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The voids effect of loads which are moving at a constant velocity along one of the coordinate axis in a 
generalized thermoelastic half-space is studied. The analytical expressions of the displacements, stresses, 
temperature distribution and change in the volume fraction field for two different theories, i.e., Lord-Shulman  
(L-S), Green-Lindsay (G-L) are obtained by the use of the Fourier transform technique. The integral transform 
has been inverted by using a numerical technique and numerical results are illustrated graphically for a 
magnesium crystal-like material for the insulated boundary and temperature gradient boundary  
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1. Introduction 
 
 The theory of linear elastic materials with voids is one of the most important generalizations of the 
classical theory of elasticity. This theory is useful for investigating various types of geological and biological 
materials for which the elastic theory is inadequate. This theory is concerned with elastic materials consisting 
of a distribution of small pores (voids), in which the void volume is included among the kinematics variables 
and in the limiting case of vanishing this volume it reduces to the classical theory of elasticity. 
 A nonlinear theory of elastic material with voids was developed by Nunziato and Cowin (1979). 
Later Cowin and Nunziato (1983) developed a theory of linear elastic materials with voids. They considered 
several applications of the linear theory by investigating the response of the materials to homogeneous 
deformations, pure bending of beams and small amplitudes of acoustic waves. Puri and Cowin (1985) 
studied the behaviour of plane waves in a linear elastic materials with voids. The domain of influence 
theorem in the linear theory of elastic materials with voids was discussed by Dhaliwal and Wang (1994). 
Scarpetta (1995) studied well posedness theorems for linear elastic materials with voids. Birsan (2000) 
established existence and uniqueness of the weak solution in the linear theory of elastic shells with voids.  
 Rusu (1987) studied the existence and uniqueness in thermoelastic materials with voids. Saccomandi 
(1992) presented some remarks about the thermoelastic theory of materials with voids. Ciarletta and Scalia 
(1993) discussed the non-linear theory of non simple thermoelastic materials with voids. Ciarletta and 
Scarpetta (1995) discussed some results on thermoelasticity for dielectric materials with voids. Dhaliwal and 
Wang (1995) developed a heat flux dependent theory of thermoelasticity with voids. Marin (1997a; b; 1998) 
studied uniqueness results and domain of influence in thermoelastic bodies with voids. Marin and Salca 
(1998) obtained the relation of Knopoff-de Hoop type in thermoelasticity of dipolar bodies with voids. 
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Chirita and Scalia (2001) studied the spatial and temporal behaviour in linear thermoelasticity of materials 
with voids. Pompei and Scalia (2002) studied the asymptotic spatial behaviour in linear thermoelasticity of 
materials with voids. 
 The problem of determining the response of an elastic system subjected to a moving load has 
received considerable attention. Work in this area has been mostly motivated by the need to analyze the 
vibrations of such structures as bridges and rail/road tracks caused by moving vehicles. The design of 
highways, airport runways as well as the foundation problems in soil mechanics, particularly when the earth 
mass is supporting a heavy structure having a moving load over its free plane surface, lead to the 
investigation of the dynamic stress distribution associated with the problem. An important problem 
concerning such diverse fields as wave propagation, contact mechanics and tribology is the rapid motion of a 
line mechanical and/or thermal load over the surface of a half-space. Indeed, this is the case when (a) ground 
motion and stresses are produced by the surface blast waves due to explosives or by supersonic aircraft (b) 
high velocity rockets sleds moving on guide rails. Such dynamical mechanical/thermal loading may produce 
severe deformation and temperature rise in a thin zone near the half-space surface and thereby causes 
excessive wear and even cracking near the contact zone. 
 In many cases, the above described problem can be modeled as a plane-strain steady state situation, 
involving an elastic half-plane under a concentrated line mechanical/thermal loading which moves over the 
half-plane surface of constant speed. 
 To relate the present study and previous work, we first note that, in the absence of thermal effects, 
our study turns into the well known problem of steady-state elastodynamic motion of a line force along half-
plane surface considered by Cole and Huth (1958) and Georgiadis and Barber (1993). Various authors have 
studied the thermal effect in the last three decades. Barber and Martin-Moran (1982), Barber (1984), 
Azarkhin and Barber (1985), Hills and Barber (1985) use principles of Carslaw and Jaeger (1959) applied to 
thermoelasticity to develop stresses and displacements. Barber (1984) successfully used these ideas to obtain 
exact solutions for the tangential stress and displacements on the surface of half-space for a given moving 
heat source. Barber (1984) obtained the expressions of displacements and stresses due to heat source moving 
over the surface of a thermoelastic half plane. Bryant (1988) developed a method for obtaining fundamental 
thermal and thermoelastic solutions for two-dimensional distributions moving over the surface of an elastic 
half-space. Steady state response of a thermoelastic half-space due to the rapid motion of thermal/mechanical 
surface loads has been discussed by Brock and Rodgers (1997). Brock and Georgiadis (1997) obtained the 
surface displacement and temperature due to a line mechanical/heat source that moves at a constant velocity 
over the surface of a thermoelastic half-space. The problem of transient disturbances in a thermoelastic half-
space due to moving the internal heat source has been studied by Chakravorty and Chakravorty (1998). 
 The present investigation is to determine the component of displacements, stresses, temperature 
distribution and change in the volume fraction field in a homogenous, isotropic, thermoelastic half-space 
with voids due to moving mechanical and thermal sources. The steady state assumption employed here has 
its own justification in the dynamic analysis of moving sources (e.g. Fung, 1965; Eringen and Suhubi, 1975; 
Brock, 1994; 1995) and may yield reliable results when the mechanical/thermal load in question has, as here, 
been applied and moving for a long time. 
 
