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In the present article the Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature 
of a material is used to investigate the forced vibrations due to mechanical loads acting on the boundary of a 
thermoviscoelastic continuum. The Laplace and Hankel transform technique has been employed to solve the 
boundary value problem in the transform domain, in the context of various theories of generalized 
thermoelasticity. The inverse transform integrals are evaluated by using Romberg integration in order to obtain 
the results in the physical domain. The temperature and stresses so obtained in the physical domain are computed 
numerically and presented graphically in different situations for a copper material. The comparison of results for 
different theories of generalized thermoviscoelasticity is also presented at appropriate stages of this work. 

 
Key words: mechanical loads, thermal relaxation, mechanical relaxation time, Romberg integration, 

thermoviscoelasticity. 
 
1. Introduction 
 
 The theory of thermoelasticity deals with the effects of mechanical and thermal disturbances on an 
elastic body. There are two defects in the Uncoupled Thermoelasticity Theory (UCT). First, the mechanical 
state of an elastic body has no effect on the temperature is not consistent with true physical experiments. 
Second, the heat equation being parabolic predicts an infinite speed of heat propagation, a physically 
unrealistic phenomenon. The theory of coupling of thermal and strain fields gives rise to Coupled 
Thermoelasticity (CT) and was first postulated by Duhamel (1837), shortly after the theory of elasticity. He 
derived the equations for the distribution of strains in an elastic medium subjected to temperature gradient 
and introduced the dilatation term in the heat conduction equation, but the equation was not based on a 
thermodynamical grounds. Neumann (1855), made an attempt on thermodynamical justification of 
Duhamel’s theory. The work of Biot (1956), gave a satisfactory derivation of heat conduction equation, 
which included the dilatation term based on thermodynamics of irreversible processes. This development 
removed the first defect of uncoupled thermoelasticity. However, this theory shares the second defect of 
infinite speed of heat wave propagation. During the last three decades, non-classical theories have been 
developed to remove the paradox of infinite velocity of heat transportation. Lord and Shulman (1967), 
incorporated a heat flux-rate term into Fourier’s law to formulate a generalized theory that admits finite 
speed for thermal signals. Also Green and Lindsay (1972), by including the temperature rate, violated the 
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classical Fourier’s law of heat conduction when the body under consideration has a center of symmetry. This 
theory also predicts a finite speed of heat propagation. According to these theories (hereinafter called LS and 
GL theories, respectively), heat propagation is to be viewed as a wave phenomenon rather than a diffusion 
one. A wave like thermal disturbance is referred to as “second sound” by Chandrasekharaiah (1986). Some 
researchers such as Ackerman et al. (1966), Guyer and Krumhansl (1966), and Ackerman and Overtone 
(1969), proved experimentally for solid Helium that thermal waves (second sound) propagating with a finite, 
though quite large, speed also exist.  
 The most recent and relevant theoretical developments on this subject are due to Green and Nagdhi 
(1991; 1993; 1992), which provide sufficient basic modifications in the constitutive equations that permit 
treatment of a much wider class of heat flow problems. Li and Dhaliwal (1996), solved a boundary value 
problem of an isotropic elastic half space with its plane boundary either held rigidly fixed or stress free and 
subjected to a sudden temperature increase. The approximate small time solutions, for displacement, 
temperature, and stress fields have been obtained by employing the Laplace transform technique in the 
context of thermoelasticity developed by Green and Nagdhi (1993), Chandrasekharaiah (1996), studied one-
