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An unsteady Hartmann flow of two immiscible fluids through a horizontal channel with time-dependent 
oscillatory wall transpiration velocity is investigated. One of the fluids is assumed to be electrically conducting 
while the other fluid and the channel walls are assumed to be electrically insulating. Separate solutions for each 
fluid are obtained and these solutions are matched at the interface using suitable matching conditions. The partial 
differential equations governing the flow and heat transfer are transformed to ordinary differential equations and 
closed-form solutions are obtained in both fluids’ regions of the channel for steady and unsteady conditions. The 
closed-form results are presented graphically for various values of the Hartmann number, frequency parameter, 
periodic frequency parameter viscosity and conductivity ratios as well as the Prandtl number to show their effect 
on the flow and heat transfer characteristics. 
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1. Introduction 
 
 The unsteady laminar boundary-layer theory and flow response due to imposed oscillations has 
received much attention. Lighthil (1954) was the first to have studied the unsteady forced flow of a viscous 
incompressible fluid past a flat plate and a circular cylinder with small amplitude oscillation in free stream. 
The corresponding problem of an unsteady free convection flow along a vertical plate with oscillating 
surface temperature was studied by Nanda and Sharma (1963). Later, Muhuri and Maiti (1967) and Verma 
(1982) analyzed the effect of oscillation of the surface temperature on the unsteady free convection from a 
horizontal pipe. Hossain et al. (1998) used the linearized theory to study the free convection boundary-layer 
flow of electrically conducting fluid along a vertical plate due to surface temperature oscillations. 
 All these studies pertain to a single-fluid model. Most of the problems relating to petroleum industry, 
geophysics, plasma physics, magneto-fluid dynamics, etc., involve multi-fluid flow situations. The study of 
the interaction of the geomagnetic field with the fluid (i.e., hot springs) in the geothermal regions arises in 
geophysics. Once we know the interaction of the geomagnetic field with the flow we can easily determine, 
using the energy equation, the temperature distribution. The temperature is used to run the turbine across a 
magnetic field to generate electricity. Rudraiah et al. (1975) studied the Hartmann flow past a permeable bed 
in the presence of a transverse magnetic field with an interface at the surface of the permeable bed. 
 Both theoretical and experimental work is found in the literature on a stratified laminar flow of two 
immiscible fluids in a horizontal pipe. In the petroleum industry, as well as in other engineering fields, a 
stratified two-phase flow often occurs. There have been some experimental and analytical studies on 
hydrodynamic aspects of the two-phase flow reported in the recent literature. The interest in these types of 
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problems stems from the possibility of reducing the power required to pump oil in a pipeline by suitable 
addition of water. The first investigations were associated with the LM-MFM generator project at the Argone 
National Laboratory. Packham and Shail (1971) analyzed a stratified laminar flow of two immiscible liquids 
in a horizontal pipe. The Hartmann flow of a conducting fluid in a channel with a layer of non-conducting 
fluid between the upper channel wall and the conducting fluid was studied by Shail (1973). He found that an 
increase of order 30% could be achieved in the flow rate for suitable ratios of depths and viscosities of the 
two fluids. Loharsbi and Sahai (1987) dealt the with two-phase MHD flow and heat transfer in a parallel-
plate channel. Both phases were incompressible and the flow was assumed to be steady, one-dimensional and 
fully developed. The study was expected to be useful in the understanding of the effect of the presence of 
slag layers on the heat transfer characteristics of a coal-fired MHD generator. Alireza and Sahai (1990) 
studied the effect of temperature-dependent transport properties on the developing MHD flow and heat 
transfer in a parallel plate channel whose walls were held at constant and equal temperatures. Following the 
work of Alireaz and Sahai (1990), Malashetty and Umavathi (1997) and Malashetty et al. (2001a, b) studied 
the two-phase MHD flow and heat transfer in an inclined channel. Chamkha (2000) reported analytical 
solutions for the flow of two-immiscible fluids in porous and non-porous parallel-plates channels. 
 The above investigations were carried out for steady flow situations. However, a significant number of 
practical problems dealing with immiscible fluids are unsteady. Chamkha (2004) studied the unsteady MHD 
convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Keeping 
in view the wide range of applications in geophysics and MHD generators, an attempt is made to analyze the flow 
and heat transfer of the unsteady Hartmann flow of two immiscible fluids in a horizontal channel. One of the fluids is 
assumed to be electrically conducting, while the other fluid and the channel walls are assumed to be electrically 
insulating.  
 