2. Basic equations 
 
 Following Lord and Shulman (1967), Green and Lindsay (1972) and Cowin and Nunziato (1983) the 
field equations and constitutive relations in a thermoelastic solid with voids without body forces, heat 
sources and extrinsic equilibrated body force can be written as 
 
  ( ) ( ) ( ) uuu &&& ρ=τδ+β−φ∇+µ−µ+λ TTb2 1k2 grad   curlcurl divgrad , (2.1) 
 
  ( )  div φρχ=+φω−φξ−−φ∇α &&& MTb 01

2 u  (2.2) 
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  ( ) ( )TTcMTTTK 0e0k100
2 &&&&&&& τ+ρ=φ−⋅∇δτ+⋅∇β−∇    uu , (2.3) 

 
and 
 
  ( ) ( ) ij1k2ijijjiijkkij Tbuuut δτδ+β−φδ++µ+δλ= & T    , ,, ,     ( )zyxji ,,, =  (2.4) 
 
where the list of symbols is given in Appendix A. 
 
3. Formulation and solution of the problem 
 
 We consider a homogenous, isotropic, thermally conducting, elastic half-space with voids in the 
undeformed state at uniform temperature 0T  under plane strain conditions. The rectangular Cartesian co-
ordinate system ( )zyx ,,  having the origin on the plane surface 0z =  with the z-axis normal to the medium 
is introduced. A concentrated normal point force or thermal source, is assumed to be moving on the 
thermoelastic half-space with a constant velocity U in the negative x-direction. After the load has been 
moving for some time and transient effects have died away, the displacements will appear stationary in a 
coordinate system moving with the load. 
 

 
 
Fig.1. A mechanical/thermal source P moving with a constant velocity U over the surface of the 

thermooelastic half-space. 
 
 We consider the displacements ( )tzyxu ,,, , ( )tzyxw ,,,  and change in the volume fraction 
field ( )tzyx ,,,φ  which are assumed to be of the form 
 
  ( ) ( )∗∗∗= zxutzyxu ,,,, , 
 
  ( ) ( )∗∗∗= zxwtzyxw ,,,, , 
 
  ( ) ( )∗∗∗φ=φ zxtzyx ,,,,  
 
where as per Fung (1968), a Galilean transformation 
 
  tUxx +=∗ ,     zz =∗ ,     tt =∗ , 
 
is introduced; then the boundary conditions would be independent of ∗t . 
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 The initial conditions are  
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  ( ) ( )zxw0zyxw s ,,,, = ,     ( )zx
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  ( ) ( )zx0zyx s ,,,, φ=φ ,     ( )zx
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where ( )zxus , , ( )zxws , , ( )zxs ,φ  are solutions of the static problem. 
 For the two dimensional problem, we assume ( )w0u ,,=u  in Eqs (2.1)-(2.4). 
We define the dimensionless quantities  
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in Eqs (2.1)-(2.3), and applying the Fourier transform defined by 
 

