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TIME-DEPENDENT PIEZOELECTRIC FRACTURE BEHAVIOR OF
CONDUCTING CRACKSAND ELECTRODES
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This paper investigates the fracture behavior of a piezodectric material subjected to transient
electro-mechanical loads. The piezoelectric medium contains a straight-line crack, which is parallel to its poling
direction. The Fourier transform technique is used to reduce the problem to the solution of singular integral
equations in Laplace transform plane. The Laplace inversion yields the results in the time domain. Some useful
results are obtained. Strong coupling between stress and electric field near crack tips has been found.
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1. Introduction

Many piezoelectric devices may experience transient loads. For example, devices such as phase
change transducers and pulse generators for igniters and high voltage transformers are almost routinely
subjected to very large voltages over very short intervals of time (Sosa and Khutoryansky, 1999; 2001).
Therefore, many authors have studied the dynamic fracture of piezod ectric materials (Ueda, 2003; Nishioka et
al., 2003; Jin et al., 2003; Kwon and Lee, 2003; Li and Tang, 2003; He, 2002; Ricci et al., 2003). The above
works are limited to the insulating crack problem. Clearly, thereis a need to investigate the conducting cracks
in piezodectric materials under a transient e ectromechanical impact. Motivated by this consideration, this
paper investigates a piezodectric srip with an dectricaly conducting crack under an in-plane
el ectro-mechanical impact. Laplace and Fourier transforms are used to reduce the problem to the solution of
singular integral equations. Numerical calculations are carried out and the results of the time dependent crack
tip field are shown graphically to illustrate the effect of the e ectric fie ds applied.

2. Description of the problem

Referring to Fig.1, we consider a piezod ectric strip of thickness (hl + hz) containing a crack of length
2a . The coordinates x and z coincide with x; and X, , respectivdy. In what follows, u; and u, will denote
the displacement componentsin x; and X, directions, f will denote the dectric potential, and t will denote

thetime.
The in-plane deformation is considered such that u,, u, and f are functions of x; and x, only.

Constitutive equations for a piezoel ectric material poled along the x, -axis are
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where ¢, Cj3, Cy3 and c,, areelastic constants; ey, €33 and e, are piezod ectric constants; and I ;; and

T 55 stand for dielectric

permittivities; r is density; t is time variableg; s,,, S, and s, are stress

components; D, and D, are éedtric displacements.
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Fig.1. A cracked piezod ectric medium subjected to a remote d ectromechanica impulse.

In order to facilitate the analysis, constitutive Eq.(2.1) are re-written as

0 O
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Since the eectric displacement D is divergence-free in the absence of a space charge, there exists a
potential function F (xl, xz) such that

D; =F 5,

(2.3)

Further, it follows from E; = -f ; that
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Ei,- Epy =0. (2.4)

The mechanical equilibriumequations s 1) +S 15, =rUgy ad S 151 +S 5 =T Uy, andtheeectric
field Eq.(2.4) can bewritteninterms of u,;, u, and F by inserting Egs (2.3) and (2.2) into them, giving

CagUy.11 +Caals 2 + (C13 +Caa Uz 12 + (€33 - 815 )F 10 =T gy u
i
o ) ) . ) :
(013 +Cyg )U1,12 +Cyalp 11 +Cialp 20 - E15F 19 +831F 2 =rupy i (2.5)
) ) :
(&5 - &5 )U1,12 +83qUp 20 - Bglp 19t T3 F o+ T3 F 43 =0

i
i
p
where r isthe mass density.

In order to make the problem simplified, the displacements, e ectric potential, stresses, and dectric
field are assumed to be zero at the initid time. Let the piezod ectric medium be |oaded suddenly by a shear
stress s, =t and anormal stress s,, =s on thetop and bottom surfaces, and an eectricfield E; = E; a

infinity of the medium. For an e ectricaly conducting crack, its surfaces are free from mechanica stresses and
the dectric fidd. Then the crack face boundary conditions can be stated as follows

s1o(x 2=0,t)=s,(x 2=0,t)=Ey(x, z=0,1)=0, [¥<a, (2.6)

At the cracked interface between the upper and lower media, the stress components s, and s ,, and
the dectric field component E; are continuous inside as well as outside the crack. The displacements u,, u,
and the potential function F are only continuous outside the crack.

