function; f (t) is awell behaved function of time and h is the coefficient

of surface heat transfer. Here h® 0 corresponds to thermally insulated boundary and h® ¥ refers to

isothermal surface of the half space
We define the quantities
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Using quantities (2.7) in Egs (2.1) to (2.3) and suppressing dashes, we obtain
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fit It g
The non-dimensional form of boundary conditions (2.6) on the surface z=0 isgiven as
(=P d(r)f(t)’ t, =0, £+hT:0. (2.10)
2pr 9z
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3. Solution of the problem

Weintroduce the potentia functions f and j through the reations

= Ty v=0, w=t_ Ty y (3.1)
T 9z’ z qr r

Using Eq.(3.1) in Egs (2.8) and (2.9), we obtain

Yo ¢
ai+alﬂ_-g 2y . _22- p =0, (32
B dy 3 2t - B=Fby 9T +t,d,H), (3.3)
e to e Tt g
- (B +®) =i g‘?u bo%gﬁz(&ﬂodlki&) (3.4)
where
_ o T2 19 7
do—ao +2d2(al'a0), Z_F*_?ﬁ 1-IZ_2

We define the L aplace transform by
¥

f(r,z p)=of (. zt)e Pdt
0

and the Hankd transform as

K

f(a.z p)=¢f (r 2 p)rdn(ar)dr

where Jn(x) is a Bessd function of first kind and of order n. Here n=0 for the functions f, T and n=1
fory . Applying the Laplace transform followed by Hankd transform to Eqgs (3.2) to (3.4), we obtain

2] o]
D2y - &g? +—P—% =0, (35)
a,d® u
® 0. y
D - éqz + P % - PootiT (36)
do g do

(02- g2~ top2)T-1 poitg(D?- 2)f =0 3.7)
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where
a;=pt+a;, ty=plHtdy, dy=pt+dy,
(3.8)
— a1 -1 =p!
to=p "+ty, by=p  +by, t§=p " +tedy.
Equations (3.6) and (3.7) give
[0?- o?- m2)p?- o?- m2)(f.T)=0 (3.9)
where
~ 4 *2
m +mg =2 4 p2t, + L PP BY
o )
(3.10)

mZmg = p3t0/d6 :

The non-vanishing solution of Egs (3.5) and (3.9) which satisfies the radiating condition, viz. the
disturbanceis assumed to be confined to the surfacez=0, isobtained as

y =Cexp(- x32), (3.11)

f= Ae(p(- xlz)+ Be(p(— xzz), (3.12)

T =§e b _Joaen(- x2)+QBep(- x,2)] (3.13)
bot 1 g

where Re(xi)3 0,i=123 and

Q=-Pim? Q=-Pim, (3.14)
dy dp
¥ =q?+m?, (=12), G=g?+-Eo (315)
a,d

Wetake f (t) = d(t) and apply the Laplace transform followed by the Hankd transform to boundary

conditions (2.10). Then upon using the expressions for f, y and T from Egs (3.11) to (3.13) after lengthy

but straightforward calculation, the displacements, temperature change and stresses in the transformed
domain are obtained as

G=- [q(M €77 + M e X22)+ M X g€ X3Z] /D : (3.16)
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=- [M 1X,€87% + M ,x,e772% + M 5qe X3Z] /D, (3.17)
palg (M €7 +M,e Xzz) +M,F e %37 WD : (3.18)
f,, =d’pa; ?q(le 1€ +X,M e XZZ)+ (q2 +x§) M e %37 VD (3.19)
T=—22 [M 19,677 + M,Q,e XZZ]/D (3.20)
pbot 1
where M, = R (q +x3)(h X5),
pal
P
M, =- —O*Ql(qz +X%)(h' Xl),
pa,
My =- 20(Myx +Mx,)/ (0% +53). (3:21)
=P o, F =ogd?, By = (3.22)
a, 2p
D:Qll(q2 +x§)|: - 2qx2F1J(h- Xy )- Qzl(qz +x§)|: - 2qxlF1J(h- X, ). (3.23)

The results for the LS and GL theories can be obtained by setting k =1 and k =2 respectively, in
thevalues of ty,t§, t, andthose for coupled thermoelasticity (CT) can be obtained by taking t; =0 =t, in

the foregoing analysis. Here h® 0 corresponds to the thermally insulated boundary of the halfspace and
h® ¥ refers to the isothermal one. The results for uncoupled thermoviscoelasticity can be obtained by
setting the therma coupling parameter T =0 and thermal relaxation times t, =0 =t, in the above anaysis.
The results for non-viscous thermoelastic continuum can be deduced from the above-obtained results by
teking a, =a, =0 inthe appropriate re ations and functions.