dimensional waves in a homogeneous isotropic half-space due to a sudden input of temperature and stress on 
the boundary by employing the Laplace transform method in the context of thermoelasticity without energy 
dissipation. The exact closed form solution for displacement, temperature, strain and stress fields has been 
obtained and analyzed in the light of their counterparts in earlier works. Harinath (1975), considered the 
problems of surface point and line loads over a homogeneous isotropic generalized thermoelastic half space. 
Nayfeh and Nasser (1972) used the Cagniard and De Hoop method (De-Hoop, 1959) to develop the 
displacements and temperature fields in a homogeneous isotropic generalized thermoelastic halfspace 
subjected to an instantaneously applied heat source on the free surface. Sharma (1986) used the Cagniard 
(1962) method to study the transient behaviour of thermoelastic waves in a transversely isotropic solid half-
space subjected to an instantaneous line load that is applied on its free surface. Sharma et al. (2000) 
investigated the disturbance due to normal point load and thermal source acting on the free surface of the 
half space by applying the Hankel transform technique in the context of various theories of generalized 
thermoelasticity. Sharma and Chauhan (2001) studied the disturbance in a halfspace due to mechanical loads 
and heat sources. Sharma and Sharma (2001) worked on the transient thermoelastic waves by employing 
Cagniard (1962) method of seismic wave propagation.  
 The effect of internal friction on the propagation of plane waves in an elastic medium may also be 
considered owing to the fact that dissipation accompanies vibrations in solid media due to the conversion of 
elastic energy to heat energy (Ewing et al., 1957). Several mathematical models have been used by authors 
(Ewing et al., 1957; Hunter, 1960; Lord and Schulman, 1967; Flugge, 1967), to accommodate the energy 
dissipation in vibrating solids where it is observed that internal friction produces attenuation and dispersion 
and hence the effect of the viscoelastic nature of the material medium in the process of wave propagation 
cannot be neglected. The viscoelastic nature of a medium has special significance in wave propagation in a 
solid medium. Acharya and Mondal (2002), investigated the propagation of Rayleigh surface waves in a 
Voigt (1887), type viscoelastic solid under the linear theory of non-local elasticity. As pointed out by 
Freudenthal (1954), most of the solids when subjected to dynamic loading, exhibit viscous effects. The 
Kelvin-Voigt model is one of the macroscopic mechanical models often used to describe the visco-elastic 
behaviour of a material. This model represents the delayed elastic response subjected to stress when the 
deformation is time dependent but recoverable. The dynamical interaction of thermal and mechanical fields 
in solids has great practical applications in modern aeronautics, astronautics, nuclear reactors, and high-
energy particle accelerators, for example. Mukhopadhyay (2000) studied the thermal relaxation effects and 
compared the various theories of generalized thermoelasticity for thermoviscoelastic interactions in an 
infinite viscoelastic solid of Kelvin-Voigt type with a spherical cavity. Mukhopadhyay and Bera (1989) 
investigated the effect of distributed instantaneous continuous heat sources in an infinite conducting 
magneto-thermoviscoelastic solid with relaxation time. 
 In the present article, the Kelvin-Voigt model of linear viscoelasticity which describes the 
viscoelastic nature of the material is used to investigate the forced vibrations due to mechanical loads acting 
on the boundary of a generalized thermoviscoelastic continuum by applying the Laplace and Hankel 
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transform technique. The results in the physical domain are attained by inverting the integral transforms with 
the help of a numerical technique (Sharma and Chauhan, 2001). The results obtained theoretically have been 
computed numerically and are presented graphically for a copper material. A complete and comprehensive 
analysis and comparison of results in various theories are presented. 
 