3. Electro-elastic solutions

The Laplace transform technique will be used to solve the equilibrium equations. Hereafter, all of the
field variables will represent the corresponding values in the Laplace transform domain. The solutions are
obtai ned in terms of some unknown coefficients. These unknown coefficients are then determined by applying
the boundary conditions (2.3) and by introducing two displacement discontinuity functions and an dectric
potential discontinuity function along the cracked plane (z=0 plane). Inthe following analysis, we will use
the following notations

{0} ={by, by, b}" ={s 15,5 5. E1}" (319
{bo} ={buo, b2y, bao}" ={to. 50, Eo}' . (3.1b)
{u} ={up, uy, us}" ={uy,u, F}T (3.10)

Wefirst consider a particular solution of Eq.(2.5)

U =ax+cz, i=123 (3.2)
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where g and ¢ (i -12, 3) are some real constants, which are determined from the boundary conditions (a
shear stress s, =ty and a normal stress s,, =S, on the top and bottom surfaces, and an eectric field
E, = E; at infinity of the medium) in the Laplace transform domain. Here and in the sequel avariable with a

superscript * represents its Laplace transform.
Next we consider a homogeneous solution of Eq.(2.5). We apply the Laplace transform to a time

variablet and express the sol ution in terms of an unknown vector {F} = (F, F,, F3, Fy, Fs, Fg )" asfollows
$
u = —(‘)¥ a AjFjexp qs|l J-z)exp ( isx)ds, i=1,23 (3.3

wherei=+-1; A; areeigenvectors, and | ; are eigenvalues of the following characteristic equation

é u
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dsn(s)Cis +Cu)l m  Cas-Cul'y +L2 - &5 - &yl uIl Azm)l_'/ =0 (34
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and where*p” isthe Laplace transform parameter. If the problem isa steady one, piszero. Equation (3.4) isan
eilgenvalue problem. A nontrivial set (Alj, A ASJ-) existsif | ; isaroot of the determinant in Eq.(3.4). Itis
clear that there are six sets of roots for | ; and the corresponding eigenvectors for (A1 i Py Ag ) For each

part of the media above and below the crack, there is a homogeneous soluti on of the form Eq.(3.3).

The compl ete sol utions for the displacements and €l ectric potential are the sum of Egs (3.2) and (3.3).
Substituting them i nto the constitutive Eq.(2.2) in the Laplace transform domain, the foll owing expressions for
stresses and d ectric displacement can be obtained

* 1 \¥ . % .
bi =%O¥ SB”FJeXp(' |SX)dS+bi0, |_1; 2;3 (35)

where summation over the i ndex j(j =1 .., 6) is assumed, [B(s, z)] isa3 6 matrix which may be expressed

inananaytica form by applying Egs (3.2) and (3.3) to the constitutive relation (2.2).
Considering the surface boundary conditions of the medium and making use of the Fourier inversionto
Eq.(3.5), the unknown coefficient {F} can be expressed in terms of the Fourier transforms of the stresses s 4,

and s,, andthedectric fiedld E; on the cracked plane
S %[G+ (S)]g('S'Zz = I = E (3.69)

{F ) }: %[G (S)]g(gzz ’§*22 ’Ei )T } (TS 55 ,Eé )T E (3.6b)
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wherethesigns“+” and “-” denote, respectively, the quantities in the media above and bd ow the crack, G and

G are6 3 matrices (see Appendix A). Hereand in the following, a variable with an over bar “~" representsits
Fourier transform.