4. |nversion of thetransforms

Due to the existence of damping, dependence of roots x;, (i =1 2, 3) on the integral transform

parameters p and g is complicated; hence the inversion of the integral transform is difficult because the
isolation of p is impossible. These difficulties, however, are reduced if we use some approximate or
numerical methods. Therefore, in order to obtain the solution of the problem in the physical domain, we must
invert the transform in Egs (3.16) to (3.20) with a numerical technique. These expressions can formaly be

expressed as functions of z, q and p of the form f(q, ya p). First, weinvert the Hankd transform, which gives
the Laplace transform expression for the function f(r, ya p) as

f(r.z p)=(‘54 (9.2 pW,(ar)dg (4.1)
0
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where n=1 inthe case of T(q, z, p) and n=0 for W(q, z, p) aswell as T(q, z, p). For afixed value of g,
r and z, the function under the integral in Eq.(4.1) can be considered as a Laplace transform g(p) of same
function g(t). Theinversion for the Laplace Transformis given by

olt)= 55 0 3(P)ea- 42)

The integral (4.2) can be evaluated by using the numerical technique outlined and used by Sharma
and Chauhan (2001). After evaluating the integral (4.2) the next step in the inversion process is to evaluate
theintegral (4.1). Thiswas done by using Romberg integration with adaptive step-size. This method uses the
results from successive refinements of the extended trapezoidal rule followed by extrapolation of the results
to the limit when the step-size tends to zero, the details of which can be found in the Press et al. (1992).

5. Numerical results and discussion

In order to illustrate and compare the theoretical results obtained in the previous sections in the
context of the LS, CT, UCT, GL, CT (NV) and UCT (NV) theories of thermoelasticity, we now present some
numerical results. The material chosen for the purpose of numerical computations is copper. The physical
data for such a materid is given as Mukhopadhyay (2000)

| .=82 10°N/m?, m,=42 10°N/m?, r =8950" 10°kgm 3,
ar =1.0"10°8/°, 1=005, K =4746"10%joule/s/m/'K, w =111 10%s?,

t, =6.131 1008s,  t;,=87565" 10®s, a,=a,;=6.8831 10 Vs.

The non dimensional temperature change and stresses are computed from Egs (3.18) to (3.20) at
three different ingtants of time, viz. t =0.1, 0.25 and 0.5 on the surface z=0 by taking non-dimensiona

values of thermal and mechanica relaxation times t, =0.097, t; =0.07, a, =a; =008. Due to the

closeness of results and to avoid clustering of different curves, the variations of temperature change and
stresses are presented graphicaly at t =0.25 only in the case of viscous and non-viscous; Lord-Shulman

(LS), coupled theory of thermodasticity (CT), uncoupled theory of thermodasticity UCT, Green-Lindsay
(GL), theories of thermoel asticity. Also the variations of temperature change and stresses are plotted at three
different instants of time, viz. t=0.1, 0.25 and 0.5 in the case of coupled thermoeadticity (CT) and
uncoupl ed theory of thermoel agticity (UCT).

