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This paper investigates the fracture behavior of a piezoelectric material subjected to transient 
electro-mechanical loads. The piezoelectric medium contains a straight-line crack, which is parallel to its poling 
direction. The Fourier transform technique is used to reduce the problem to the solution of singular integral 
equations in Laplace transform plane. The Laplace inversion yields the results in the time domain. Some useful 
results are obtained. Strong coupling between stress and electric field near crack tips has been found. 
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1. Introduction 
 
 Many piezoelectric devices may experience transient loads. For example, devices such as phase 
change transducers and pulse generators for igniters and high voltage transformers are almost routinely 
subjected to very large voltages over very short intervals of time (Sosa and Khutoryansky, 1999; 2001). 
Therefore, many authors have studied the dynamic fracture of piezoelectric materials (Ueda, 2003; Nishioka et 
al., 2003; Jin et al., 2003; Kwon and Lee, 2003; Li and Tang, 2003; He, 2002; Ricci et al., 2003). The above 
works are limited to the insulating crack problem. Clearly, there is a need to investigate the conducting cracks 
in piezoelectric materials under a transient electromechanical impact. Motivated by this consideration, this 
paper investigates a piezoelectric strip with an electrically conducting crack under an in-plane 
electro-mechanical impact. Laplace and Fourier transforms are used to reduce the problem to the solution of 
singular integral equations. Numerical calculations are carried out and the results of the time dependent crack 
tip field are shown graphically to illustrate the effect of the electric fields applied. 
 
2. Description of the problem 
 
 Referring to Fig.1, we consider a piezoelectric strip of thickness ( )21 hh +  containing a crack of length 

a2 . The coordinates x and z coincide with 1x  and 2x , respectively. In what follows, 1u  and 2u  will denote 
the displacement components in 1x  and 2x  directions, φ  will denote the electric potential, and t will denote 
the time. 
 The in-plane deformation is considered such that 1u , 2u  and φ  are functions of 1x  and 2x  only. 
Constitutive equations for a piezoelectric material poled along the 1x -axis are 
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                (2.1) 

 
where 11c , 13c , 33c  and 44c  are elastic constants; 31e , 33e  and 15e  are piezoelectric constants; and 11∈  and 

33∈  stand for dielectric permittivities; ρ  is density; t is time variable; 12σ , 22σ  and 11σ  are stress 
components; 1D  and 2D  are electric displacements. 
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Fig.1. A cracked piezoelectric medium subjected to a remote electromechanical impulse. 

 
 In order to facilitate the analysis, constitutive Eq.(2.1) are re-written as 
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 Since the electric displacement D is divergence-free in the absence of a space charge, there exists a 
potential function ( )21 xx ,Φ  such that 
 
  21D ,Φ= ,                   1,2 Φ−=D .                              (2.3) 
 
 Further, it follows from iiE ,φ−=  that  
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  0EE 1221 =− ,, .                                  (2.4) 
 
 The mechanical equilibrium equations tt1212111 u ,,, ρ=σ+σ  and tt2222112 u ,,, ρ=σ+σ , and the electric 

field Eq.(2.4) can be written in terms of 1u , 2u  and Φ  by inserting Eqs (2.3) and (2.2) into them, giving 
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             (2.5) 

 
where ρ  is the mass density. 
 In order to make the problem simplified, the displacements, electric potential, stresses, and electric 
field are assumed to be zero at the initial time. Let the piezoelectric medium be loaded suddenly by a shear 
stress 012 τ=σ  and a normal stress 022 σ=σ  on the top and bottom surfaces, and an electric field 01 EE =  at 
infinity of the medium. For an electrically conducting crack, its surfaces are free from mechanical stresses and 
the electric field. Then the crack face boundary conditions can be stated as follows 
 
  ( ) ( ) ( ) 0t0zxEt0zxt0zx 12212 ====σ==σ ,,,,,, ,     ax < ,              (2.6) 
 
 At the cracked interface between the upper and lower media, the stress components 12σ  and 22σ  and 
the electric field component 1E  are continuous inside as well as outside the crack. The displacements 1u , 2u  
and the potential function Φ  are only continuous outside the crack. 
 