2. Mathematical formulation 

 
 The geometry under consideration consists of two infinite parallel plates extending in the X and Z directions 
(Fig.1). The regions hy0 ≤≤  and 0yh ≤≤−  are denoted as Region-I and Region-II, respectively. The fluid in 
Region-I is an electrically-conducting fluid having density 1ρ , viscosity 1µ  and thermal conductivity 1K . Region-II 
is filled with a electrically-non-conducting fluid having density 2ρ , viscosity 2µ  and thermal conductivity 2K . A 
constant magnetic field of strength 0B  is applied transverse to the flow direction. The magnetic Reynolds number is 
assumed to be small so that the induced magnetic field is neglected. Also, it is assumed that no electric field exists 
and that the Hall effect of magnetohydrodynamics is negligible. However, the effect of Joule heating (magnetic 
dissipation) of the electrically-conducting fluid is included in the model.  
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Fig.1. Physical configuration. 
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 It is assumed that the flow is unsteady, fully developed and that all fluids properties are constants. 

The flow in both regions is assumed to be driven by a common pressure gradients 
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gradients 2w1w TTT −=∆  where 1wT  is the temperature of the boundary at hy =  and 2wT  is the temperature 
of the boundary at hy −= . 
 Under these assumptions the governing equations of motion and energy (Loharsbi and Sahai, 1988) are: 
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where u is the x-component of fluid velocity, v is the y-component of fluid velocity and T is the fluid temperature. 
The subscripts 1 and 2 correspond to Region-I and Region-II, respectively. The boundary conditions on velocity 
are the no-slip boundary conditions which required that the x-component of velocity must vanish at the wall. The 
boundary conditions on temperature are isothermal conditions. We also assume the continuity of velocity, shear 
stress, temperature and heat flux at the interface between the two fluid layers at 0y = . 
 The hydrodynamic boundary and interface conditions for the two fluids can then be written as  
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 The thermal boundary and interface conditions on temperature for both fluids are given by 
 
  ( ) 1w1 ThT = , 
 
  ( ) 2w2 ThT =− , 
   (2.8) 
  ( ) ( )0T0T 21 = , 
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 The continuity equations of both fluids (Eqs (2.1) and (2.4)) imply that 1v  and 2v  are independent of 
y, they can be utmost a function of time alone. Hence, we can write (assuming vvv 21 == ) 
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where A is a real positive constant. ω  is the frequency parameter and ε  (a constant) is small such that 

.1A ≤ε  Here, it is assumed that the transpiration velocity varies periodically with time about a non-zero 
constant mean 0v . When 0A =ε , the case of constant transpiration velocity is recovered. By use of the 
following non-dimensional quantities 
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and for simplicity dropping the asterisks, Eqs (2.2), (2.3), (2.5) and (2.6) become 
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where 
1

0
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Cpνρ
=Pr  is the Prandtl number, 
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thermal conductivities.   
 The hydrodynamic and thermal boundary and interface conditions for both fluids in a non-
dimensional form become 
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3. Closed-form solutions 
 
 The governing momentum Eqs (2.11), (2.13) along with the energy Eqs (2.12) and (2.14) are solved 
subject to the boundary and interface conditions (2.15) and (2.16) for the velocity and temperature 
distributions in both regions. These equations are coupled partial differential equations that cannot be solved 
in a closed form. However, it can be reduced to ordinary differential equations by assuming 
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 This is a valid assumption because of the choice of v as defined in Eq.(2.9) that the amplitude 

.1A <<ε  
 By substituting Eqs (3.1) and (3.2) into Eqs (2.11) to (2.16), keeping the harmonic and non-harmonic 
terms and neglecting the higher-order terms of 2ε , one obtains the following pairs of equations: 
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Region -II  
Non-periodic coefficients 
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 The corresponding boundary conditions become as follows  
Non-periodic coefficients 
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Periodic coefficients 
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   (3.12) 
  ( ) ( )0u0u 2111 = , 
 

  
y

u
y

u 2111
∂

∂
α=

∂
∂      at     0y = .  

