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An unsteady Hartmann flow of two immiscible fluids through a horizontal channel with time-dependent
oscillatory wall transpiration velocity is investigated. One of the fluids is assumed to be electrically conducting
while the other fluid and the channel walls are assumed to be electrically insulating. Separate solutions for each
fluid are obtained and these solutions are matched at the interface using suitable matching conditions. The partial
differential equations governing the flow and heat transfer are transformed to ordinary differential equations and
closed-form solutions are obtained in both fluids' regions of the channel for steady and unsteady conditions. The
closed-form results are presented graphically for various values of the Hartmann number, frequency parameter,
periodic frequency parameter viscosity and conductivity ratios as well as the Prandtl number to show their effect
on the flow and heat transfer characterigtics.
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1. Introduction

The unsteady laminar boundary-layer theory and flow response due to imposed oscillations has
received much attention. Lighthil (1954) was the first to have studied the unsteady forced flow of a viscous
incompressible fluid past aflat plate and a circular cylinder with small amplitude oscillation in free stream.
The corresponding problem of an unsteady free convection flow aong a vertical plate with oscillating
surface temperature was studied by Nanda and Sharma (1963). Later, Muhuri and Maiti (1967) and Verma
(1982) andyzed the effect of oscillation of the surface temperature on the unsteady free convection from a
horizontal pipe. Hossain et al. (1998) used the linearized theory to study the free convection boundary-layer
flow of dectricaly conducting fluid along a vertical plate due to surface temperature oscillations.

All these studi es pertain to a single-fluid model. Most of the problems relating to petroleum industry,
geophysics, plasma physics, magneto-fluid dynamics, ec., involve multi-fluid flow situations. The study of
the interaction of the geomagnetic field with the fluid (i.e., hot springs) in the geothermal regions arises in
geophysics. Once we know the interaction of the geomagnetic fidd with the flow we can easily determine,
using the energy equation, the temperature distribution. The temperature is used to run the turbine across a
magnetic field to generate dectricity. Rudraiah et al. (1975) studied the Hartmann flow past a permeabl e bed
in the presence of a transverse magnetic field with an interface at the surface of the permeable bed.

Both theoretica and experimental work is found in the literature on a stratified laminar flow of two
immiscible fluids in a horizontal pipe. In the petroleum industry, as well as in other engineering fields, a
stratified two-phase flow often occurs. There have been some experimental and analytical studies on
hydrodynamic aspects of the two-phase flow reported in the recent literature. The interest in these types of
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problems stems from the possibility of reducing the power required to pump oil in a pipdine by suitable
addition of water. The first investigations were associated with the LM-MFM generator project at the Argone
National Laboratory. Packham and Shail (1971) analyzed a stratified laminar flow of two immiscible liquids
in a horizontal pipe The Hartmann flow of a conducting fluid in a channd with a layer of non-conducting
fluid between the upper channel wall and the conducting fluid was studied by Shail (1973). He found that an
increase of order 30% could be achieved in the flow rate for suitable ratios of depths and viscosities of the
two fluids. Loharsbi and Saha (1987) dealt the with two-phase MHD flow and heat transfer in a parale-
plate channel. Both phases were incompressible and the flow was assumed to be steady, one-dimensiona and
fully developed. The study was expected to be useful in the understanding of the effect of the presence of
slag layers on the heat transfer characteristics of a coal-fired MHD generator. Alireza and Sahai (1990)
studied the effect of temperature-dependent transport properties on the developing MHD flow and hesat
transfer in a pardld plate channd whose walls were hdd at constant and equal temperatures. Following the
work of Alireaz and Sahai (1990), Malashetty and Umavathi (1997) and Malashetty et al. (20014, b) studied
the two-phase MHD flow and heat transfer in an indined channel. Chamkha (2000) reported analytical
solutions for the flow of two-immiscible fluids in porous and non-porous paralld-plates channds.

The above investigations were carried out for steedy flow situations. However, a dgnificant number of
practical problems dedling with immiscible fluids are unsteady. Chamkha (2004) sudied the unsteedy MHD
convective heat and mass transfer past asemi-infinite vertical permesable moving plate with heat absorption. Kegping
in view the wide range of gpplications in geophysics and MHD generators, an atempt is made to andyze the flow
and heat transfer of the unsteady Hartmann flow of two immiscible fluidsin a horizontal channd. One of thefluidsis
assumed to be dectricdly conducting, while the other fluid and the channd walls are assumed to be dectricaly
insulating.

2. Mathematical formulation

The geometry under consideration congsts of two infinite parallel plates extending in the X and Z directions
(Fig.1). Theregions O£ y£h and - h£ y£0 are denoted as Region-| and Regiortl |, respectivey. The fluid in
Region-I isan dectricdly-conducting fluid having density r 4, viscosity m; and therma conductivity K . Region-l|
is filled with a dectrically-non-conducting fluid having density r ., viscosity m, and thermal conductivity K, . A
constant magnetic fid of strength By, is applied transverseto the flow direction. The magnetic Reynolds number is

assumed to be smd| so that the induced magnetic fidd is neglected. Also, it is assumed that no dectric fidd exists
and tha the Hall effect of magnetohydrodynamics is negligible. However, the effect of Joule heating (magnetic
dissipation) of the dectrically-conducting fluid isind uded in the modd.