Substituting of Egs (3.6a, b) into Eq.(3.3) leads to the solution of displacements u, and u, and the
potential function F , interms of the Fourier transforms of the stresses s, and s, andthedectricfiedd E;
on the cracked plane. With Eq.(3.6a, b), u;, u, and F given in Eq.(3.3) satisfy the continuity conditions for
the stresses and d ectric field on the cracked plane

4. Singular integral equations

We introduce the following discontinuity functions along the cracked interface

gi(x):ﬂ”:S;;’y)- ﬂ”;ks]’io-), i=123. (4.1)

The continuity conditions for the displacement and e ectric potential on the cracked plane require that
\a .
gi(x)=0 for [¥2a and Q.9 (xdx=0, i=123. (4.2)

By substituting Egs (3.5) into the Eq. (3.3), one obtains the displacements u,, u, and the poterntial
function F . They arethen substituted into Eq.(4.1). Thisgives

0i(r)= 2p| O¥ [C ](bJ - E;O)exp(- isr )ds (4.3)
where C;; arethe elements of a3 by 3 matrix C defined by

[c1=[Alle" () [e" ()] (44)
and where [A] = [Aj J . Equation (4.3) can beinversed to give

b =, [Ri(x g ()ar +b,  i=1,2,3 (45)

where summation over theindex j is assumed, the kerndl [R(x, r) is

[R(x,r)]—zl—(‘)¥ [ ( )] lexp[is(r - x)ds. (4.6)

In deriving the above equation, we have used conditions (4.2). By now g; arethe only unknownsin
the problem, which may be determined from the boundary conditions on the crack faces. Note that for large
values of s, [C(s)]'1 becomes - sgn(s)[L], where [L] is a 3 by 3 constant matrix, which depends only on
material properties. It follows from Eq.(4.6) that
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s =2l @
[X(xr) :Z—:Ic‘i ( - C(g)) - [L] )exp[is(r - x)|ds. (4.8)

Equation (4.5) gives s 15, S,, and E; outsideas well asinside the crack. For the |ater, the boundary
conditions (2.6) give

Lijo 1

p Qay &

g;(r)ar +(‘j"‘axij (x,r)g;(r)ar =-by, i=123. (4.9)

The above singular integral equation contains a Cauchy-type kernel. Its solutions has the following
form

gi(ar)= :

Vi1- 72

where T =r/a, X=x/a, T,, is the Chebyshev polynomia of the first kind, C, (m) are constants to be
determined. Substitution of Eq.(4.10) into Eq.(4.9) leads to

T.(F)ci(m), =123 (4.10)
1

3 Qo

g X| [} g _ _ *
1 & Un o )+ 28, ) & 7,0, (ko = - @1
m=1 - m=1

where summation over the index j is assumed, and U, ; is the Chebyshev polynomial of the second kind.
After evaluating g; from Eq.(4.11), the stress and dectric field intensity factors in the Laplace transform
domain, i.e., in-plane shear (ModeIl), in-plane norma traction (Model), and in-plane d ectric field (Mode E),

{K} :{K,, K, KE} can be calculated from

{K}= ( v2p[(- a)- ¥ )X® (-a) (5120x.0). s2(x.0) Ei(x0))", (4.12)

for the left-hand side crack-tip. Theresult is
(k) =[L]pad (ATeim). cafm. cafm] (4139
m=
Similarly, for the right-hand side crack-tip, the fidd intensity factors are
(k)= L VpRA () Cafm cafrl (a13)
m=

5. Collinear cracks

In formulating the problem, no conditions of symmetry with respect to x =0 were assumed regarding
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the crack geometry and the externa loads. Thus, theintegral Eq.(4.9) derived in Section 4 isvalid basically for
any number of collinear cracks defined by z=0, b <x<c;, (j =1, .., n) along the x-axis with the

additional single-value condition of the form (3.5) for each crack, namely
9i (x)=0 for |XT (bj , cj) and c‘jjgij (x)Jax=0, (=123 j=1.,n). (5.1
]

Theonly changein the integral equation would bein replacing the integral ( a, a) by the sum of the
integrals L; = (bI , ci) (i =1 .., n) corresponding to the collinear cracks.

= =—>X

Fig.2. Two collinear cracks.