 
Non-periodic coefficients 
 
  ( ) 1110 =θ , 
 
  ( ) 0120 =−θ , 
   (3.13) 
  ( ) ( )00 2010 θ=θ , 
  

  
yy
2010

∂
θ∂

β=
∂
θ∂      at     0y = .  

 
Periodic coefficients 
 
  ( ) 0111 =θ , 
 
  ( ) 0121 =−θ , 
   (3.14) 
  ( ) ( )00 2111 θ=θ , 
 

  
yy
2111

∂
θ∂

β=
∂
θ∂      at     0y = .  

  
 Equations (3.3) to (3.10) along with the boundary and interface conditions (3.11) to (3.14) represent 
a system of ordinary differential equations and conditions that can be solved in a closed form.  
 The solution of the non-periodic (harmonic) terms leads to the steady flow solutions for both fluids. 
Without going into detail, the steady-state velocity and temperature profiles can be shown to be 
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 The solution of the periodic (non-harmonic) terms gives the transient velocity and temperature 
profiles in both regions of the channel (Region-I and Region-II). These solutions are given by 
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 The constants appearing in the above solutions are defined in the Appendix section. 
 
4. Results and discussion 
 
 The problem of an unsteady two immiscible fluids flow through a horizontal channel is investigated 
analytically in the presence of an applied magnetic field transverse to the flow direction. The transpiration 
velocity is assumed to vary periodically with time about a non-zero constant mean velocity. The closed-form 
solutions reported for small ε , the coefficient of exponent of periodic frequency parameter in the previous 
section are evaluated for various parametric conditions. Although the correctness of the obtained results is 
not verified, the fact that the solutions satisfy all boundary and interface conditions (as will be seen in the 
graphical results) lend some confidence. The results are depicted graphically in Figs 2 to 11 to elucidate 
interesting features of the hydrodynamic and thermal state of the flow. 
 Figures 2 and 3 depict the effect of the Hartmann number M on the velocity and temperature fields, 
respectively. The application of a transverse magnetic field normal to the flow direction has a tendency to 
create a drag-like force called the Lorentz force. This force has a decreasing effect on the flow velocity. It is 
seen from Figs 2 and 3 that the magnetic field flattens out the velocity and temperature profiles and reduces 
the flow energy transfer as in the case of the steady-state Hartmann flow problem. Also, as expected, the 
influence of the Hartmann number on the velocity profiles is more pronounced in the channel region 
containing the electrically-conducting fluid compared to that containing the electrically non-conducting 
fluid. Furthermore, it is observed that the peak value in the velocity profile moves towards Region-II as the 
strength of the magnetic field increases. 
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Fig.2. Velocity profiles for different values of the Hartmann number M. 
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Fig.3. Temperature profiles for different values of the Hartmann number M. 