Y

h Tw1
Region-I

< B
0
X

Region-I| 0

h T,

W2

Fig.1. Physical configuration.
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It is assumed that the flow is unsteady, fully developed and that all fluids properties are constants.
The flow in both regions is assumed to be driven by a common pressure gradients ge %9 and temperature
e Xg

gradients DT =T, - T,,» where T, isthetemperature of the boundary & y =h and T, isthetemperature
of theboundaryat y=-h.
Under these assumpti ons the governing equations of motion and energy (Loharsbi and Sahai, 1988) are:

Region-I
ﬂﬂ_\;;: , (2.1)
roaa% +v, ﬂﬂL;/lz nhﬁ]i;l - % s,u,B2, (2.2)
rOCpgﬂ1+vl1]"-|;/1 =K, ﬂle nh?]"t/l; +s,B2u?. (2.3)
Region-I1
ﬂﬂ—‘;z =0, (2.4)
"og gt 112+ e 'nyg ﬂﬂzy?%’ (29)
rOCpg% +v2ﬂ1-]r—;%: K, ﬂsz + nb?;; ;3 (2.6)

where u isthe x-component of fluid ve ocity, v isthe y-component of fluid ve ocity and T is the fluid temperature.
The subscripts 1 and 2 correspond to Region-1 and Region-11, respectively. The boundary conditions on vel ocity
are the no-dip boundary conditions which required that the x-component of velocity must vanish a the wall. The
boundary conditions on temperature are isotherma conditions. We aso assume the continuity of veocity, shear
stress, temperature and hest flux at the interface between thetwo fluid layersa y=0.

The hydrodynamic boundary and interface conditions for the two fluids can then be written as

ul(h)ZO,

2.7)
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The thermal boundary and interface conditions on temperature for both fluids are given by

T2 (' h) :TWZ )

T.(0)=T,(0),

(2.8)

T, _ -k, M2 1T,

K
Yy Ty

a y=0.
The continuity equations of both fluids (Eqgs (2.1) and (2.4)) imply that v; and v, areindependent of
y, they can be utmost a function of time alone. Hence, we can write (assuming v; =V, =V)

v:v0(1+ eAeth) (2.9)

where A is a real positive constant. w is the frequency parameter and € (a constant) is small such that
e A£ 1 Here, it is assumed that the transpiration velocity varies periodically with time about a non-zero

constant mean V. When e A=0, the case of constant transpiration velocity is recovered. By use of the
following non-dimensiona quantities

* * h * n =« Vv n *
u =uyu; =hy , t=—t, VvVv=—V =—, W=—WwW ,
i 1 y y |V0| h2
(2.10)
h? 24P T-T S
P = — —, q = — W y M= h 21 y
mlulgﬂxﬂ uy my /Ky BO\/;
and for simplicity dropping the asterisks, Eqs (2.2), (2.3), (2.5) and (2.6) become
Region-I
2
Moy Iy _p 0 L M2y, (2.11)
fit iy iy
0

ﬂql +v ﬂql — 1 a.l ql +a[ul : +M2 2 (212)

w y Tegn i M
Region-I1

2
AL IVALL B uzz, (2.13)
it 1% Ty
2 .2
‘I]q_2+v‘|]q_2:£_‘ﬂ 92 +i%2 (2.14)

It Ty Pray? Preflyg
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ronCp is the Prandtl number, a:& is the ratio of viscosities and b :% is the ratio of

1 m 1
thermal conductivities.
The hydrodynamic and thermal boundary and interface conditions for both fluids in a non-
dimensional form become

where Pr =

u,(1)=o0,

u,(- 1)=o0,

o 0)ou ) (2.15)
uy _ o Tz y=0,

iy y

a:(1)=1,

dz(- 1)=0,

0)=0,0). -

3. Closed-form solutions

The governing momentum Egs (2.11), (2.13) aong with the energy Eqgs (2.12) and (2.14) are solved
subject to the boundary and interface conditions (2.15) and (2.16) for the veocity and temperature
distributions in both regions. These equations are coupled partia differentiad equations that cannot be solved
in adosed form. However, it can be reduced to ordinary differential equations by assuming

uy(y, t) =ug(y) +ee™ uyy (y),  ua(y,t)=uz(y)+ee™ uy(y), (3.1)

du(y, t)=am(y)+ee™anly)., ax(y.t)=ax(y)+ee™ axly) . (3.2)

This is a valid assumption because of the choice of v as defined in Eq.(2.9) that the amplitude
eA<<1.

By substituting Egs (3.1) and (3.2) into Eqgs (2.11) to (2.16), keepi ng the harmonic and non-harmonic
terms and neglecting the higher-order terms of e, one obtains the following pairs of equations:
Region-I
Non-periodic coefficients

2
d“uyq ) duyg

- M2u,, +P=0, (3.3)
dy2 dy 10
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2 - 2) .2 0
d qzlo P dglo :_gM 2u120+g :102 - (3.4)
dy y g Y 5
Periodic coefficients
2
AUy iy (2 4y, = A% (35)
dy dy dy
2
9 oy By, = praddio . oy 2y, gy, - 290 s (3.6)
dy dy dy dy dy
Region -11
Non-periodic coefficients
d%u,, du
a 220_ 20 4+ p=0, (3.7)
dy dy
2 .2
b d q220 - pr day _ a&duzo g . (3.8)
dy dy dy g
Periodic coefficients
2
ad—uZZl—%—iwuﬂ: M, (3.9
dy dy dy
2
bd—q;l- pr%s _j\yprq,, = praddz . pq iz Uz (3.10)
dy dy dy dy dy
The corresponding boundary conditions become as follows
Non-periodic coefficients
Uio (1) =0,
Uz ( 1) =0,
(3.11)