As an example, we consider the case of two symmetrically located and symmetrically loaded collinear
cracks (Fig.2). That is, weassumethat b, =b, ¢, =c, b, =-c, ¢, =-Db, tyz(x, 0):0. Inthis case, using the
symmetry conditions, Eq.(4.9) may be expressed as

Lij cé 1

1 U Y . .
Qg% T O+ QK (k) (ar =-bio, - (1=1.2.9) (5.2)

where summation over theindex j is assumed, and
K(x,t)=X(xt)- X(x, - t). (5.3)

Theintegral Eq.(5.2) is again solved under the following single-va uedness condition
(‘5 g, (x)ax =0, (i=123). (5.4)

By normalizing the length parameters according to
x=X(c- b)/2+(c+b)/2, r=r(c- b)/2+(c+b)/2, (5.5

theintegral Eq.(5.2) can be reduced to the following standard form

é u
Lij lé 1 1 L,.I c-b 1 * :
— A b + 0 (r)dr + A K. g;lr)df =-byg, i=123). (5.6
p 1gr_-i r‘+i+20+bﬂugj() 2 0, ”gj() 10 ( ) (56)
e c-ba

The solution of Eq.(5.6) has the same form as Eq.(4.10). By substituting g; from Eq.(4.10) into
Eq.(5.6) and by using the wel-known orthogonality condition
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| U, ,(x), m31, [|¥<1
.I.
1 _ i 0 .
léﬁdrﬂ- sgn() g>‘( sgn(xx2 - 1Em, m30, [x>1 (5.7)
Pi(F- xW1-F2 i x3-1
i
i
f 0, m- 0, |>‘(|<1
we find
¥ ¥ , .m
Ly B U)oy m+ Ly & o fm) 2§ 1
m=1 m=1 X - 1
(5.8)
c-bg Too(F) _
+—3 A Kilx r) L C. (m)dr =-
na1=1 u( )ﬁ j( ) 10
where
xl:>-<+2(°+b) (5.9)

The simplest method for solving the functional Eq.(5.9) is truncating the series and using an
appropriate collocation in x. In this problem, the stress and d ectric displacement intensity factors can aso be
obtained from Egs (4.13a) and (4.13b).

The preceding sections establish the solution in the Lapal ce transform domain. The corresponding
values of the dastic and e ectric fie dsin thetime domain are given by the Laplace inversion. Thisis achieved
by adopting the numerical technique outlined in Miller and Guy (1996) which has been widely used in fracture
dynamics (Sih and Chen, 1981). Further, the steady solution can be easily obtained by setting the Laplace
transform parameter “p” to zero.

Once the stress and dectric fidd intensity factors in the time domain are obtained, the energy rd ease
rate a the crack tips can be obtained from the virtual crack closureintegral. This gives

G=%{Kn'K|'KE}[L-1]{K||1K|'KE}T- (5.10)

6. Theelectrode solution

If the region xlT ( a, a), X, =0 (or xlT ( b, c), X, =0) is not a crack but arigid eectrode, the
above solution procedure in sections 4 and 5 is ill valid. The only difference is that the auxiliary function
gl(xl) and gz(xl) should be zero becausethe rigid € ectrode cannot be mechanically opened. Inthis situation,
the singular integral Eq.(4.9) takes the following form

Lz 2 1
p Yar- x

gs(r)ar + (ixss(X' r)gs(r)dr = - by (6.1)

where L 53 and X533 are eements of the matrices [L] and [X] respectively.
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The singular integra for two collinear dectrodes is obtained from Eq.(5.6) by setting
gl(xl): gz(xl):O. Theresult is

é u
Ly, 1€ 1 1 u _ . c-b 4 s
2 N C+bL'193(r)dr *— 01K33g3(r)dr =-bg. (6.2)
P er - F+X+2 a
é c-ba

The solution method of the singular integral Eqs (6.1) and (6.2) is same as that of Eqgs (4.9) and (6.2).
Note that in this problem the solution depends only on the applied dectric field load. Since g, and g, are

zero, then Cl(m) and C, (m) in Eq.(4.10) are zero. It follows from Egs (4.13a, b) that the eectric fied
intensity factors are