  ( ) ( )∫
∞

∞−

ξ=ξ dxezxfzf~ xi  , , , (3.4) 

 
on the resulting expressions, we obtain 
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dz
w~dR~RT~Ru~R

dz
T~d

363433312

2
+φ++= , (3.7) 

 

  
dz
w~dR~RT~Ru~R

dz

~d
464443412

2
+φ++=

φ  (3.8) 

 
where etc.  ,,, 16141311 RRRR  are given in Appendix B. 
 The equations (3.5)-(3.8) can be written as  
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 To solve Eq.(3.9),we take 
 
  ( ) ( ) qzeXzW  , ξ=ξ , (3.11) 
  
so that 
 
  ( ) ( ) ( )zqWzWA ,, ξ=ξξ ,                                                                                 (3.12) 
 
which leads to an eigenvalue problem. The characterstic equation corresponding to the matrix A is given by  
 
  [ ] 0qIA =−det ,                                                                                  (3.13) 
 
which on expansion leads to 
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  0qqqq 4
2

3
4

2
6

1
8 =λ−λ−λ+λ−                                                                 (3.14) 

 
where 4321 λλλλ  ,  , ,  are presented in Appendix C. 
The roots of Eq.(3.14) are ( )4321q , , ,=± ll . 
 The eigenvalues of the matrix A are roots of Eq.(3.14). The eigenvector ( )ξX ) corresponding to the 
eigenvalues lq  can be determined by solving the homogeneous equation 
 
  [ ] ( ) 0XqIA =ξ− .  (3.15) 
 
 The set of eigenvectors ( )ξlX , ( )87654321 ,,,,,,,=l  are presented in Appendix D. 
The solution of Eq.(3.9) is given by 
 

  ( ) ( ) ( ) ( ) ( )[ ]∑
=

++ −ξ+ξ=ξ
4

1
44 zqXBzqXBzW

l
llllll expexp,   (3.16) 

 
where ( )87654321Bl ,,,,,,,=l  are arbitrary constants. 
 Thus Eq.(3.16) represents the solution of the general problem in the plane strain case of generalized 
homogeneous thermoelasticity by employing the eigenvalue approach and therefore can be applied to a 
broad class of problems in the Fourier transform. 
 For the half-space 0z ≥  the roots 4321 qqqq ,,,  are related such that the real part of 
( ) 0qqqq 4321 ≥,,, . With this consideration, the regularity conditions at infinity is satisfied and 

4321 BBBB ,,,  approaches zero for the domain as z approaches  ∞  
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z-q

5
4321 eBeBeBeBzu~  , ,                                    (3.17) 

 
  ( ) ( )z-q

844
z-q
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 z-q
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4321  eBqp eBqp eBqp eBqpzw~ +++−=ξ   , , (3.18) 

 
  ( ) z-q
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z-q
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z-q
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 z-q
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4321  eBs eBs eBs eB szT~ +++=ξ , ,                  (3.19) 

 
  ( ) z-q
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z-q

73
z-q
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 z-q

51
4321  eBr eBr eBr eBrz~

+++=ξφ   , .     (3.20) 

 
4. Application 
 
4.1. Normal point force on the surface of half-space  
 
 Boundary conditions in this case are given by 
 

  ( ) ( )∗δ−= xPzxt zz , ,     ( ) 0zxt zx =, ,     0
z

=
∂
φ∂  ,     0hT

z
T

=+
∂
∂      at     0z =  (4.1) 

 
where P is the magnitude of the force, ( )∗δ x  is the Dirac delta function and h is the heat transfer coefficient. 



Deformation due to moving loads in thermoelastic body with voids 43

 Making use of Eqs (2.4)-(3.3), applying the transform defined by (3.4) in the boundary conditions 
(4.1) and with the help of Eqs (3.17)-(3.20), we obtain the expressions for displacement components, 
stresses, temperature distribution and change in the volume fraction field (see Appendix E). 
 

Particular case (4.1a): If we neglect voids effect, i.e., ( )0Mb 01 =χ==ω=ξ==α  in Eqs (E.1), the 
expressions for displacement components, stresses and temperature distribution are obtained in thermoelastic 
half-space (see Appendix F). 
 
