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The voids effect of loads which are moving at a constant velocity along one of the coordinate axis in a
generalized thermoelastic half-space is studied. The analytical expressions of the displacements, stresses,
temperature distribution and change in the volume fraction field for two different theories, i.e,, Lord-Shulman
(L-9), Green-Lindsay (G-L) are obtained by the use of the Fourier transform technique. The integral transform
has been inverted by using a numerical technique and numerical results are illustrated graphicaly for a
magnesium crystal-like material for the insulated boundary and temperature gradient boundary
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1. Introduction

The theory of linear dastic materials with voids is one of the most important generalizations of the
classical theory of dasticity. This theory is useful for investigating various types of geologica and biol ogical
materials for which the dastic theory isinadequate. This theory is concerned with dastic materials consisting
of adistribution of small pores (voids), in which the void volume is included among the kinematics variables
and in the limiting case of vanishing this volume it reduces to the classicd theory of dasticity.

A nonlinear theory of eastic material with voids was developed by Nunziato and Cowin (1979).
Later Cowin and Nunziato (1983) devel oped atheory of linear eastic materials with voids. They considered
severd applications of the linear theory by investigating the response of the materials to homogeneous
deformations, pure bending of beams and small amplitudes of acoustic waves. Puri and Cowin (1985)
studied the behaviour of plane waves in a linear éastic materials with voids. The domain of influence
theorem in the linear theory of éastic materials with voids was discussed by Dhaliwa and Wang (1994).
Scarpetta (1995) studied well posedness theorems for linear dastic materials with voids. Birsan (2000)
established existence and uniqueness of the weak solution in the linear theory of dastic shells with voids.

Rusu (1987) studied the existence and uniqueness in thermoel astic materials with voids. Saccomandi
(1992) presented some remarks about the thermoelastic theory of materials with voids. Ciarletta and Scalia
(1993) discussed the non-linear theory of non simple thermoeastic materials with voids. Ciarletta and
Scarpetta (1995) discussed some results on thermoelasticity for dielectric materias with voids. Dhaliwa and
Wang (1995) developed a heat flux dependent theory of thermoe asticity with voids. Marin (1997a; b; 1998)
studied uniqueness results and domain of influence in thermoelastic bodies with voids. Marin and Saca
(1998) obtained the rdation of Knopoff-de Hoop type in thermoelasticity of dipolar bodies with voids.
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Chirita and Scalia (2001) studied the spatia and temporal behaviour in linear thermoelasticity of materias
with voids. Pompe and Scalia (2002) studied the asymptotic spatial behaviour in linear thermoe asticity of
materials with voids.

The problem of determining the response of an eéastic system subjected to a moving load has
received considerable attention. Work in this area has been mostly motivated by the need to analyze the
vibrations of such structures as bridges and rail/road tracks caused by moving vehicles. The design of
highways, airport runways as well as the foundation problems in soil mechanics, particularly when the earth
mass is supporting a heavy structure having a moving load over its free plane surface, lead to the
investigation of the dynamic stress distribution associated with the problem. An important problem
concerning such diverse fiel ds as wave propagation, contact mechanics and tribology is the rapid motion of a
line mechanical and/or thermal |oad over the surface of a half-space. Indeed, thisis the case when (a) ground
motion and stresses are produced by the surface blast waves due to explosives or by supersonic aircraft (b)
high veocity rockets sleds moving on guide rails. Such dynamica mechanical/thermal |oading may produce
severe deformation and temperature rise in a thin zone near the half-space surface and thereby causes
excessive wear and even cracking near the contact zone.

In many cases, the above described problem can be modeled as a plane-strain steady state situation,
involving an dastic half-plane under a concentrated line mechanical/therma loading which moves over the
hal f-plane surface of constant speed.

To rdae the present study and previous work, we first note that, in the absence of thermal effects,
our study turns into the well known problem of steady-state elastodynamic motion of aline force along hal f-
plane surface considered by Cole and Huth (1958) and Georgiadis and Barber (1993). Various authors have
studied the thermal effect in the last three decades. Barber and Martin-Moran (1982), Barber (1984),
Azarkhin and Barber (1985), Hills and Barber (1985) use principles of Carslaw and Jaeger (1959) applied to
thermoel asticity to devel op stresses and displacements. Barber (1984) successfully used these ideas to obtain
exact solutions for the tangential stress and displacements on the surface of half-space for a given moving
heat source. Barber (1984) obtai ned the expressions of displacements and stresses due to heat source moving
over the surface of a thermoelastic haf plane. Bryant (1988) devel oped a method for obtaining fundamental
thermal and thermoe astic solutions for two-dimensional distributions moving over the surface of an eastic
half-space. Steady state response of a thermod astic ha f-space due to the rapid motion of thermal/mechanical
surface loads has been discussed by Brock and Rodgers (1997). Brock and Georgiadis (1997) obtained the
surface displacement and temperature due to a line mechani cal/heat source that moves at a constant vel ocity
over the surface of athermoelastic half-space. The problem of transient disturbances in a thermoe astic half-
space due to moving theinterna heat source has been studied by Chakravorty and Chakravorty (1998).