2. Formulation of the problem  
 
 We consider a homogenous isotropic thermoviscoelastic half space initially undisturbed and at 
uniform temperature 0T . The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic 
nature of the material has been employed to study the problem. We take the origin of cylindrical coordinate 
system ( )zr ,, θ  as any point on the surface 0z =  and z-axis pointing vertically downward into the medium 
so that the half-space occupies the region 0z ≥ . It is assumed that a normal point force is acting at a point on 
the surface 0z =  of the medium and hence all the quantities are independent of the θ  co-ordinate. The basic 
governing equations of motion and heat conduction, in the context of the generalized theory of 
thermoelasticity, in the absence of body forces and heat sources are given by 
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 Here ( ) ( )w0utzr ,,,, =u  is the displacement vector; ( )tzrT ,,  is the temperature change; ee µλ ,  are 
the Lame’s parameters; eC,ρ  and Tα  are the density, specific heat at constant strain and co-efficient of 
linear expansion respectively; K is the thermal conductivity; 10 αα ,  are viscoelastic relaxation times and 

10 tt ,  are thermal relaxation times; k1δ  is the Kronecker’s delta in which 1k =  for Lord-Shulman (LS) 
theory and 2k =  in the case of Green-Lindsay (GL) theory. The thermal relaxation time parameters 0t  and 

1t  satisfy the inequalities (Green, 1972) 
 
  0tt 10 ≥≥ ,                  (2.4) 
 
in the case of GL theory only. However, it has been proved by Strunin (2001) that the inequalities (2.4) are 
not necessary to be satisfied. 
 
2.1. Initial and regularity conditions 
 
 The initial and regularity conditions are given by 
 
  ( ) ( )0zru00zru ,,,, &== ,     ( ) ( )0zrw00zrw ,,,, &== , 
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  ( ) ( )0zrT00zrT ,,,, &== ,     for     0r0z ≥≥ , , 
   (2.5) 
  ( ) 0tzru =,,      ( ) 0tzrw =,, ,     ( ) 0tzrT =,,      for     ∞→> z,0t  .            
                                                     
2.2. Boundary conditions  
 
 The surface 0z =  of the thermoviscoelastic solid is subjected to the action of an instantaneous 
normal point load at the origin and assumed either thermally insulated or isothermal. Therefore, the 
corresponding boundary conditions are given as  
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where ( )rδ  denotes the Dirac delta function; ( )tf  is a well behaved function of time and h is the coefficient 
of surface heat transfer. Here 0h →  corresponds to thermally insulated boundary and ∞→h  refers to 
isothermal surface of the half space. 
 We define the quantities 
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 Using quantities (2.7) in Eqs (2.1) to (2.3) and suppressing dashes, we obtain  
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 The non-dimensional form of boundary conditions (2.6) on the surface 0z =  is given as  
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3. Solution of the problem 
 
 We introduce the potential functions φ  and ϕ  through the relations  
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 Using Eq.(3.1) in Eqs (2.8) and (2.9), we obtain   
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 We define the Laplace transform by 
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and the Hankel transform as  
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where ( )xJ n  is a Bessel function of first kind and of order n. Here 0n =  for the functions T,φ  and 1n =  
for ψ . Applying the Laplace transform followed by Hankel transform to Eqs (3.2) to (3.4), we obtain  
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where 
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 The non-vanishing solution of Eqs (3.5) and (3.9) which satisfies the radiating condition, viz. the 
disturbance is assumed to be confined to the surface 0z = , is obtained as  
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 We take ( ) ( )ttf δ=  and apply the Laplace transform followed by the Hankel transform to boundary 
conditions (2.10). Then upon using the expressions for ψφ ˆˆ ,  and T̂  from Eqs (3.11) to (3.13) after lengthy 
but straightforward calculation, the displacements, temperature change and stresses in the transformed 
domain are obtained as 
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 The results for the LS and GL theories can be obtained by setting  1k =  and 2=k  respectively, in 
the values of 00 τ′τ , , 1τ  and those for coupled thermoelasticity (CT) can be obtained by taking 10 t0t ==  in 
the foregoing analysis. Here 0h →  corresponds to the thermally insulated boundary of the halfspace and 

∞→h  refers to the isothermal one. The results for uncoupled thermoviscoelasticity can be obtained by 
setting the thermal coupling parameter 0∈=  and thermal relaxation times 10 t0t ==  in the above analysis. 
The results for non-viscous thermoelastic continuum can be deduced from the above-obtained results by 
taking 010 =α=α  in the appropriate relations and functions. 
 