3. Electro-elastic solutions 
 
 The Laplace transform technique will be used to solve the equilibrium equations. Hereafter, all of the 
field variables will represent the corresponding values in the Laplace transform domain. The solutions are 
obtained in terms of some unknown coefficients. These unknown coefficients are then determined by applying 
the boundary conditions (2.3) and by introducing two displacement discontinuity functions and an electric 
potential discontinuity function along the cracked plane ( 0z =  plane). In the following analysis, we will use 
the following notations 
 
  { } { } { }T

12212
T

321 Ebbbb ,,,, σσ== ,                         (3.1a) 
 
  { } { } { }T

000
T

3020100 Ebbbb ,,,, στ== ,                         (3.1b) 
 
  { } { } { }T

21
T

321 uuuuuu Φ== ,,,, .                          (3.1c) 
 
 We first consider a particular solution of Eq.(2.5) 
 
  zcxau ii

*
i += ,            321i ,,=                            (3.2) 
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where ia  and ( )321ici ,,−  are some real constants, which are determined from the boundary conditions (a 
shear stress 012 τ=σ  and a normal stress 022 σ=σ  on the top and bottom surfaces, and an electric field 

01 EE =  at infinity of the medium) in the Laplace transform domain. Here and in the sequel a variable with a 

superscript ∗  represents its Laplace transform. 
 Next we consider a homogeneous solution of Eq.(2.5). We apply the Laplace transform to a time 
variable t and express the solution in terms of an unknown vector { } ( )T654321 FFFFFFF ,,,,,=  as follows 
 

  ( ) ( )∫ ∑
∞

∞−
=

−λ
π

=
6

1j
jjij

*
i dssxzsFA

2
1u iexpexp ,           321i ,,=           (3.3) 

 
where 1−=i ; ijA  are eigenvectors, and jλ  are eigenvalues of the following characteristic equation 
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    (3.4) 

 
 
and where “p” is the Laplace transform parameter. If the problem is a steady one, p is zero. Equation (3.4) is an 
eigenvalue problem. A nontrivial set ( )j3j2j1 AAA ,,  exists if jλ  is a root of the determinant in Eq.(3.4). It is 

clear that there are six sets of roots for jλ  and the corresponding eigenvectors for ( )j3j2j1 AAA ,, . For each 
part of the media above and below the crack, there is a homogeneous solution of the form Eq.(3.3). 

 The complete solutions for the displacements and electric potential are the sum of Eqs (3.2) and (3.3). 
Substituting them into the constitutive Eq.(2.2) in the Laplace transform domain, the following expressions for 
stresses and electric displacement can be obtained 
 

  ( ) *
0ijij

*
i bdssxFsB

2
1b +−
π

= ∫
∞

∞−
iexp ,            321i ,,=                     (3.5) 

 
where summation over the index ( )6...1jj ,,=  is assumed, ( )[ ]zsB ,  is a 3×6 matrix which may be expressed 
in an analytical form by applying Eqs (3.2) and (3.3) to the constitutive relation (2.2). 
 Considering the surface boundary conditions of the medium and making use of the Fourier inversion to 
Eq.(3.5), the unknown coefficient { }F  can be expressed in terms of the Fourier transforms of the stresses 12σ  
and 22σ  and the electric field 1E  on the cracked plane 
 

  { } ( )[ ] ( ) ( ) 



 στ−σσ= ++ T*

0
*
0

*
0

T*
1

*
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*
12 E~,~,~E~,~,~sG

s
1F ,              (3.6a) 
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where the signs “+” and “-” denote, respectively, the quantities in the media above and below the crack, G+ and 
G- are 6×3 matrices (see Appendix A). Here and in the following, a variable with an over bar “~” represents its 
Fourier transform. 
 Substituting of Eqs (3.6a, b) into Eq.(3.3) leads to the solution of displacements 1u  and 2u  and the 
potential function Φ , in terms of the Fourier transforms of the stresses 12σ  and 22σ  and the electric field 1E  
on the cracked plane. With Eq.(3.6a, b), 1u , 2u  and Φ  given in Eq.(3.3) satisfy the continuity conditions for 
the stresses and electric field on the cracked plane. 
 