The present investigation is to determine the component of displacements, stresses, temperature
distribution and change in the volume fraction field in a homogenous, isotropic, thermoelastic half-space
with voids due to moving mechanical and thermal sources. The steady state assumption employed here has
its own justification in the dynamic analysis of moving sources (e g. Fung, 1965; Eringen and Suhubi, 1975;
Brock, 1994; 1995) and may yield reliable results when the mechanica/thermal load in question has, as here,
been applied and moving for along time.

2. Basic equations
Following L ord and Shulman (1967), Green and Lindsay (1972) and Cowin and Nunziato (1983) the

field equations and constitutive reations in a thermoelastic solid with voids without body forces, heat
sources and extrinsi ¢ equilibrated body force can be written as

(I +2m)grad(div u)— meurl curl u+bNf - bgrad (T+d2ktl'lﬁ):rﬁ&, (2.1)

aN2f - b(divu)- xf - wok + MT =rck (2.2
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KRIZT - bTo (R 8+t o0y Kodh) - MTof =r o (B +t o), 2.3)
and

ty =1 Ugdy +rfu j +uj)+bfd; - BT +dyt )y, (i i=xy.2) (2.4)
wherethelist of symbolsisgivenin Appendix A.

3. Formulation and solution of the problem

We consider a homogenous, isotropic, thermally conducting, eastic half-space with voids in the
undeformed state at uniform temperature T, under plane strain conditions. The rectangular Cartesian co-
ordinate system (x, Y, z) having the origin on the plane surface z=0 with the z-axis normal to the medium

is introduced. A concentrated normal point force or therma source, is assumed to be moving on the
thermoe astic half-space with a constant vdocity U in the negative x-direction. After the load has been
moving for some time and transient effects have died away, the displacements will gppear stationary in a
coordinate system moving with the load.
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=

Fig.1. A mechanical/therma source P moving with a constant velocity U over the surface of the
thermooel astic hal f-space.

We consider the displacements u(x, Y, z,t), vv(x, Y, z,t) and change in the volume fraction
fieldf (x, y, z,t) which are assumed to be of the form

u(x y, z,t)=u" (x*, z*),
w(x, y, z,t)=w' (x*, z*),
f(x, y, z,t):f*(x*, z*)
where as per Fung (1968), a Galilean transformation

x =x+Ut, 2z =z, t'=t,

isintroduced; then the boundary conditions would be independent of t" .
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Theinitial conditions are

flug

= Tu_y s
e z)=ufed), Weuleia),
w(x, y, 2,0)=wg(x, 2) w_y s (x, 2) (3.1
1y S\ ’ Tlt TIX ) ’
- 1 _, T
flxy20)=fs(x2). <-=U22(x2)

where us(x, z), W, (x, z), f s(x, z) are solutions of the static problem.
For the two dimensional problem, we assume u = (u, 0, W) in Egs (2.1)-(2.4).
We define the dimensionl ess quantities

=M1y ge= VW te=wyt ", ue=y we=1yy T¢:l,
G G G G To
(3.2
%2 2
f¢:WLZCf , 1= bc{ . th=wity, tf=wity,
ci Kw;
tgz:ti, tg;(:ti, h¢:h_(il, P¢:i (3.3)
where
: 2
Cl:ai +2mgz and W,;L:rcecl
r '] K
in Egs (2.1)-(2.3), and applying the Fourier transform defined by
f(x, 2)= of (x, z)e™dx, (3.4)
-y
on the resulting expressi ons, we obtain
00 _ G4 RT +Ryf +Re W 35
o 11U+ Ry3 14 16 "1, (3.5
d2w _ di Ry dT . df