U30(0) = 5 (0),

Tlu_lO:aM at
iy iy

Periodic coefficients

ull(l) =0,
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Uzl(' 1) =0,
(3.12)
uy; (0) =y (0),
% =a M at y= 0.
fy fy
Non-periodic coefficients
Q1o (1) =1,
G20 ( 1) =0,
(3.13)
Q1o (0) =0 (0)’
qu_lO = bM at y= 0.
y Ty
Periodic coefficients
Q11(1) =0,
Q21(' 1) =0,
(3.14)
Q11(0) = Q21(0)’
& = bM at y= 0.

iy iy

Equations (3.3) to (3.10) along with the boundary and interface conditions (3.11) to (3.14) represent
asystem of ordinary differential equations and conditions that can be solved in a closed form.

The solution of the non-periodic (harmonic) terms leads to the steady flow solutions for both fluids.
Without going into detail, the steady-state velocity and temperature profiles can be shown to be

Uy =Ce™ +C,e™ + % : (3.15)
Uyy =Cq+C,e™ + Py, (3.16)
O10 = Cg +Cge™ + K ,e2™Y + K™Y + Kge™Y +K,e™Y +Kge™ +Kqy, (3.17)
Oz0 =C7 +Cge™ +Kyoe™™ + Ky €™ +Kypy . (3.18)

The solution of the periodic (non-harmonic) terms gives the transient velocity and temperature
profiles in both regions of the channe (Region-I and Region-11). These solutions are given by
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Uy, = €Y (XCycosB, y + XCypsinB, y) + A,e™ + Aje™Y +

(3.19)
+ i[eAly (YCoc0sB, y + YCosinB, y) + B,e™Y + Bzemzy] :

Up; =€”2Y(XCy1008B, y + XCyo8inB,y) + K 56™ +

(3.20)
+ i[eAQV (YC,,cosB, y +YC,,sinB, y) + K ,6™Y + Kl5] ,

Oy1 =€ (XCy3008By + XCy4SiNByy) + Poge™™ + Py ™Y + Ppge™ +
+ Pyge™ +Pye™Y +e™Y Py cosB, y + Py,sinB, y)+
+€™Y (Pyy008B, y + Py sinB; y) + €™ (PogcosB; + PygsinB, y) + (3.21)
geAsy (YC13008B5y + YCy,SinByy) + Q™ +Qye™™ +Quge™Y + .

+i8+Qu0e™Y +Qgpe™ +e™Y (Qz1008B, y + Qa,8inB, y)+

ey eny eny enid

-

gre™ (Qas008Byy +QyysinByy) + €Y (Qusc0B; + QuesinByy) + Kyge™ + Ky

o

Op1 = ey (XC15005527Y + XCy6SiNByy; Y) + Agge™Y + Kzgezmsy +Kgoe™ +
+€"Y (Py;c08B, y + PygsinB, y)+ ™Y (P,gcosB, y + PyosinB, y) + (3.22)
Eeh2TY (YC15005|327 Y +YC6SiNBy; Y) +Bye™ + K31e2m3y +Kgpe™ +U
G

+ié .
B+ (Qu7008B,y + QuesinB, )+ €Y (Que008B, Y + QepsinB, y) + K6

The constants appearing in the above sol utions are defined in the Appendix section.

4. Resultsand discussion

The problem of an unsteady two immiscible fluids flow through a horizontal channd is investigated
anaytically in the presence of an applied magnetic field transverse to the flow direction. The transpiration
velodity is assumed to vary periodicaly with time about a non-zero constant mean vel ocity. The closed-form
solutions reported for small €, the coefficient of exponent of periodic frequency parameter in the previous
section are evaluated for various parametric conditions. Although the correctness of the obtained results is
not verified, the fact that the solutions satisfy al boundary and interface conditions (as will be seen in the
graphical results) lend some confidence. The results are depicted graphically in Figs 2 to 11 to ducidate
interesting features of the hydrodynamic and thermal stete of the flow.

Figures 2 and 3 depict the effect of the Hartmann number M on the vel ocity and temperature fields,
respectively. The application of a transverse magnetic field normal to the flow direction has a tendency to
create a drag-like force called the L orentz force. This force has a decreasing effect on the flow velocity. It is
seen from Figs 2 and 3 that the magnetic field flattens out the velocity and temperature profiles and reduces
the flow energy transfer as in the case of the steady-state Hartmann flow problem. Also, as expected, the
influence of the Hartmann number on the velocity profiles is more pronounced in the channel region
containing the dectricaly-conducting fluid compared to that containing the eectrically non-conducting
fluid. Furthermore, it is observed that the peak value in the velodity profile moves towards Region-I1 as the
strength of the magnetic field increases.
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1.0
Region-|
M=2.0
P=5.00
A=0.1
wt=2.36
Pr=0.70
05 |- w=0.75
a=1.0
M=0.1
0.0
Region-II
y
-0.5 |-
1.0 1 1 1 1 1 1

0.0 0.4 0.8 12 1.6 2.0 24

u —

Fig.2. Vdocity profiles for different values of the Hartmann number M.