4. Singular integral equations 
 
 We introduce the following discontinuity functions along the cracked interface 
 

  ( ) ( ) ( )
x

0xu
x

0xuxg
*
i

*
i

i ∂
∂

−
∂

∂
=

−+ ,, ,         321i ,,= .                    (4.1) 

 
 The continuity conditions for the displacement and electric potential on the cracked plane require that 
 

  ( ) 0xgi =       for      ax ≥       and       ( ) 0dxxg
a

a i =∫− ,        321i ,,= .                (4.2) 

 
 By substituting Eqs (3.5) into the Eq. (3.3), one obtains the displacements 1u , 2u  and the potential 
function Φ . They are then substituted into Eq.(4.1). This gives 
 

  ( ) ( )[ ]( ) ( )∫
∞

∞−
−−

π
= dssrb~b~sC

i2
1rg *

0j
*
jiji iexp                 (4.3) 

 
where ijC  are the elements of a 3 by 3 matrix C defined by 
 
  [ ] [ ] ( )[ ] ( )[ ]( )sGsGAC −+ −=                          (4.4) 
 
and where [ ] [ ]ijAA = . Equation (4.3) can be inversed to give 
 

  ( )[ ] ( ) ** , 0i
a

a jiji bdrrgrxRb += ∫−
,        321i ,,=                     (4.5) 

 
where summation over the index j is assumed, the kernel ( )[ ]rxR ,  is 
 

  ( )[ ] ( )[ ] ( )[ ]∫
∞

∞−

− −
π

= dsxrssC
2
ir,xR 1 iexp .                   (4.6) 

 
 In deriving the above equation, we have used conditions (4.2). By now ig  are the only unknowns in 
the problem, which may be determined from the boundary conditions on the crack faces. Note that for large 
values of s, ( )[ ] 1sC −  becomes ( )[ ]Λ− ssgn , where [ ]Λ  is a 3 by 3 constant matrix, which depends only on 
material properties. It follows from Eq.(4.6) that 
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  ( )[ ] [ ] ( )[ ]rx
xr

1rxR ,, Ξ+
−
Λ

π
= ,                           (4.7) 

 

  ( )[ ] ( )[ ] [ ]( ) ( )[ ]∫
∞

∞−

− −Λ−−
π

=Ξ dsxrssC
2
1rx 1 iexp    

i
, .               (4.8) 

 
 Equation (4.5) gives 12σ , 22σ  and 1E  outside as well as inside the crack. For the later, the boundary 
conditions (2.6) give 
 

  ( ) ( ) ( ) *
0i

a

a jij
a

a j
ij bdrrgr,xdrrg

xr
1

−=Ξ+
−π

Λ
∫∫ −−

,        321i ,,= .           (4.9) 

 
 The above singular integral equation contains a Cauchy-type kernel. Its solutions has the following 
form 
 

  ( ) ( ) ( )∑
∞

=−
=

1m
im2i mCrT

r1

1rag  ,        321i ,,=                 (4.10) 

 
where arr = , axx = , mT  is the Chebyshev polynomial of the first kind, ( )mCi  are constants to be 
determined. Substitution of Eq.(4.10) into Eq.(4.9) leads to 
 

  ( ) ( ) ( ) ( ) ( ) ∗
−

∞

=

∞

=
− −=

−

Ξ
+Λ ∫ ∑∑ 0i

1

1 j
1m

m2
ij

j
1m

1mij brdmCrT
r1

rx
amCxU

,
          (4.11) 

 
where summation over the index j is assumed, and 1mU −  is the Chebyshev polynomial of the second kind. 
After evaluating ig  from Eq.(4.11), the stress and electric field intensity factors in the Laplace transform 
domain, i.e., in-plane shear (Mode II), in-plane normal traction (Mode I), and in-plane electric field (Mode E), 
{ } { }T