4. Inversion of the transforms 
 
 Due to the existence of damping, dependence of roots ( )321ii ,, , =ξ  on the integral transform 
parameters p and q is complicated; hence the inversion of the integral transform is difficult because the 
isolation of p is impossible. These difficulties, however, are reduced if we use some approximate or 
numerical methods. Therefore, in order to obtain the solution of the problem in the physical domain, we must 
invert the transform in Eqs (3.16) to (3.20) with a numerical technique. These expressions can formally be 
expressed as functions of z, q and p of the form ( )pzqf̂ ,, . First, we invert the Hankel transform, which gives 
the Laplace transform expression for the function ( )pzrf ,,  as 
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where 1n =  in the case of ( )pzqu ,,  and 0n =  for ( )pzqw ,,  as well as ( )pzqT ,, . For a fixed value of q, 
r and z, the function under the integral in Eq.(4.1) can be considered as a Laplace transform ( )pg  of same 
function ( )tg . The inversion for the Laplace Transform is given by 
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1tg ptic
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∞+

∞−π
= . (4.2) 

 
 The integral (4.2) can be evaluated by using the numerical technique outlined and used by Sharma 
and Chauhan (2001). After evaluating the integral (4.2) the next step in the inversion process is to evaluate 
the integral (4.1). This was done by using Romberg integration with adaptive step-size. This method uses the 
results from successive refinements of the extended trapezoidal rule followed by extrapolation of the results 
to the limit when the step-size tends to zero, the details of which can be found in the Press et al. (1992). 
 