1.0
M=2.0 Region-|
P=5.00
A=0.1
w=2.36
Pr=0.70
w=0.75
05 ka=1.0
b=1.0

M=0.1

0.0
Region-II

-05 |-

-10 1

Fig.3. Temperature profiles for different val ues of the Hartmann number M.

The effect of the frequency parameter eA of the transpiration veocity on the veocity and
temperature profiles is shown in Figs 4 and 5, respectivey. In finding the closed-form solutions, it was
assumed that € issmdl and A is area postive constant such that eA£ 1 and hence, in these figures the
condition eA£ 1 is satisfied. It should be noted that in these figures the condition eA=0 corresponds to the
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case of constant transpiration vel ocity. It is predicted that as the frequency parameter increases, both the veocity and
temperature profilesincrease. Thisis expected sinceas €A increases, the amplitude of the periodic osdillations of the
trangpiration veodity increases resulting in an increesed flow in the channd. Also, the maximum vdodity in the channd
tends to moveabove the channd centerline towards Regiont asthe frequency parameter increeses asis dear from Fig 4.

1.0

Region-|
05
0.0
Region-Il
-05 |-
10 1 1 1
0 1 2 3 4

U ——

Fig.4. Veocity profiles for different value of the frequency parameter eA.

1.0
Region-|

0.0

Region-Il

< —

-0.5

-1.0

Fig.5. Temperature profiles for different va ues of the frequency parameter eA.
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Figures 6 and 7 show representative ve odty and temperature profiles for various va ues of the periodic frequency
parameter wt , respedtivdy. Increesing the peaiodic frequency parameter hes the effect of increesing the flow and heat
transfer charadteridtics. This causes bath the ve odity and temperature fidds inthe channd toincreeseas evident from Figs
6 and 7. By a comparison with Figs4 and 5, it is nated thet theincreasein both the ve odity and temperature profilesas wt
incresses is minimal when compared with the changesintheseprofilesas eA isinareased.

1.0
Region-I
0.5
Y 0.0
Region-Il
y
-05 |-
1.0 | | | | |
0.0 0.3 0.6 0.9 1.2 15

U ——

Fig.6. Veocity profiles for different val ues of the periodic frequency parameter wt .
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05 =10

3.1428

0.0
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-05 |-

10 1 1 1 1 1
0.0 05 1.0 15 20 25

Fig.7. Temperature profiles for different values of the periodic frequency parameter wt .
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The dfect of the viscodty reio a on the vdodty and temperature digtributions is shown in Figs 8 and 9,
respectively. Astheviscodity ratio inareases, both the ve oty and temperature profiles decresse. Thisis dueto the fact thet
as the visoous effects increase the fluids in bath regions become thicker and hence, the flow vdodty in the channd is
reduced causing the temperature distribution in the channd to reduceas wel. Thisisevident fromFigs8 and 9.

1.0

Region-|

M=2.0
P=5.00
A=0.1
wt=2.36
05 Pr=0.70
w=0.75
b=1.00

Fig.8. Ve ocity profiles for different values of the viscosity ratio a .

1.0
M=2.0 Region-I
P=5.00
A=0.1
w=2.36
Pr=0.70
w=0.75
0.5 b=1.00
a=0.25
1 00
Region-Il
y
0.5 |-
10 1 1 1 1 1 1
0 1 2 3 4 5 6

Fig.9. Temperature profiles for different values of the viscosity ratio a .



Oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel 167

Figures 10 and 11 illustrate the influence of the condudivity ratio b and the Prandtl number Pr on the
temperature profiles, respedtivdy. As dther of the condudtivity ratio or the Prandtl number incresses, the temperaturefid d
decresses. Thisthemd suppressionislargein Region-11 compared to Regiort dueto the different boundary conditionson
temperature The Prandtl number which is the raio of momentum diffusion to heat diffuson indicates thet as the
momentum diffusion increases, the heet diffusion effect will be reduced and hencethetemperature decreases as the Pranct]
number inareeses. AlSo, it is nated thet the maxi mum temperaturein the channd tends to move further aovethe channd
centelineasdther b or Pr inaresses and becomes very doseto the upper wal of thechamnd forthecase Pr =5. These

behaviorsare dear fromFigs10 and 11.

1.0

M=2.0 Region-
P=5.00
A=0.1
w=2.36
Pr=0.70
w=0.75
05 a=1.00
b=0.25
0.0
Region-II
y
-05 -
10 ! ! ! !
0 1 2 3 4

q —
Fig.10. Temperature profiles for different values of the thermal conductivity ratio b.

1.0

M=2.0 Region-I
P=5.00
A=0.1
wt=2.36
w=0.75
a=1.00
0.5 H=1.00
Pr=0.0001
0.0
Region-Il
y
-05 |-
10 ! ! ! ! ! !
0.0 05 1.0 15 20 25 3.0

q —

Fig.11. Temperature profiles for different values of the Prandtl number Pr.
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5. Conclusion

The problem of an unsteady Hartmann flow of two immiscible fluids through a horizontal channel
with time-dependent oscillatory wall transpiration velocity was investigated andytically. One of the fluids
was assumed to be eectrically conducting, while the other fluid and the channd walls were assumed to be
eectricaly insulating. Separate closed-form solutions for each fluid were obtained taking into consideration
suitable interface matching conditions. The closed-form results were numerically evaluated and presented
graphically for various values of the Hartmann number, frequency parameter, periodic frequency parameter
viscosity and conductivity ratios as well as the Prandtl number. 1t was found that the flow and heat transfer
characteristics can be effectively controlled by the properties of the two fluids as well as the fluid
suction/injection amount at the boundary.