EIII KKKK ,,=  can be calculated from 
 

  { } ( )[ ]( ) ( ) ( ) ( ) ( )( )T11122112ax 0,xE0x0xxa2K ,,,,  σσ−−π= −−→ ,          (4.12) 
 
for the left-hand side crack-tip. The result is 
 

  { } [ ] ( ) ( ) ( ) ( )[ ]   ,, - 1∑
∞

=

πΛ=
1m

T
32

m mCmCmC1aK .               (4.13a) 

 
Similarly, for the right-hand side crack-tip, the field intensity factors are 
 

  { } [ ] ( ) ( ) ( )[ ]  ,,  ∑
∞

=

πΛ−=
1m

T
321 mCmCmCaK .                (4.13b) 

 
5. Collinear cracks 
 
 In formulating the problem, no conditions of symmetry with respect to 0x =  were assumed regarding 
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the crack geometry and the external loads. Thus, the integral Eq.(4.9) derived in Section 4 is valid basically for 
any number of collinear cracks defined by 0z = , ji cxb << , ( )n...1j ,,=  along the x-axis with the 
additional single-value condition of the form (3.5) for each crack, namely 
 

  ( ) 0xgij =      for     ( )jj cbx ,∉      and     ( ) 0dxxgj

j

c

b ij =∫ ,      ( )n...1j321i ,,;,, == . (5.1) 

 
 The only change in the integral equation would be in replacing the integral ( )aa,−  by the sum of the 
integrals ( )iii cbL ,=  ( )n...1i ,,=  corresponding to the collinear cracks. 

 

z

b c-c -b
x

 
 

Fig.2. Two collinear cracks. 
 
 As an example, we consider the case of two symmetrically located and symmetrically loaded collinear 
cracks (Fig.2). That is, we assume that bb1 = , cc1 = , cb2 −= , bc2 −= , ( ) 00xyz =τ , . In this case, using the 
symmetry conditions, Eq.(4.9) may be expressed as 
 

  ( ) ( ) ( ) *
0i

c

b jijj
c

b
ij bdrrgrxKdrrg

xr
1

xr
1

−=+





+
+

−π

Λ
∫∫ , ,      ( )321i ,,=        (5.2) 

 
where summation over the index j is assumed, and 
 
  ( ) ( ) ( )txtxtxK −Ξ−Ξ= ,,, .                            (5.3) 

 
 The integral Eq.(5.2) is again solved under the following single-valuedness condition 

 

  ( ) 0dxxg
c

b i =∫ ,                   ( )321i ,,= .                             (5.4) 

 
 By normalizing the length parameters according to 

 
  ( ) ( ) 2bc2bcxx ++−= ,                 ( ) ( ) 2bc2bcrr ++−= ,                (5.5) 
 
the integral Eq.(5.2) can be reduced to the following standard form 
 

 ( ) ( ) *
0i

1

1 jijj
1

1
ij brdrgK

2
bcrdrg

bc
bc2xr

1
xr

1
−=

−
+

















−
+

++
+

−π

Λ
∫∫ −−

,      ( )321i ,,= . (5.6) 

 
 The solution of Eq.(5.6) has the same form as Eq.(4.10). By substituting ig  from Eq.(4.10) into 
Eq.(5.6) and by using the well-known orthogonality condition 
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we find 
 

  

( ) ( ) ( )

( ) ( ) ( ) *
0i

1m

1

1 j2
m

ij

1m

m

1
2

12
1

jij
1m

j1mij

brdmC
r1

rTrxK
2

bc

x1x
1x

1mCmCrU

−=
−

−
+

+



 −−

−
Λ+Λ

∑∫

∑∑
∞

=
−

∞

=

∞

=
−

,

  (5.8) 

 
where  
 

  ( )
bc
bc2xx1 −

+
+= .                                 (5.9) 