4.2. Thermal load on the surface of half-space 
 
 The boundary conditions in this case are 
 

  0tzz = ,     0tzx = ,     0
z

=
∂
φ∂       at     0z = , 

 

  ( ) ( )∗δ==
∂
∂ x0zx

z
T   ,        

   (4.2) 
for the temperature gradient boundary or 
 
  ( ) ( )∗δ== x0zxT   ,        
 
for the temperature input boundary.  
 
 Making use of Eqs (2.4)-(3.3) applying the transform defined by (3.4) in the boundary conditions 
(4.2) and with the help of Eqs (3.17)-(3.20), we obtain the expressions for displacement components, 
stresses, temperature distribution and change in the volume fraction field which are presented in Appendix 
G. 
 On replacing ∆  with ( ) 0

11
*
10 cT ∆ω  and 0

20T ∆  in Eqs (G.1), we obtain the expressions for 
temperature gradient boundary and temperature input boundary. 
 

Particular case (4.2a): If we neglect voids effect, the expressions for displacement components, stresses and 
temperature distribution in generalized thermoelastic half-space are obtained by replacing l∆  with 

( )   , ,, 1P321l ==∆ ′′ l  in Eqs (F.1) respectively, where 
 
  23321 unun −=∆ ′′ ,     ( )13312 unun −−=∆ ′′ ,     12213 unun −=∆ ′′ . 
 
 On replacing ∆  with ( ) 11

*
10 cT ∆′ω  and 20T ∆′  in Eqs (F.1), we obtain the expressions for 

temperature gradient boundary and temperature input  boundary. 
 
Sub-case 1: If 0h → , Eqs (E.1) yield the expression of displacements, stresses, temperature distribution and 

change in the volume fraction field for the insulated boundary.  
 

Sub-case 2: If ∞→h , Eqs (E.1) yield the expression of displacements, stresses, temperature distribution 
and change in the volume fraction field for the isothermal boundary.  

 

Special case 1: By putting 1k =  and 01 =τ  in Eqs (E.1), (F.1) and (G.1) we obtain the corresponding 
expressions of the thermoelastic half-space with and without voids, respectively, for L–S 
theory.  
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Special case 2: For G–L theory, we recover the corresponding expressions of the thermoelastic half-space 
with and without voids, respectively, by substituting 2k =  in Eqs (E.1), (F.1) and (G.1). 

 
5. Inversion of the transforms 
 
 To obtain the solution of the problem in the physical domain, we must invert the transforms in Eqs 
(E.1), (F.1) and (G.1) for the two theories, i.e., L-S and G-L. These expressions are functions of z and the 
parameter of the Fourier transform ξ  and hence are of the form ( )zf~ ,ξ . To get the function ( )zxf ,  in the 
physical domain, we invert the Fourier transform using 
 

  ( ) ( ) ( ) ( )( ) ξξ−ξ
π

=ξξ
π

= ∫∫
∞

∞

∞−
ξ− dfxifx1dzf~e

2
1zxf

0
0e  sin  cos   ,  , x  i  

 
where ef  and 0f  are, respectively, even and odd parts of the function ( )zf~ ,ξ . The method for evaluating 
this integral is described by Press et al. (1986), which involves the use of Romberg’s integration with 
adaptive step size. This also uses the results from successive refinements of the extended trapezoidal rule 
followed by extrapolation of the results to the limit when the step size tends to zero. 
 
6. Numerical result and discussion 
 
 Following Dhaliwal and Singh (1980) we take the case of a magnesium crystal-like material for 
numerical calculations. The physical constants used are 
 