Acknowledgment

The first author thanks Prof. M.S. Mdashetty, Department of Mathematics, Gulbarga University,
Gulbargafor his constant encouragement.

Nomenclature

A —real positive constant
Cp —9pecific heat at constant pressure
g —gravitationa acceleraion
K —thermal conductivity
M —Hartmann number
P —pressure
Pr —Prandtl number
T —temperature
T, —wall temperature
t —time
u,v —velocity components of velocity along and perpendicular to the plates, respectively

|

, —average velocity

—scale of suction

— coefficient of periodic parameter
—non-dimensional temperature
—viscosity of fluid

— kinematic viscosity

— fluid density

w —freguency parameter

wt — periodic frequency parameter

5 300 &

-

Subscripts

1,2 —quantitiesfor Region-l and Region-11, respectively
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Appendix
_1+\/Eco53 %% _AmlCl(mlz' m - mz)
At 2 ’ A2_(mz-m—m2)2+wz’
1 1
_ AmzCz(m§ -my - mz) _ 1+\/ECOS§Q%(QJ
Fo = ( 2 2)2 2 A= 2a ’
m3 - m, - m?) +w
_Pr+Jryo08q5/2 _2mPr AK4(4m12 - 2m1Pr)
= , Ag = 1 ,
2 (4ml2 - 2mlPr) +w?Pr2
_ 2m,Pr A (4mg - 2m,Pr) _ PrAmKq (2 - myPr)

(4m22 - 2m2Pr)2 w2pr? (mf - m4Pr)2 +w2pr?
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_ PrAmK, (m? - mPr)
(2 - myprf e

_ - 2M2C,A 4 - 2myPr)

hu (am? - 2mprf +w2pr?
N 2M 2P, (m2 - m,Pr)

’ (mf - m4Pr)2 rw2pr?
N 2M 2Py (m2 - m,Pr)

(m% - mzpr)z P2

A = -(2|v| 2C, B, (4m2 - 2m,Pr)

_ - 2M2%Q,(m? - myPr)

g (mlz ] mlPr)z FW2Pr2 ’
A= 2m7C, Ay [4n? - 2mle),
(am? - 2m,Prf +w2pr?
p o 2K 55 (m2 - m,Pr) |
(mf - m4Pr)2 +w?pr?
p,, == 2M8CzBs lam3 - 2mzPr)’
(am2 - 2myPrf’ +w2pr2
Por = 2b ’
p,, = ZPATK g (abm2 - 2m3Pr)’
(abm2 - 2mgprf +w2pr?
p = 2am2C, K 1,(4bm? - 2m,Pr)

2 )
4m3 - 2m2Pr) +w?Pr?

(abmz - 2mgprf +w2pr?

_ Pr Am,Kg (m2 - mPr)

P (m% - mzPr)2 rwlpr?
p, =2 2C, Aglam2 - 2m2Pr)’
(am2 - 2m,prf +w2pr?
py oo 2M 2P, m2 - mlPr)’
(ml2 - mlPr)2 +w?Pr?
py =22 2C,B, (am? - 2mlPr)’
(am? - 2m,prf +w2pr?
py =2 2Q,(m2 - m4Pr)’
(mf - m4Pr)2 +w?Pr?
py =2 2M 2Q,(m2 - mzPr)’
(m% - mzPr)2 +w?pPr?
p = 2m2C, Aq (am? - 2mzPr)’
(am2 - 2m,Prf +w2pr?
Ay = 2miC, B, (4ml2 - 2m1Pr)’
(am2 - 2mypr [ +w2pr?
_ - 2Kpg(mE - myp)
Fe m2 - m4Pr)2 rw2pr?
p = Pram,Cy (om? - myPr) |
(bm§ - rr15Pr)2 +w?Pr?
- PrAm,K ., [bm? - m3Pr)’
lbm2 - myPrf +w2pr?
Ay 2aPmK 1bm2 - myPr)

(bm§ - m3Pr)2 Fw2pr?
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Agz =

- 2am2C,K,, [4bm? - 2m,pr)

(abm? - 2mgpr [ +w2pr?
1 > ;

Am,C,w
- my - [ +w?

@gng /

B; =

_ 2m,Pr? AK w
B = 2 2. 252
(4m2 - 2m2Pr) +wPr
B o PrtAMKw
© - merf eveer
m? - mPr|” +w?Pr
- 2MZC,AwPr
Bll -

(4m1 2mlPr) Fw2pr?

B " 2M 2P,wPr
13 _( 2 )2 252
m; - myPr] +wPr
B o= " 2M 2PywPr
15 _( 2 )2 252
m; - mPr| +wPr
B o "2M 2C,BywPr
e ( 2 2, 252
am; - 2mZPr) +wPr
_ - 2M2QuwPr
Bio = 2 2 252
(m1 - mlPr) +wPr
- 2mEC AwPr
le_ )

(4m1 2mlPr) +w?pPr?

p = 2aPm;K,, [bm2 - myPr)

lbm2 - myprf +w2pr?