 
 The simplest method for solving the functional Eq.(5.9) is truncating the series and using an 
appropriate collocation in x. In this problem, the stress and electric displacement intensity factors can also be 
obtained from Eqs (4.13a) and (4.13b). 
 The preceding sections establish the solution in the Lapalce transform domain. The corresponding 
values of the elastic and electric fields in the time domain are given by the Laplace inversion. This is achieved 
by adopting the numerical technique outlined in Miller and Guy (1996) which has been widely used in fracture 
dynamics (Sih and Chen, 1981). Further, the steady solution can be easily obtained by setting the Laplace 
transform parameter “p” to zero. 
 Once the stress and electric field intensity factors in the time domain are obtained, the energy release 
rate at the crack tips can be obtained from the virtual crack closure integral. This gives 
 

  { }[ ]{ }T
EIII

1
EIII KKKKKK

4
1G ,,,, −Λ= .                     (5.10) 

 
6. The electrode solution 
 
 If the region ( )aax1 ,−∈ , 0x2 =  (or ( )cbx1 ,−∈ , 0x2 = ) is not a crack but a rigid electrode, the 
above solution procedure in sections 4 and 5 is still valid. The only difference is that the auxiliary function 

( )11 xg  and ( )12 xg  should be zero because the rigid electrode cannot be mechanically opened. In this situation, 
the singular integral Eq.(4.9) takes the following form 
 

  ( ) ( ) ( ) *
30

a

a 333
a

a 3
33 bdrrgrxdrrg

xr
1

−=Ξ+
−π

Λ
∫∫ −−

,               (6.1) 

 
where 33Λ  and 33Ξ  are elements of the matrices [ ]Λ  and [ ]Ξ , respectively. 
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 The singular integral for two collinear electrodes is obtained from Eq.(5.6) by setting 
( ) ( ) 0xgxg 1211 == . The result is 

 

  ( ) ( ) *
30

1

1 3333
1

1
22 brdrgK

2
bcrdrg

bc
bc2xr

1
xr

1
−=

−
+

















−
+

++
+

−π
Λ

∫∫ −−
.      (6.2) 

 
 The solution method of the singular integral Eqs (6.1) and (6.2) is same as that of Eqs (4.9) and (6.2). 
Note that in this problem the solution depends only on the applied electric field load. Since 1g  and 2g  are 
zero, then ( )mC1  and ( )mC2  in Eq.(4.10) are zero. It follows from Eqs (4.13a, b) that the electric field 
intensity factors are 
 

  ( ) ( ) ( )∑
∞

=

−Λπ=
1n

3
n

33 nC1abKE ,        ( ) ( )∑
∞

=

Λπ−=
1n

333 nCacKE .            (6.3) 

 
 The stress intensity factor is 
 

  E
33

13
II KK

Λ
Λ

= ,             E
33

23
I KK

Λ
Λ

= .                           (6.4) 

 
 In this problem, the energy release rate is still given by Eq. (5.10). It can be shown from Eqs (6.4) and 
(5.10) that 
 

  2
E

33
K1

4
1G

Λ
= .                                 (6.5) 

 
7. Numerical example 
 
 A cracked PZT-4 piezoelectric strip is taken as a numerical example. The thickness of the strip is h. A 
crack of length 2a is located at the center of the strip. Sudden electromechanical loads 0σ  and 0E  are applied 
simultaneously to the medium. No shear load is considered here because 0τ  alone does not cause a coupled 
electro-mechanical field near the crack tip. The density of the medium is denoted by ρ . The 
electro-mechanical properties of the medium are as follows (Fulton and Gao, 1997; Gao et al., 1997) 
 
  ( )210

11 mN109.13c = ,          ( )210
13 mN1043.7c = , 

 
  ( )210

33 mN103.11c = ,          ( )210
44 mN1056.2c = , 

 
  2

31 mC98.6e −= ,     2
33 mC8.13e =      2

15 mC4.13e = , 
 
  ( )VmC100.60 10

11
−=∈ ,          ( )VmC107.54 10

33
−=∈  

 
where m, N, C, and V are length in meter, force in Newton, charge in Coulomb and electric potential in volt, 
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respectively. The elements of the matrix [ ]Λ  are obtained as 10
11 10164.2 ×=Λ , 012 =Λ , 013 =Λ , 

10
22 10838.2 ×=Λ , 10

23 1005338.0 ×=Λ , 10
33 10005375.0 ×=Λ . 