 
 The effect of the frequency parameter Aε  of the transpiration velocity on the velocity and 
temperature profiles is shown in Figs 4 and 5, respectively. In finding the closed-form solutions, it was 
assumed that ε  is small and A is a real positive constant such that 1A ≤ε  and hence, in these figures the 
condition 1A ≤ε  is satisfied. It should be noted that in these figures the condition 0A =ε  corresponds to the 
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case of constant transpiration velocity. It is predicted that as the frequency parameter increases, both the velocity and 
temperature profiles increase. This is expected since as Aε  increases, the amplitude of the periodic oscillations of the 
transpiration velocity increases resulting in an increased flow in the channel. Also, the maximum velocity in the channel 
tends to move above the channel centerline towards Region-I as the frequency parameter increases as is clear from Fig.4.  
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Fig.4. Velocity profiles for different value of the frequency parameter Aε . 
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Fig.5. Temperature profiles for different values of the frequency parameter Aε . 
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 Figures 6 and 7 show representative velocity and temperature profiles for various values of the periodic frequency 
parameter tω , respectively. Increasing the periodic frequency parameter has the effect of increasing the flow and heat 
transfer characteristics. This causes both the velocity and temperature fields in the channel to increase as evident from Figs 
6 and 7. By a comparison with Figs 4 and 5, it is noted that the increase in both the velocity and temperature profiles as ωt 
increases is minimal when compared with the changes in these profiles as Aε is increased. 
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Fig.6. Velocity profiles for different values of the periodic frequency parameter tω . 
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Fig.7. Temperature profiles for different values of the periodic frequency parameter tω . 
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 The effect of the viscosity ratio α  on the velocity and temperature distributions is shown in Figs 8 and 9, 
respectively. As the viscosity ratio increases, both the velocity and temperature profiles decrease. This is due to the fact that 
as the viscous effects increase, the fluids in both regions become thicker and hence, the flow velocity in the channel is 
reduced causing the temperature distribution in the channel to reduce as well. This is evident from Figs 8 and 9. 
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Fig. 8 Velocity profiles for different values of the viscosity ratio α  
 

Fig.8. Velocity profiles for different values of the viscosity ratio α . 
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Fig.9. Temperature profiles for different values of the viscosity ratio α . 
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 Figures 10 and 11 illustrate the influence of the conductivity ratio β  and the Prandtl number Pr on the 
temperature profiles, respectively. As either of the conductivity ratio or the Prandtl number increases, the temperature field 
decreases. This thermal suppression is large in Region-II compared to Region-I due to the different boundary conditions on 
temperature. The Prandtl number which is the ratio of momentum diffusion to heat diffusion indicates that as the 
momentum diffusion increases, the heat diffusion effect will be reduced and hence the temperature decreases as the Prandtl 
number increases. Also, it is noted that the maximum temperature in the channel tends to move further above the channel 
centerline as either β  or Pr  increases and becomes very close to the upper wall of the channel for the case 5=Pr . These 
behaviors are clear from Figs 10 and 11.  
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Fig.10. Temperature profiles for different values of the thermal conductivity ratio β . 
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Fig.11. Temperature profiles for different values of the Prandtl number Pr. 
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5. Conclusion 
 
 The problem of an unsteady Hartmann flow of two immiscible fluids through a horizontal channel 
with time-dependent oscillatory wall transpiration velocity was investigated analytically. One of the fluids 
was assumed to be electrically conducting, while the other fluid and the channel walls were assumed to be 
electrically insulating. Separate closed-form solutions for each fluid were obtained taking into consideration 
suitable interface matching conditions. The closed-form results were numerically evaluated and presented 
graphically for various values of the Hartmann number, frequency parameter, periodic frequency parameter 
viscosity and conductivity ratios as well as the Prandtl number. It was found that the flow and heat transfer 
characteristics can be effectively controlled by the properties of the two fluids as well as the fluid 
suction/injection amount at the boundary. 
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Nomenclature 
 
 A  – real positive constant 
 PC  – specific heat at constant pressure 
 g  – gravitational acceleration 
 K  – thermal conductivity 
 M  – Hartmann number 
 P  – pressure 
 Pr  – Prandtl number 
 T  – temperature 
 wT  – wall temperature 
 t  – time 
 v,u  – velocity components of velocity along and perpendicular to the plates, respectively 
 1u  – average velocity 
 0v  – scale of suction 
 ε  – coefficient of periodic parameter 
 θ  – non-dimensional temperature 
 µ  – viscosity of fluid 
 ν  – kinematic viscosity 
 ρ  – fluid density 
 ω  – frequency parameter 
 tω  – periodic frequency parameter 
 
Subscripts 
 
 1, 2 – quantities for Region-I and Region-II, respectively 
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