B, = Am,C,w
2 = > ,
o - - o f o+
1+ ipsngg 2
2a
B = 2m, Pr? AK ,w
6 ( 2 2, 252
amy; - 2m,Pr| +wPr
B = Pr2 Am,Kw
° (m2 -m Pr)2 rw2pr?
7 Ly
B - Pr2 Am,Kow
° (m2 -m Pr)2 rw2pr?
2 - My
B - 2M 2C, AqwPr
12 ( 2 2 252
am; - 2m2Pr) +wPr
B - " 2M 2p,wPr
14 ( 2 )2 252
m; - mPr] +w°Pr
B - 2M%C,B,wPr
e P 2 202
4mg - 2mPr| +wPr
B - " 2M 2Q,wPr
” (m2 -m Pr)2 rw2pr?
7 Ly
B - 2M 2QuwPr
20~ ( 2 )2 252
m; - myPr| +wPr
- 2mZCZA3WPr
By =

(4m2 - 2rr12Pr) rw2pr?



172 J.C.Umavathi, Ali.J.Chamkha, Abdul Mateen and Ali Al.-Mudhaf

_ - 2K 5oWPr _ - 2mPC,B,wPr
Bos = 2 2 252 Boa = 2 2 252"
(m4 - m4Pr) +wW Pr (4ml - 2mlPr) +wPr
_ - 2m2C,BywPr ~ - 2K ,qWPr
Bos = 2 2 252 Bos = 2 2 252
(4m2 - 2rr12Pr) +wPr (m4 - m4Pr) +wPr
= \/Esm 24 Bg = PrAm;CgwPr
) 2 )
2b (bmé— m5Pr) +w?pPr?
B.. = 2PrAM; K owPr B.. = PrAm; K ,;wPr
29~ 2 2 252 Sl A 2 252
(4bm3 - 2m3Pr) +wPr (bm3 - m3Pr) +wWPr
- 2am3C K 1WPr - 2aPmK 3wPr
Bar = 2 2 252 Baz = 2 2 252
(4bm3 - 2rr13Pr) +wPr (bm3 - m3Pr) +wPr
- 2am3C, K, WPr - 2aPmyK ,wPr
Bss = ’ B3y = ’
2 2 2pr2 2 2 1 2pp2
(4bm3 - 2rr13Pr) +wPr (bm3 - m3Pr) +wWPr
!C em2m2+P! m?l,e™ - |,P P
Cy=- 2 2,ml ' C,= 2[ 3m2 lml" C?’:Cl-'-CZ_C“-’-_Z’
m<e m (Ile - l,e ) m
lg - |
C, =mC, +mC, - aP, Cs=- (cﬁepr +|4), Cs :—egf - Tg :
PrCg +1
=Cg +Cq - Cq +lg, Cg=—2T1,
G =Cs+Cs- Cg+lg 8 bm,
E, =2m - Pr, E, =m? - mgPr- B2, E; =EZ +W?Pr® - E?B?,
E,=2m, - Pr, Es =m? - m,Pr- B?, E¢ = EZ +W?Pr?- EZB?,
E; =2A, - Pr, Eg = A’ - APr- B, Eq = E§ +W?Pr?- EZBY,
Ey = 2bmg - Pr, E;; =bm3 - mgPr- bBZ, Ey, =Ef +W?Pr?- EZ B,
Ey3 = 2bA, - Pr, Ey =bAZ - A,Pr- bB7, Eys = Efy +W?Pr? - E2 B7,

F, = 2E2E,, F, = 2E,EZ - E,E,, F.=-E,E,,
1 1 =2 2 12 1-3 3 23
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F, =2wWwPrg E,,

F, = 2E,E2 - E4Es,
Fio =-WPrEg,
Fi3 =- EgEg,

Fig = 2E120 Ei1.

Fig = 2WPrE E;4,

Fay = 2E13Ef, - EjsEps,

Fog =-WPrEys,

Ky =C2(m2 +m2),

Fg =-wPrgs,

Fg =- EsEs,

F,, = 2E°E
11 — 7 -8

Fi4 = 2WPrE; Eg,
Fi7 =2Eyq E121 - EoEq2,
Foq =-WPrEy»,

Fos =- E1sEss,

K, = C2(m? +m2),

Fe = 2EZEs,
Fg = 2wPrE,Es,
Fip = 2E,E§ - E;Eq,
Fig =- E;1Eqp,
- 2
FZl - 2El3 El4 ’

Fos = 2WPrE 3E;4,

- K - K - - K
45— e e Ke =— :
amy - 2mPr am; - 2m,Pr m; - myPr
K. =~ 2CP K. =" 2GP _ P?
7T 9o ' 87 5 ) 9- "5 y
my - myPr my - mpPr m-Pr
Ky = améC? L= 2am,C,P - ap?
4bmg - 2mgPr bmZ - m,Pr P
Kyg = AMCy (am§ - m3) Ky = AmM,C,w Kys _AP
) 2 ) )
g mft g mf e
K. = APrC K. = AKg _ 2M%c
Tow Tow © T 4EPE2BZ B}
2M 2C, 2P
= Kyy=— Ky =mm,(C,A +C,A,),
20 AE2EZB? + E2 21 AEZE2RZ + E2 2 =My, (C1 A +CyA)
2m,C 2m,C
Kag =mmy(CiB; +C,B,), Ky i 25 dear:

4EZEBZ+E}’

 4E2E2B2+E2’
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Ko = Ay, ; Ko7 28MsCs K =— faPz >
4EGE;, By +Ef5

w  4EZE2BZ+EL’

h=1em(em -0 1 =1em(e - a) o= p-apl™-1),
m

Iy = K,e2M + Ke?™ + Kge™ +K,e™ + Kge™ +Kg - 1,

I :Kloe-2rTB +Ky e ™ - Ky, lg =Ky +Kg +Kg +K;7 +Kg - Kyg - Kyg,

l7 =2m Ky +2mKg +myKg +m Ky +mpyKg + Ky - b(2m3K10 +mgKyy + KlZ)’

-m5 _ L
|8:|6+|5+e 1 |9:1+£e—1h

— oAl
, lig=e"cosBy,

bmg bms

— AlG — mil m2 — mil m2
11 =€ sinBy, 1, =A™ + Age™, l;3=B,e™" +Bge™,

oA o Mg _ -m3
l14 =€ ""cosBy,, li5 =-€ ""sinB,, l1g = Kig€ ',
l; =Ky ™ +Kps, lig=A+A-K l,g =B, +Bs- Ky - K
17 =Ky 15+ l1g 13 19 =By + B3 - Ky - Kys,
l2o =My Ay + My A - amgKys, l2p =My B, + myB; - amyKyy,

_aByly, _2aBylse _aBylyy
|2 = I -ah,, = +la, |24 = +lo1,

15 15 15

o5 = Ay + 15, |26 =l1gln + 123, 27 =l1glop + 124,
log = eA‘ScosB5, log = eASSinB5,

|30 = Pag€”™ + Py, €™ + Pyge™ + Prge™ + Pye™ +e™ (Py008B, + Papsingy ) +

+e" (P33cosBl +Py,S nBl) +elt (P35cosBl + PygSi nBl) ,

l3; = Qg e’ + Qu7 ™ + Qg™ +Qye™ +Qqpe™ +e™ (Q3lcOSBl +Qg,S nBl) +

+e (Q33COSBl +Qgsl nBl) +eft (Q3500551 +QgeSl nBl) +Kyg e + Kiz,
3 =€ A27cosBz7, l33=-€ A27sinBz7,

3y = Agge™ ™ +Koge 2™ +Kgoe' ™ +e "™ (P,,cosB, - PygsinB, )+

+eft (P4gcosB4 - Bysi nB4) ,
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las = Byge ™ + Kyye 2™ +Kgpe ™ +& ™ (Qur00B, - QuesinB, ) +

+e™(Qu9C08B, - QgosinBy ) + K,

l36 = Pog + Py + Pog + Pog + Pg + Py + Pag + Pyg - Agg - Kyg - Kgg- Py7 - Pag,

l37 = Qg6 +Qyp7 + Qg8 +Qpg + Qg0 + Qgp + Qg3 + Qg5 + Kyp +

+Kq7 - Bog - Kg1 - Kgo - Qg7 - Qug - Kgg,

l3g = 2y Pog +2My Poy + My Pog + My Pog + My Pag + Mg Py +

+B Py + My Py + B Py + A Pys + By Py +

- b(m5A28 +2mgK g + MgKgg + MgPyy + B4 Pyg + AyPyg + B4P50)’

l3g =2my Qg +2MyQy7 + My Qg + M Qg9 + MyQsp + Mg Qg +
+B,Qgp + My Qg3 + By Q34 + A\ Qa5 + B Qg6 +
- b(msBze +2mgK g + MK, + MgQyy +ByQug + AyQyo + B4Q50) ,

bB,-I bB.-l bB,-I
4o = |2732'bA27’ Ly =224 +1gg, ljp =205 +1gg,
33 33 33
lyg =As + 149, laa =laolze *1a1, las =lagls7 +142,
_1+41+4m? _1- V1+4m? 1
rn_’]__#’ 72 | -
a
_ _Pr _
m,=m +m,, m = mg = A +my,
m7:A1+m2, rn8:A4+rrb’
P P
P = ACy + AC,, Pzz%’ %z%,

Py =- FiBf XCq + F,B XCyg + F3XCy,
Ps =- FgBZXCq + F,B;XCyo + FgXCy ,
Ps =- FiBf XCq + By XCyg + F13XCy,
Py =- F,B2YCy + F,B,YCy + F5YCy

P, =- FsB2YCg + F,B,YC,o + FgYCy,

P, =- F,B2XCyg - F2B;XCq + F3XCyp,
R, =- FgBZXCyq - F;B;XCq + FgXCyg,
Py =- FyBf XCyg - F12ByXCq + F13XCyo,
Py =- F,B2YCyq - F»B,YCy + F3YCyp,

Pis = - FgBAYCyy - F;B,YCq + FgYCyp,
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P =~ F11BfYCo + F1ByYCio + Fis¥Co,  Pis =~ F13BfYCyg - F1pB,YCg +F13YCyo,
Pig = AXCy +B; XCyp, P17 = AXCyp - B XCy,