 Due to the symmetry of the loading conditions, the mode II stress intensity factor is zero. The applied 
stress and electric field intensity factors are defined as a0 πσ  and aE0 π , respectively. In what follows, we 
focus our attention on the steady crack tip field for a strip of finite thickness, and the dynamics crack tip field 
for an infinite medium. 
 
7.1. Steady crack tip field 
 
 Table 1 gives the steady values of the stress and electric field intensity factors for different crack length 
to strip thickness ratios. It is well known that for an infinity medium, the stress and electric field intensity 
factors are not coupled. This is, an applied stress does not cause the electric field intensity factor, and an 
applied electric field does not produce the stress intensity factor. However, the results in table 1 show that for a 
medium of finite size, the stress and electric fields ahead of the crack tip are coupled. However, an applied 
stress load can produce a large electric field intensity factor, but the stress intensity factor caused by an applied 
electric field load is negligible. Take 2aH =  as an example, an applied stress intensity of 

( ) 23
I mMPa1K −=  can produce a crack tip electric field intensity factor of ( ) 23

E mKV18.15K −= , and an 

applied electric field intensity of ( ) 23
E mKV40K −=  can only produce a crack tip stress intensity factor of 

( ) 23mMPa01273.0 −− . 
 
Table 1. Steady stress and electric field intensity factors and energy release rate for different strip thickness. 
 

aH  2 4 8 16 30 Infinity 
 

0E0 =
 

( )aK 0I πσ  2.010 1.322 1.087 1.023 1.0065 1 

( )aK 0E πσ  0.01518 0.004691 0.001273 3.256×10-4 9.314×10-5 0 

00 =σ  
( )aEK 0I π  -0.3183 -0.1659 -0.05737 -0.01581 -0.004606 0 

( )aEK 0E π  1.176 1.056 1.015 1.004 1.001 1 

 
 The energy release rate can be obtained from Eq.(5.10), using the stress and intensity factors shown in 
Tab.1. The resulting different strip thickness are as follows 
 

  2aH = :            ( ) 102
000

2
0 10E88.79E169.3.0aG −×+σ−σπ= 3849 , 

 

  3aH = :            ( ) 102
000

2
0 10E80.68E690.22307.0aG −×+σ−σπ= , 

 

  4aH = :           ( ) 102
000

2
0 10E15.64E482.21771.0aG −×+σ−σπ= , 

  8aH = :          ( ) 102
000

2
0 10E06.59E243.21255.0aG −×+σ−σπ= , 

 

  16aH = :        ( ) 102
000

2
0 10E67.57E175.21126.0aG −×+σ−σπ= , 

 

  30aH = :        ( ) 102
000

2
0 10E33.57E158.21095.0aG −×+σ−σπ= , 

 

  ∞=aH :         ( ) 102
000

2
0 10E19.57E151.21083.0aG −×+σ−σπ= . 
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 The influence of medium thickness on the values of G is very significant. 
 
7.2. Dynamic crack tip field 
 
 Numerical results for a dynamics loaded infinity medium are obtained. The stress and electric field 
intensity factors at crack tips are expressed as follows 
 
  ( ) ( ) ( )[ ] aEtftftK 0E0 π+σ= σσ σI ,         ( ) ( ) ( )[ ] aEtftftK 0EE0EE π+σ= σ         (7.1) 
 
where the coefficients f depend on the geometry and material properties, but not on the applied loads 0σ  and 0E . 
 The time-varying values of the coefficients in Eq.(7.1) are plotted in Figs 3-6. Each of these curves 
increases with time from the initial zero value, displays a peak value and then decreases to the steady value as 
time becomes large enough. Unlike the steady stress intensity factor, which is independent of the applied 
electric field load, the transient stress intensity factors can increase or decrease with the electric field load, 
depending on time t. It can be shown that the dynamic applied electric field can produce significant stress 
intensity factors at the crack tips. Therefore, even for the infinity piezoelectric medium, the transient stress and 
electric fields are strongly coupled at the cracked tips. 
 Finally, Fig.7 displays the transient energy release rate G for the different electric field loads applied. For the 
electric field loads between 04.0E 00 −=σ  and 0.02, G is a monotonously decreasing function of 0E . This fact 
suggests that a positive electric field will retard and a negative electric field will enhance crack growth, at all times. 
 