Kg(b)=+/palL 335 (- 1)"cs(n), Ke(c)=-pal 335 C;(n). (6.3)

n=1 n=1

The stress intensity factor is

Kp=SBke, K =ik (6.4)
L L
33 33

Inthis problem, the energy releaserateis still given by Eqg. (5.10). It can be shown from Egs (6.4) and
(5.10) that

G:—iKé. (6.5)

7. Numerical example

A cracked PZT-4 piezod ectric strip istaken as anumerical example. Thethickness of the stripish. A
crack of length 2a islocated at the center of the strip. Sudden e ectromechanical loads s, and E, areapplied

simultaneously to the medium. No shear load is considered here because t, alone does not cause a coupled
electro-mechanical fidd near the crack tip. The density of the medium is denoted by r . The
el ectro-mechanical properties of the medium are as follows (Fulton and Gao, 1997; Gao et al., 1997)

Cy = 13.9(1010 N/ mz), Ci3 = 7.43(1010 N/ mz),

Cag = 11.3(1010 N/ mz), Ca = 2.56(1010 N/ mz),

ey =- 6.98C/m?, e, =138C/m?> e =134C/m?,

T4= 60.0(10' 10 C/Vm) , T ga= 54.7(10' 10 C/Vm)

wherem, N, C, and V are length in meter, force in Newton, charge in Coulomb and dectric potentia in volt,
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respectively. The eements of the matrix [L] are obtained as L, =2.164" 10, L, =0, L;3=0,

L,, =2.838" 10%, L,; =0.05338" 10, L 53 =0.005375" 10%°.
Dueto the symmetry of the loading conditions, the mode Il stress intensity factor is zero. The applied
stress and dectric fidd intensity factors are defined as sO\/ﬁ and EO\/E , respectively. In what follows, we

focus our attention on the steady crack tip field for a strip of finite thickness, and the dynamics crack tip field
for an infinite medium.

7.1. Seady crack tip field

Table 1 gives the steady val ues of the stress and e ectric fied intensity factorsfor different crack length
to strip thickness ratios. It is well known that for an infinity medium, the stress and dectric fid d intensity
factors are not coupled. This is, an applied stress does not cause the dectric field intensity factor, and an
applied dectricfield does not produce the stress intensity factor. However, theresults in table 1 show that for a
medium of finite size the stress and eectric fields ahead of the crack tip are coupled. However, an applied
stress load can produce a large d ectric field intensity factor, but the stress intensity factor caused by an applied

dectric fidd load is negligible Take H/a=2 as an example, an gpplied stress intensity of
K, =1MPa(m) ¥? can produce a crack tip electric field intensity factor of K¢ =15.18KV/(m) ¥2, and an
applied electric fidd intensity of K¢ :40KV/(m)'3/2 can only produce a crack tip stress intensity factor of
- 0.01273MPa(m) ¥2,

Table 1. Steady stress and dectric fidd intensity factors and energy rel ease rate for different strip thickness.

H/a 2 4 8 16 30 I nfinity
e o K, /lsovpa) | 2010 1322 1.087 1.023 1.0065 1
~°| Ke/lsovpa) | 001518 | 0004691 | 0.001273 [ 3256 107 | 9.314 10° | O
N J[EoVpa) | 03188 | -01659 | -005737 | -0.01581 | -0.004606 | O
Ke /(Eo \/E) 1.176 1.056 1.015 1.004 1.001 1

The energy re easerate can be obtai ned from Eq.(5.10), using the stress and intensity factors shownin
Tab.1. The resulting different strip thickness are as follows

H/a=2: G= pa(0.38495§ - 3.169s 4 E, +79.88E§)’ 10°%°,
H/a=3: G= pa(o.2307s§ - 2.690s 4 E, +68.80E02)' 101,
H/a=4: G:pa(o.177ls§ 2.482s ,E, +64.15E5 | 10719,

H/a=8: G= pa(0.1255s§ 2.243s,E, +59.06 EZ | 10717,

H/a=16: G :pa(o.1126s§ 2.175s o E, +57. 67EO) 10710,
H/a=30: G= pa(0.1095s§ 2.158s o, +57. 33E§) 10°%°,

H/a=¥: G= pa(0.10835(2) - 2.151sE, +57.19E3 | 107,
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The influence of medium thickness on the values of G is very significant.
7.2. Dynamic crack tip field

Numerical results for a dynamics loaded infinity medium are obtained. The stress and dectric field
intensity factors at crack tips are expressed as follows

Ky (t)=[fss(t)so + foet)Eopa, Ke(t)=[fes(t)so + fee(t)Eopa (7.1)

wherethe coefficients f depend on the geometry and material properties, but not on the spplied loads s, and E; .