From Fig.1, it is noted that the temperature change in the context of LS, GL and CT theories for a
viscous half space, though of quite small magnitude, increases instantaneously in the domain O£r £0.1,
decreases monotonicaly in 0.1£r £0.75 and ultimately becomes daose to zero in an oscillatory manner
afterwards. This phenomenon is attributed to compression and expansion of the molecules of the solid dueto
the application of the load. Initialy, the internal friction in viscous medium due to application of an
instantaneous normal point 1oad with thermally insulated boundary increases which results in the increase of
temperature change and after that there is a rapid decay in temperature change due to a decrease of internal
friction in the viscous medium. However, in the case of a viscous solid the temperature change in UCT
theory remains almost close to zero because of very small changes in internal friction of the medium. The
temperature change for CT (NV) and UCT (NV) shows the opposite trends to that of LS, GL and CT viscous
theories. In the case of UCT theory, both for viscous and non-viscous solids, the variations of temperature change are
observed to be negligibly smdl throughout in the case of theinsulated boundary under the action of an instantaneous
norma point load. The curves in the case of CT (NV) and UCT (NV) here are merged together because of wesk
thermomechanical coupling effects and that one corresponding to UCT for a viscous solid dmost coincides with the
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radid axis. It is found from Fig.2 that the variaions of vertica stressin the context of LS, CT, UCT, GL, CT (NV)
and UCT (NV) theories, though the curves are not very dearly distinguishable due to a significantly small efect of
rdaxation time, first increase monotonicdly in the domain O £r £ 0.8, decresse steedlily in 0.8 £ £1.35, and
then dose to zero in an oscillating manner afterwards. However, the magnitude of vertical stressin the case of CT
(NV) and UCT (NV) theories for non-viscous solid half spacesis smdler than that in the case of aviscous onein the
context of CT, UCT, LS and GL theories of thermodasticity. This shows thet the effect of mechanical rdaxation
time parameters on the verticd stress is quite significant whereas thermd rdlaxation times have a negligibly small
effect on this fundion. The behaviour of this function in the case of isathermd boundary conditions is aso observed to be
smilar.

0.0000012

0.000001 | :

Temperature change.

-0.0000002

Fig.1. Temperature change with radia distance in the case of insulated boundary (t = 0.25) .
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Fig.2. Vertical stresswith radial distancein the case of insulated and isothermal boundary (t = 0.25).
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It is observed in Fig.3 that the variations of shear stress deveopment in the case of thermaly
insulated boundary are found to increase rapidly in O £r £0.1, decrease monotonicaly for 0.1£r £0.75
and ultimately tend to zero afterwards in the context of CT (NV), UCT (NV) and UCT theories of
thermoel asticity. However, this function in the case of LS, GL and CT theories shows the opposite trends for
aviscous solid. The magnitude of shear stress variations has quite small values in the case of a viscous solid
as compared to that of a non-viscous one. The effect of thermal relaxation times is quite pertinent on the
shear stress. Moreover, the shear stress devel opment is very small as compared to the vertical stress, which is
consistent with the boundary conditions. The variations of temperature change, vertical stress and shear
stress are respectively plotted in Figs 4, 5 and 6 at different values of time, namdy: t =0.1, 0.25and 0.5 in
the context of CT theory of thermoelasticity only. It is noticed from Fig.4 that the magnitudes of variations
of temperature change initially and decrease with the passage of time. Thisis attributed to the instantaneous
increase of interna friction at the time of application of the load and then to a decrease in the value of
internal friction with the passage of time. This phenomenon results in a decreasing value of the conversion of
mechanical energy into thermal one. Moreover, the absol ute variation of temperature change is quite small as
compared to the vertica stress devel opment as can be seen from Figs 4 and 5. This signifies that only a very
small amount of mechanical energy is converted into thermal energy in this case. Figure 5 shows that in the
case of viscous and non-viscous solids, the absolute variations of vertical stress in the context of CT and
UCT theories of thermoelasticity at three considered instants of time follow similar trends. However, the
magnitude of variations of vertical stress at small time is higher than that at large time in the vicinity of the
load. It is seen from Fig.6 that in the case of viscous and non-viscous solids the shear stress deve opment has
oppositetrends at al considered instants of time and dies out in an oscillating fashion as we move away from
the vicinity of the load aong the radia direction for thermally insulated (CT) and isotherma (CT, UCT)
boundaries of the halfspace. The amplitude of vibrations gets suppressed due to the viscous effect of the
medium and goes on decreasing with the passage of time. It is observed in Fig.7 that the variations of
vertical and shear stresses in the UCT theory, both in viscous and non-viscous solids, follow similar trends
and behavior at the considered instants of time asin the case of CT theory in Figs 5 and 6, respectivey, with
the exception that the shear stress does not follow the opposite trend here.

0.00016

ooooa4(\ ..

0.00012

0.0001

0.00008
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Shear stress

0.00004

0 Radial distance

-0.00004

Fig.3. Shear stress with radial distance in the case of insulated boundary (t = 0.25) .
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Fig.5. Vertical stress with radial distance in the case of insulated boundary (CT, UCT).