 
 

Fig.3. Normalized stress intensity factors caused by stress load. 
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Fig.4. Normalized electric field intensity factors caused by stress load. 
 
 

 
 
 

Fig.5. Normalized stress field intensity factors caused by electric field load. 
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Fig.6. Normalized electric field intensity factors caused by electric field load. 
 

 
 

Fig.7. Normalized energy release rate for different electric field loads. 
 
7.3. Electrode solution 
 
 The electrode tip fields response only to the applied electric field load. The stress and electric field 
intensity factors have the following forms 
 

  ( ) aEtfKK 0EE
33

23 π=
Λ
Λ

= σI ,      ( ) ( ) aEtftK 0EEE π=               (7.2) 
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where the values of EEf  obtained for an infinite electrode are similar to those for an infinite crack, which are 
given in Fig.6. The coefficient Efσ  plotted in Fig.8 suggests that for an applied electric field load, the stress 
intensity factor IK  at an electrode tip is considerably larger than that at a crack tip (see Fig.5). Further, the 
values of IK  at the electrode tip increase with the electric field loads for any values of time t. 
 

 
 

Fig.8. Normalized electric field intensity factors for an infinity electrode. 
 
8. Conclusions 
 
 This paper considers conducting crack or electrodes in piezoelectric media under an in-plane 
electro-mechanical impact. The stress and electric field intensity factors and the energy release rate are 
obtained. The quantitative results obtained in this paper suggest that for a piezoelectric medium of finite size or 
under a transient loading condition, the electric load can produce stress intensity factors at the crack tips, and 
vice versa, i.e., the mechanical load can also produce electric field intensity factors. At different time, crack tip 
stress intensity factors can increase or decrease with the electric field loads, depending on the direction of the 
applied electric fields. The electrode tip stress intensity factors increase with the applied electric field loads, at 
all times. 
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Nomenclature 
 
 c  – elastic constant 
 D  – electric displacement 
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 e  – piezoelectric constant 
 G  – energy release rate 
 EK  – electric field intensity factor 
 III KK ,  – stress intensity factors 
 t  – time 
 u  – displacement 
 ρ  – density 
 σ  – stress 
 φ  – electric potential 
 ∈  – dielectric permittivities 
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Appendix A 
 

 Consider the medium above the crack. On the cracked plane, 0z = , ( )T*
1

*
22

*
12

*
i E~~~b ,, σσ= . It 

follows from Eq.(3.5) that 
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  ( ) ( ) ( ) ( )T*
0

*
0

*
0

T*
1

*
22

*
12jij E~~~E~~~dssxF0zssB

2
1 ,,,,iexp, στ−σσ=−=
π ∫

∞

∞−
.         (A1) 

 
 On the top surface, the vector *

ib  is zero. Hence from Eq.(3.5) we have 
 

  ( ) ( ) 0dssxFhzssB
2
1

j2ij =−=
π ∫

∞

∞−
iexp, ,           321i ,,= .                    (A2) 

 
 From Eqs (A1) and (A2), jF  can be obtained as Eq.(3.6a) in which the six by three matrix +G  is 
 

  ( )[ ] ( )
( )



































=

−
+

000
000
000
100
010
001

hsB
0sB

sG
1

2ij

ij

,
,

.                          (A3) 

 
 Similarly, the six by three matrix G- is obtained as 
 

  ( )[ ] ( )
( )



































−

=
−

−

000
000
000
100
010
001

hsB
0sB

sG
1

1ij

ij

,
,

.                        (A4) 
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