Pig =- F1BYPys + F,B1Py7 + F3Pg, Pio =~ F1BfPyy - F,B1Pig + FaPy,

Poo = - FBf Pig + F7B1Pry + FaPyg Py =~ FsBfPy7 - FBiPi +FgPr7,

Py, = - F1B{Qis + F2B,Qu7 + F3Qu, Pps =- F1B{ Qi - F2B1Qi6 + F3Qy7,
Py =- FsBfQus + F/B1Qi7 + FgQse. Pos = - FsBf Q17 - By Qus +FaQu7,
Pos =As + Aip- Big + Ay - By, Py = A+ App- Big + Ay - Bys,

Pog = Ag+ A;z- Big+ Ay - By, Pog = Ag+ Ay - Byg,

P3g = Ap + Ais - Byo, Pa1 = Kyg(Ps - Quo) +Kaa(Pig - Q).
Pap = Kig(Ps - Qu1)+ Koa(Prg - Qua), Pas = Ko(Ps - Qua)+ Ko (Pog - Qua),
Pas = Ko (P - Qua) + Kos (Por - Qus)., Pas = K1 (Ps - Qua),

Pas = Ko (P - Qis), P37 = AyXCy; + B4 XCyy,

Psg = Ay XCyp - B4 XCyy, Pag = - F16BZPy7 + Fi7ByPag + FigPyy,
Pio = - F16BiPsg - F17B4Py + FigPig, Pay = - F21B Py + By Pag + FpPyy,
Pip = F21BSPag - FpByPy; + Fp3Py, Pys = - F16B§Qq7 + F17B4Qug + F15Qa7,
Pus = - F16B7Qug - F17B4Qa7 +F15Qs5, Pis = - F21B{Qa7 + F25B4Qa5 + F25Qs7
Pas =~ leBf Qag - F22B4Q37 +F23Q33, Paz = K27(P39 - Q43)’

Pis :K27(P4o' Q44)’ Pao :Kzs(P41' Q45)’

Pso:Kzs(P42' Q46)’
B,P B-.P
Q1 =BGy + B,Cy, szﬁ, Q3 Zﬁ,

Q4 = F4B1XCyg + F5 XCy, Qs =- F4B XCy + F5XCpg, Qg = FgBy XCyg +F1p XCy,
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Q; =- FgB; XCq + F1u XCyp,
Qo = F4B;YCyo + F5YCy,
Qi3 =- FgB;YCy + FygYCyp,
Qi = AYCy + B YCyp,

Qi =- F4B;Pig + FsPy7,
Qg = F4B1Qi7 + FsQys

Qo5 =- FgB1Qi6 + F10Qi7,

Qo7 =By + By + Ay7 +Byy + Ags,

Qg = Bg + By + Ay,

Qs1 =Kyg (Q4 + P10)+ Ko (le + Pzz) '

Qs3 =Ky (Qe + P12)+ Kas (on + P24)’

Qa5 = K1 (Qg +Puy),

Qg = AYCy, - B,YCyy,
Qug = F4ByPsg + Fo5Ps7,
Qus = - F19B4Qa7 + F50Qss,
Q7 = Ky7(Qao +Pa3),

Qso = Kog (Quz + Py ),

=y (L am? [ + 16w

q —tan'lae 4w ¢
1= "
g1+m?’ g

XCQ — Ill|26 - IlZBl ’
1081 - 12511y
XCyp = - (XCul1g *116)

15

Qg = F14B; XCyg + F15XCy,
Q1 =- F4B,YCq + F5YCyp,
Quq = F14B;YCyo + F15YCy,
Q17 = AYCyp - B,YC,

Qo = FgB;Pi7 + FioPss

Qo3 =- F4B1Qi + FsQy7,

Qg =- F14B1 XCq + F15XCyp,

Qu2 = FgByYCyg +FyoYCo,
Qis =- F14BYCy + Fi5YCyp,
Qg = F4B;P7 +FsPyg,
Q2 =- FoByPig + FyoPi7,

Qa4 = FgB1Qp7 + F19Qy5

Qo =Bg +Byg + Ag +Byy + Ay,

Qg0 = Byp +Bys + Ay,

Qa6 = K1 (Qo + Pis),

Qag = F19B4P3g + FyoPs7,
Qa2 = - F24 By P37 + FosPsg,
Qus = F24B4Qa + F5Qa7,

Qus =Ky (Q4o + P44)’

r, =V1+16wW? ,
2

q, = tan”(4w),

XCyq = (110XCq +13,)
|11

XC. . = |29|44 B BSI31
B Bog - loglys |
528 29'43

Qg =Bg + By + Aig +Byg + Ay,

Qs =Ko (Q5 + P11)+ K24(Q19 + st)’

Qas =Ky (Q7 + P13)+ Kz (QZl + st)’

Qg7 = AYYCyy + B,YCy,,

Qo =- F19B4P37 + FoPsg,
Qu3 = F19B4Q3g + F5Q47
Qus = - F24B4Q37 + F25Qs3,,

Qa0 = Kog (Quy +Pss).

ry =vPr# +16w?pr?

1EWO

e

=tan
ds $pr

XCip = XCq +14g,
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XCyq = - (132 XCys +134)

XCy5 = XCyg +lg6, I
33

YC. = l1al27 - 113By YC,, =- (110YCq +113) YCy; = YCq +lyg
1081 - 25111 14
YC,, = (YCul14 +117) YC,; = l20l44 - Bslsp YC,, =- (128YCy3 +13)
l15 Bslag - 12gla3 29

- (I32YCy5 +1
YCy5 =YCy3 +l37, YCys :—( = I 15 * ) :
33
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