5. Numerical results and discussion 
 
 In order to illustrate and compare the theoretical results obtained in the previous sections in the 
context of the LS, CT, UCT, GL, CT (NV) and UCT (NV) theories of thermoelasticity, we now present some 
numerical results. The material chosen for the purpose of numerical computations is copper. The physical 
data for such a material is given as Mukhopadhyay (2000) 
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 The non dimensional temperature change and stresses are computed from Eqs (3.18) to (3.20) at 
three different instants of time, viz. 1.0t = , 25.0  and 5.0  on the surface 0z =  by taking non-dimensional 
values of thermal and mechanical relaxation times 097.0t0 = , 07.0t1 = , 08.010 =α=α . Due to the 
closeness of results and to avoid clustering of different curves, the variations of temperature change and 
stresses are presented graphically at 25.0t =  only in the case of viscous and non-viscous; Lord-Shulman 
(LS), coupled theory of thermoelasticity (CT), uncoupled theory of thermoelasticity UCT, Green-Lindsay 
(GL), theories of thermoelasticity. Also the variations of temperature change and stresses are plotted at three 
different instants of time, viz. 1.0t = , 25.0  and 5.0  in the case of coupled thermoelasticity (CT) and 
uncoupled theory of thermoelasticity (UCT). 
 From Fig.1, it is noted that the temperature change in the context of LS, GL and CT theories for a 
viscous half space, though of quite small magnitude, increases instantaneously in the domain 1.0r0 ≤≤ , 
decreases monotonically in 75.0r1.0 ≤≤  and ultimately becomes close to zero in an oscillatory manner 
afterwards. This phenomenon is attributed to compression and expansion of the molecules of the solid due to 
the application of the load. Initially, the internal friction in viscous medium due to application of an 
instantaneous normal point load with thermally insulated boundary increases which results in the increase of 
temperature change and after that there is a rapid decay in temperature change due to a decrease of internal 
friction in the viscous medium. However, in the case of a viscous solid the temperature change in UCT 
theory remains almost close to zero because of very small changes in internal friction of the medium. The 
temperature change for CT (NV) and UCT (NV) shows the opposite trends to that of LS, GL and CT viscous 
theories. In the case of UCT theory, both for viscous and non-viscous solids, the variations of temperature change are 
observed to be negligibly small throughout in the case of the insulated boundary under the action of an instantaneous 
normal point load. The curves in the case of CT (NV) and UCT (NV) here are merged together because of weak 
thermomechanical coupling effects and that one corresponding to UCT for a viscous solid almost coincides with the 
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radial axis. It is found from Fig.2 that the variations of vertical stress in the context of LS, CT, UCT, GL, CT (NV) 
and UCT (NV) theories, though the curves are not very clearly distinguishable due to a significantly small effect of 
relaxation time, first increase monotonically in the domain 8.0r0 ≤≤ , decrease steadily in 35.1r8.0 ≤≤ , and 
then close to zero in an oscillating manner afterwards. However, the magnitude of vertical stress in the case of CT 
(NV) and UCT (NV) theories for non-viscous solid half spaces is smaller than that in the case of a viscous one in the 
context of CT, UCT, LS and GL theories of thermoelasticity. This shows that the effect of mechanical relaxation 
time parameters on the vertical stress is quite significant whereas thermal relaxation times have a negligibly small 
effect on this function. The behaviour of this function in the case of isothermal boundary conditions is also observed to be 
similar.  
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Fig.1. Temperature change with radial distance in the case of insulated boundary ( )25.0t = . 
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Fig.2. Vertical stress with radial distance in the case of insulated and isothermal boundary ( )25.0t = . 
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 It is observed in Fig.3 that the variations of shear stress development in the case of thermally 
insulated boundary are found to increase rapidly in 1.0r0 ≤≤ , decrease monotonically for 75.0r1.0 ≤≤  
and ultimately tend to zero afterwards in the context of CT (NV), UCT (NV) and UCT theories of 
thermoelasticity. However, this function in the case of LS, GL and CT theories shows the opposite trends for 
a viscous solid. The magnitude of shear stress variations has quite small values in the case of a viscous solid 
as compared to that of a non-viscous one. The effect of thermal relaxation times is quite pertinent on the 
shear stress. Moreover, the shear stress development is very small as compared to the vertical stress, which is 
consistent with the boundary conditions. The variations of temperature change, vertical stress and shear 
stress are respectively plotted in Figs 4, 5 and 6 at different values of time, namely: 1.0t = , 0.25 and 0.5 in 
the context of CT theory of thermoelasticity only. It is noticed from Fig.4 that the magnitudes of variations 
of temperature change initially and decrease with the passage of time. This is attributed to the instantaneous 
increase of internal friction at the time of application of the load and then to a decrease in the value of 
internal friction with the passage of time. This phenomenon results in a decreasing value of the conversion of 
mechanical energy into thermal one. Moreover, the absolute variation of temperature change is quite small as 
compared to the vertical stress development as can be seen from Figs 4 and 5. This signifies that only a very 
small amount of mechanical energy is converted into thermal energy in this case. Figure 5 shows that in the 
case of viscous and non-viscous solids, the absolute variations of vertical stress in the context of CT and 
UCT theories of thermoelasticity at three considered instants of time follow similar trends. However, the 
magnitude of variations of vertical stress at small time is higher than that at large time in the vicinity of the 
load. It is seen from Fig.6 that in the case of viscous and non-viscous solids the shear stress development has 
opposite trends at all considered instants of time and dies out in an oscillating fashion as we move away from 
the vicinity of the load along the radial direction for thermally insulated (CT) and isothermal (CT, UCT) 
boundaries of the halfspace. The amplitude of vibrations gets suppressed due to the viscous effect of the 
medium and goes on decreasing with the passage of time. It is observed in Fig.7 that the variations of  
vertical and shear stresses in the UCT theory, both in viscous and non-viscous solids, follow similar trends 
and behavior at the considered instants of time as in the case of CT theory in Figs 5 and 6, respectively, with 
the exception that the shear stress does not follow the opposite trend here.  
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Fig.3. Shear stress with radial distance in the case of insulated boundary ( )25.0t = . 
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Fig.4. Temperature change with radial distance in the case of insulated boundary (CT). 
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Fig.5. Vertical stress with radial distance in the case of insulated boundary (CT, UCT). 
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Fig.6. Shear stress with radial distance in the case of insulated (CT) and isothermal (CT, UCT) boundary. 
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Fig.7. Shear stress with radial distance in the case of insulated boundary (UCT). 
 