  210 Nm1017.2 −×=λ ,  K298T 0

0 = ,       210 Nm10278.3 −×=µ , 
 
  33 kgm1074.1 −×=ρ ,      112Wm107.1K −−×= degree ,  111*

1 s10x58.3 −=ω , 
 
  113

e Jkg1004.1c −−×= degree ,  126 Nm1068.2 −−×=β degree ,  1P = , 
 
and void parameters are  
 
  N10688.3 5−×=α ,  

210
1 Nm10475.1 −×=ξ ,      215 m10753.1 −×=χ , 

 
  210 Nm1013849.1b −×= ,      23

0 Nm100787.0 −−×=ω ,      126 Nm102M −−×= degree . 
 
 A comparison of dimensionless normal stress zzt , boundary temperature field T and change in the 
volume fraction field φ  with distance x for Concentrated force (CF), is shown graphically in Figs 1-14, for 
L-S and G-L theories for non-dimensional relaxation times 05.002.0 10 =τ=τ , . The solid lines with and 
without center symbols, with voids are denoted by LSV and GLV. The dashed lines with and without center 
symbols, without voids are denoted by LSWV and GLWV. In Figs 7 and 14 the solid lines with and without 
center symbols correspond to the case when 1cU < , the small dashed lines with and without center symbols 
correspond to the case 1cU >  and long dashed lines with and without center symbols correspond to the case 
when 1cU =  for LSV and GLV theories. 
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6.1. Normal point force on the boundary of half-space (Insulated  boundary) 
 
Case 1. 1cU <  

 Figure 2 shows the variation of normal stress zzt  with distance x. At the point of application of 
source due to the presence of voids the values of zzt  for LSV and GLV are greater than LSWV and GLWV. 
Due to the presence of voids the values of zzt  for LSV and GLV theories increase with an increase in 
distance x whereas for LSWV and GLWV the values of normal stress initially decrease and then become 
oscillatory in the whole range.  
 

 
 

Fig.2. Variation of normal stress zzt  with distance x. 
 

 Figure 3 depicts the variation of temperature distribution T with distance x. Due to the presence of 
voids the values of T for LSV and GLV increase slowly in the range 6x0 ≤≤  and decrease slowly in the 
range 10x1.6 ≤≤ . For LSWV and GLWV the values of T increase in the ranges 3x0 ≤≤  and 10x5.7 ≤≤  
and decrease in other ranges. 
 

 
 

Fig.3. Variation of temperature T with distance x. 
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Case 2. 1cU >  

 The variation of normal stress zzt  with distance x is shown in Fig.4. The values of zzt  show opposite 
oscillatory behaviour in the whole range for LSWV and GLWV. The values of zzt  for LSV are greater than 
GLV but the trend of variation is same for both the theories in the whole range. 
 

 
 

Fig.4. Variation of normal stress zzt  with distance x. 
 
 Figure 5 depicts the variation of temperature distribution T with distance x. Due to the presence of 
voids the values of T for LSV and GLV decrease sharply with an increase in distance x. For LSWV, initially 
the values of T increase sharply whereas for GLWV increase slowly and then become oscillatory for both 
theories in the whole range. 
 

 
 

Fig.5. Variation of temperature T with distance x. 
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Case 3. 1cU =  
 The variation of normal stress zzt  with distance x are shown in Fig.6. The values of zzt  show an 
opposite oscillatory behaviour in the ranges 5.2x7.1 ≤≤ , 10x7.3 ≤≤  and shows same behavior in the rest 
of the ranges for LSWV and GLWV whereas for LSV and GLV the values of zzt  show a small variation in 
the whole range. The values of zzt  for LSV are larger than GLV but the trend of variation is same for both 
the theories in the whole range. 
 

 
 

Fig.6. Variation of normal stress zzt  with distance x. 
 

 Figure 7 depicts the variation of temperature distribution T with distance x. Due to the presence of 
voids the values of T for LSV and GLV decrease sharply with an increase in distance x. For LSWV, initially 
the values of T increase sharply whereas for GLWV increase slowly and then become oscillatory for both theories in 
the whole range. 
 

 
 

Fig.7. Variation of temperature T with distance x. 
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 Figure 8 depicts the variation of change in the volume fraction field φ  with distance x. The values of 
φ  for the case 1cU <  are greater than 1cU >  and 1cU =  in the whole range. The values of φ  for the case 

1cU <  increase gradually and approach zero whereas for 1cU >  and 1cU =  the values of φ  initially 
decrease and then increase in the whole range for both the theories. 
 

 
 

Fig.8. Variation of change in the volume fraction field with distance x due to mechanical source. 
 