The time-varying values of the coefficients in Eq.(7.1) are plotted in Figs 3-6. Each of these curves
increases with time from the initial zero val ue, displays a peak val ue and then decreases to the steady vaue as
time becomes large enough. Unlike the steady stress intensity factor, which is independent of the applied
eectric fied load, the transient stress intensity factors can increase or decrease with the eectric fidd load,
depending on time t. It can be shown that the dynamic applied eectric field can produce significant stress
intensity factors at the crack tips. Therefore, even for theinfinity piezod ectric medium, the transi ent stress and
eectric fidds are strongly coupled & the cracked tips.

Finaly, Fig.7 displays the transient energy rd ease rate G for the different dectric fidd loads applied. For the
electric fidd |oads between E; /s, = - 0.04 and 0.02, G is a monotonously decreasing function of E,. This fact

suggeststhet apositive dedric fidd will retard and anegative d ectric fid d will enhance arack growth, a dl times.

—
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Fig.3. Normalized stress intensity factors caused by stress load.
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Fig.6. Normalized dectric field intensity factors caused by € ectric field load.
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Fig.7. Normalized energy release rate for different dectric field loads.

7.3. Electrode solution

The eectrode tip fields response only to the applied eectric field load. The stress and dectric field

intensity factors have the following forms

K, :II:_:KE = fsE(t)Eo\/a’ KE(t): fEE(t)EO\/a

(7.2
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wherethevauesof g obtained for aninfinite € ectrode are similar to those for an infinite crack, which are
givenin Fig.6. The coefficient f - plotted in Fig.8 suggests that for an applied eectric fidd load, the stress
intensity factor K, at an eectrode tip is considerably larger than that at a crack tip (see Fig.5). Further, the
values of K, at the eectrode tip increase with the dectric field loads for any val ues of timet.

15

10

Normmalized time jc,, /pt/a
Fig.8. Normalized dectric fidd intensity factors for an infinity e ectrode.

8. Conclusons

This paper considers conducting crack or eectrodes in piezodectric media under an in-plane
electro-mechanical impact. The stress and dectric fidd intensity factors and the energy release rate are
obtai ned. The quantitative results obtained in this paper suggest that for a piezod ectri ¢ medium of finitesize or
under atransient loading condition, the eectric load can produce stress intensity factors at the crack tips, and
viceversa, i.e, the mechanical load can aso produce e ectric field intensity factors. At different time, crack tip
stress intensity factors can increase or decrease with the e ectric fid d loads, depending on the direction of the
applied dectric fields. The d ectrodetip stress intensity factors increase with the applied e ectric fidld loads, at
all times.
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Nomenclature

¢ —e€lastic constant
D —éectric displacement
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e — piezoelectric constant
G —energy relesserate
Keg —eectricfield intensity factor

K, ,K, -—stressintensity factors
t —time
u —displacement
r —density
s —gtress
f —éelectric potential
I —dielectric permittivities
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Appendix A

Consider the medium above the crack. On the cracked plane, z=0, b = (’s'*lz, 5%, E; )T t
follows from Eq.(3.5) that
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On thetop surface, the vector bi* is zero. Hence from Eq.(3.5) we have
L &8 B (s z=h,)Fexp(- is<)ds =0 =123 (A2)
2p O¥ ij [} — 112 j p - ) y &y .

From Egs (A1) and (A2), F; can be obtained as Eq.(3.64) in which the six by three matrix G*
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Similarly, the six by three matrix G’ is obtained as
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