 It is noticed from Fig.8 that the variations of temperature change in the context of LS, GL, CT and CT(NV) 
theories, first increase instantaneously in the domain 1.0r0 ≤≤ , decrease rapidly in 3.0r1.0 ≤≤ , slowly and 
steadily in the domain 2r3.0 ≤≤ , before the temperature creeps along the isothermal boundary under the action of 
an instantaneous normal point load. The temperature change in the case of UCT and UCT (NV) theories for viscous 
and non-viscous solids remains zero throughout the isothermal boundary for an instantaneous normal point load. 
This is also in agreement with the boundary conditions. It is observed from Figs 9 and 10 that the variations of shear 
stress function in CT (NV), UCT (NV) theories for a viscous/non-viscous medium and GL for a viscous solid first 
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increase rapidly in 1.0r0 ≤≤ , decrease monotonically in the domain 75.0r1.0 ≤≤  and then approach zero 
slowly and steadily afterwards at the isothermal boundary of the solid. Shear stress in the case of GL theory for a 
viscous medium almost remains unchanged for all values of the radial distance. The variations of shear stress 
function in the context of LS, CT and UCT theories for viscous solids show the opposite trend to that of non-viscous 
media. It is noticed from Fig.10 that the magnitude of variations of temperature change at small time is higher than 
that at large time. From Fig.11 it is observed that when the instantaneous normal point load is applied at the 
isothermal boundary, the trend and behaviour of variations of vertical stress in CT and UCT theories at different 
considered values of time are similar to that of vertical stress in Fig.2. It is also noticed that in viscous solids the 
vertical stress has a small value as compared to that in the non-viscous one.  
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Fig.8. Temperature change with radial distance for isothermal boundary ( )25.0t = . 
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Fig.9. Shear stress with radial distance for isothermal boundary ( )25.0t = . 
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Fig.10. Temperature change with radial distance for an isothermal boundary (CT). 
 

 
Fig.11. Vertical stress with radial distance for an isothermal boundary (CT, UCT). 

 
 In conclusion, all the considered functions are noticed to vanish at certain values of the radial 
distance approximately near 5.2r = , which shows the existence of wave fronts. The impact of thermal 
relaxation time on various functions is found to be negligibly small, but it is quite significant at small time on 
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the shear stress development and temperature change. This shows that ‘second sound’ effects are short lived 
and the thermal wave travels with a finite, though quite large, speed in such solids. The effect of mechanical 
relaxation time on various considered functions is noticed to be quite significant and due to this resistive 
phenomenon the amplitude of vibrations decreases and some part of mechanical energy, though small, gets 
converted to thermal energy due to internal friction among the material particles. In the case of insulated 
boundary of the solid halfspace, most of the energy is observed to be carried in the form of vertical stress 
wave and a meager amount propagates in the form of shear stress and thermal waves, which is quite in 
agreement with the boundary conditions. However, in the case of an isothermal boundary, the significant 
amount of energy is carried in the form of a thermal wave in addition to vertical stress wave which carries 
major portion of the energy. The shear stress again carries a negligible small amount of energy in the case of 
isothermal boundary of the solid. This happens because the boundary of the solid halfspace is free to 
exchange heat with the surrounding in the isothermal case whereas it is not exposed thermally to the 
neighbouring environment in the case of thermally insulated boundaries. 
 
Nomenclature 
 
 eC  – specific heat at constant strain 

    
ρ

µ+λ
= ee2

1
2c  – longitudinal wave velocity 

 
ρ

µ
= e2

2c  – shear wave velocity 

 h  – surface heat transfer coefficient 
 K  – coefficient of thermal conductivity  
 0T  – equilibrium temperature prior to the appearance of disturbance  
 ( )tzrT ,,  – change in temperature of the medium at any time  
 10 tt ,  – thermal relaxation times  
 ( ) ( )w0utzru ,,,, =  – displacement vectors  
 Tα  – coefficient of linear thermal expansion  
 1,αα0  – mechanical relaxation parameters  
 ( )rδ  – Dirac delta function 
 k1δ  – Kronecker’s delta 
 e , λµ e  – Lame’s elastic constants 
 ρ  – density  
 φ , ψ  – potential functions 
 ω  – angular frequency 

( ) K2C eee
* µ+λ=ω   – characteristic frequency of the medium 

 ∈  – thermoelastic coupling constant 
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