0.0000023

0.0000018

0.0000013

0.0000008

0.0000003

-0.0000002

Radial distance

t=01
------- t=0.25
—-———1t=05
—eo—{=0.1(nv)
---e--- 1=0.25(nv)
— ———t=0.5(nv)




116 J.N.Sharma, R.Chand and D.Chand

0.00017

Shear stress

Fig.6. Shear stress with radial distance in the case of insulated (CT) and isothermal (CT, UCT) boundary.
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0.00005 -
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-0.00005

Fig.7. Shear stress with radial distance in the case of insulated boundary (UCT).

It isnoticed from Fig.8 that the variations of temperature change in the context of LS, GL, CT and CT(NV)
theories, first increase ingtantaneoudy in the domain O £ r £0.1, dearesse rapidly in 0.1£r £0.3, dowly and
sedily inthedomain 0.3 £ r £ 2, before the temperature cregps adong the isotherma boundary under the action of
an instantaneous normd point load. The temperature changein the case of UCT and UCT (NV) theories for viscous
and non-viscous solids remains zero throughout the isothermal boundary for an instantaneous normal point load.
Thisis aso in agreement with the boundary conditions. It is observed from Figs 9 and 10 that the variations of shear
gtress function in CT (NV), UCT (NV) theories for a viscous/non-viscous medium and GL for a viscous salid first
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increase rapidly in O £r £0.1, decrease monotonicdly in the domain 0.1£ r £0.75 and then approach zero
dowly and steadily afterwards at the isothermal boundary of the solid. Shear stress in the case of GL theory for a
viscous medium amost remains unchanged for al vaues of the radia distance. The variaions of shear stress
function in the context of LS, CT and UCT theories for viscous solids show the opposite trend to that of non-viscous
media. It is naticed from Fig.10 that the magnitude of variations of temperature change at small timeis higher than
that at large time. From Fig.11 it is obsarved that when the instantaneous normd point load is applied at the
isotherma boundary, the trend and behaviour of variations of vertical stress in CT and UCT theories a different
considered vaues of time are smilar to that of vertical stressin Fig.2. It is dso noticed that in visoous solids the
verticd stress has asmall va ue as compared to that in the non-viscous one
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Fig.8. Temperature change with radial distance for isothermal boundary (t = 0.25) .
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Fig.9. Shear stress with radial distance for isothermal boundary (t = 0.25) .
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In conclusion, al the considered functions are noticed to vanish at certain values of the radial
distance approximatdy near r =25, which shows the existence of wave fronts. The impact of thermal
relaxation time on various functions is found to be negligibly small, but it is quite significant a smal time on



Forced vibrations due to mechanical loads in thermoviscoel astic hal fspaces 119

the shear stress devel opment and temperature change. This shows that ‘ second sound’ effects are short lived
and the thermal wave travel s with a finite, though quite large, speed in such solids. The effect of mechanical
relaxation time on various considered functions is noticed to be quite significant and due to this resistive
phenomenon the amplitude of vibrations decreases and some part of mechanical energy, though small, gets
converted to thermal energy due to internal friction among the material partices. In the case of insulated
boundary of the solid halfspace, most of the energy is observed to be carried in the form of vertical stress
wave and a meager amount propagates in the form of shear stress and thermal waves, which is quite in
agreement with the boundary conditions. However, in the case of an isotherma boundary, the significant
amount of energy is carried in the form of a therma wave in addition to vertical stress wave which carries
major portion of the energy. The shear stress again carries a negligible small amount of energy in the case of
isothermal boundary of the solid. This happens because the boundary of the solid halfspace is free to
exchange heat with the surrounding in the isothermal case wheress it is not exposed thermally to the
nei ghbouring environment in the case of thermally insul ated boundari es.

Nomenclature

C. —specific heat a constant strain

¢ = Tet2m  _ longitudinal wave velocity

2=t _ shear wave velocity

h —surface heat transfer coefficient
K —coefficient of thermal conductivity
To —equilibrium temperature prior to the appearance of disturbance

T(r,zt) —changein temperature of the medium at any time
ty,t; —thermal relaxation times
u(r,zt)=(u,0,w) —displacement vectors
ar —coefficient of linear therma expansion
ag,a; —mechanica relaxation parameters
dr) - Diracdeltafunction
dy, —Kronecker's delta
m,,| . —Lame s éelastic constants
r —density
f,y —potentia functions
w —angular frequency
W =Co(l ¢ +2m)/K  — characteristic frequency of the medium
I —thermoelastic coupling constant
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