6.2. Thermal point source on the surface of half-space (Temperatue  gradient boundary) 
 
Case 1 1cU <  
 Figure 9 shows the variations of normal stress zzt  with distance x. Due to voids effect, the values of 

zzt  for LSV and GLV are larger than LSWV and GLWV in the whole range. Due to voids effect the values 
of zzt  for LSV and GLV decrease with an increase in distance x whereas for LSWV and GLWV, the values 
of zzt  increase or decrease along an oscillatory path with an increase in distance x.  
 

 
 

Fig.9. Variation of normal stress zzt  with distance x. (Temperature gradient boundary) 
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 The variation of temperature distribution T are shown in Fig.10. Due to the presence of voids the 
values of T for LSV and GLV decrease slowly whereas for LSWV and GLWV, near the point of application 
of source, the values of T increase sharply and then become oscillatory in the whole range. 
 

 
 

Fig.10. Variation of temperature T with distance x. (Temperature gradient boundary) 
 
Case 2. 1cU >  
 Figure 11 depicts the variation of zzt  with distance x. Due to the presence of voids the values of zzt   
for LSV and GLV increase slowly with an increase in distance x. Initially, the values of zzt  for GLWV are 
greater than LSWV and then become oscillatory in the whole range for both the theories. 
 

 
 

Fig.11. Variation of normal stress zzt  with distance x. (Temperature gradient boundary). 
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 Figure 12 shows the variation of temperature distribution T with distance x. Due to the presence of 
voids the values of T for LSV and GLV increase slowly with an increase in distance x. The values of T show 
an oscillatory behaviour in the whole range for LSWV and GLWV.  
 

 
 

Fig.12. Variation of temperature T with distance x. (Temperature gradient boundary). 
 
Case 3. 1cU =  
 The variations of normal stress zzt  are shown in Fig.13. Near the source application the values of 
GLWV are greater than LSWV and experience same oscillatory behavior in the whole range. For LSV and 
GLV the values of zzt  increase sharply with an increase in distance x.   
 

 
 

Fig.13. Variation of normal stress zzt  with distance x. (Temperature gradient boundary). 
 



Deformation due to moving loads in thermoelastic body with voids 51

  
 Figure 14 depicts the variation of temperature distribution T with distance x. The values of T for 
LSWV and GLWV depict same oscillatory behaviour in the whole range whereas for LSV and GLV the 
values of T increase with an increase in distance x in the range 10x0 ≤≤ . 
 
 

 
 

Fig.14. Variation of temperature T with distance x. (Temperature gradient boundary). 
 
 Figure 15 shows the variation of φ  with distance x. For the case 1cU < , the values of φ  for LSV are 
greater than GLV in the whole range, for 1cU > , the values of φ  increase slowly whereas for 1cU =  the 
values of φ  increase sharply with an increase in distance x for both the theories in the whole range.  
 
 

 
 

Fig.15. Variation of change in the volume fraction field with distance x due to mechanical source. 
(Temperature gradient boundary). 
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Conclusion 
 
1. The Fourier transform technique is used to derive stresses, temperature distribution and change in the 

volume fraction field due to mechanical and thermal sources. 
2. The voids effect in different theories of thermoelasticity, i.e, L-S and G-L for insulated and temperature 

gradient boundary for three different types of velocities are investigated. 
3. It is observed that the magnitude of normal stress, temperature distribution and change in the volume 

fraction field attains a maximum near the point of application of the source.  
 
Nomenclature  
 
 K  – thermal conductivity 
 T  – temperature change 
 0T  – uniform temperature 
 ijt  – stress tensor 
 u  – displacement vector 
 Mb 01 ,,,,, χωξα  – material constant due to the presence of voids 
 ( ) t23 αµ+λ=β   
 tα  – coefficient of linear thermal expansion 
 ijδ  – Kronecker delta 
 µλ,  – Lame’s constants 
 ec,ρ  – density and specific heat at constant strain 
 10 ττ ,  – thermal relaxation times 
 φ  – change in volume fraction field 
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Appendix A 
 
 For Lord-Shulman theory, 01 =τ , 1k1 =δ  and for Green-Lindsay theory 01 >τ , 0k1 =δ  (i.e., 

1k =  for Lord-Shulman theory and 2k =  for Green-Lindsay theory). The thermal relaxations 10 ττ   and   

satisfy the inequality 001 >τ≥τ  for the G-L theory only and a superposed dot represents differentiation 
with respect to time variable t. 
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