dz
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d’T == W
—— = RgiU + Ry T + Ry f + Ryg —, 3.7
02 31 33 34 %7 (3.7)
—dZF—R4U+R4'F+R f~+R4d—W~ (3.8)
d22 1 3 44 6 dz .
where Ry;, Ri3, Ri4, Rjg €tc. aregivenin Appendix B.
The equations (3.5)-(3.8) can be written as
diw(x, 2) = AW (x, 2) (39)
2
where
aiu
N . . — |
W = 9/ l;l A= ié) ! l;l V = g.,.\_ll]
%/#’ e L]’ é.l_l]’
e A A T U
e.u
&d
€Ryy 0 Ri3 R4 U €@ 0 0 0u
D R 0 0o 2 0o o0 o
A =€ 1 u 0=¢€ a (3.10)
ORa1 0 Ra3 R, U €© 0 0 ou
é é a
Ru O Rz Rug L 0 0 0g
4 R 0 0
9 16 - i 4 0 0 0f
& AAE] a 6 u
g O x ey =@ 10 0
g) R o U € 0 1 0u
C % a 0 0 0 1
&0 Res 0 0 H
To solve Eq.(3.9),wetake
w(x,z)= X (x)e®, (3.11)
so that
A(x)\N(x, z) = qW(x, z) , (312

which leads to an eigenval ue problem. The characterstic equation corresponding to the matrix A is given by
det[A- ql]=0, (3.13)

which on expansion leads to



42 R.Kumar and L.Rani

9°-1,9°+1,9"-159°-1,=0 (3.14)

where | 1, 1 5, | 5,1 , arepresented in Appendix C.
Theroots of Eq.(3.14) are £ q, (I =1 2, 3 4).

The eigenvalues of the matrix A are roots of Eq.(3.14). The eigenvector X (x)) corresponding to the
eigenvalues ¢, can bedetermined by solving the homogeneous equation

[A- ql]X(x)=0. (3.15)

The set of eigenvectors X, (x), (1=1,2,3,4, 5,6,7,8) arepresented in Appendix D.
The solution of Eq.(3.9) is given by

Wik 2)= & (8% ()exp(02)+ By Xr-sespl- 2] 10

where B, (I =1273,4,5,6,7, 8) are arbitrary constants.
Thus EQ.(3.16) represents the solution of the general problem in the plane strain case of generdized

homogeneous thermoelasticity by employing the eigenvalue approach and therefore can be applied to a
broad class of problems in the Fourier transform.

For the half-space z3 0 the roots o, 0,,05,q, are related such that the red part of
(ay,0,,05,0,)% 0. With this consideration, the regularity conditions at infinity is satisfied and
B,, B,, B3, B, approaches zero for the domain as z approaches ¥

i(x, z) :§5e'qlz +Bge%? + B,e % + Bye 29, (3.17)
2
W(x, 2)= - (p1ouBs €97 + p,a,Bs €27 + paqsB, €7 + o By €47 (318)
T(x,z)= $,Bs €% +5,By e92% +5,B, €% +5,B; %7, (3.19)
f(x, z)= r,Bg €B? +1,Bs €% +1,B, €% +1,B; e%2. (3.20)
4. Application

4.1. Normal point for ce on the surface of half-space

Boundary conditionsin this case are given by

oo, Minr=0 a z=o0 (4.1)

t,(x z)=- Pd(x*), t,(x 2)=0, . .

where P is the magnitude of the force, d(x* ) is the Dirac deltafunction and h is the heat transfer coefficient.
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Making use of Egs (2.4)-(3.3), applying the transform defined by (3.4) in the boundary conditions
(4.1) and with the help of Egs (3.17)-(3.20), we obtain the expressions for displacement components,
stresses, temperature distribution and change in the volume fraction field (see Appendix E).

Particular case (4.1a): If we neglect voids effect, i.e, (a =b=x;=wy =M =c :0) in Egs (E.1), the

expressions for displacement components, stresses and temperature distribution are obtained in thermoelastic
hal f-space (see Appendix F).

4.2. Thermal load on the surface of half-space

The boundary conditionsin this case are

t,=0, t,=0, M -0 a z=0,

9z

%(x, z=0)= d(x*)

4.2
for the temperature gradient boundary or

T(x, z= 0): d(x*)
for the temperature input boundary.

Making use of Egs (2.4)-(3.3) applying the transform defined by (3.4) in the boundary conditions
(4.2) and with the help of Egs (3.17)-(3.20), we obtain the expressions for displacement components,
stresses, temperature distribution and change in the volume fraction field which are presented in Appendix
G.

On replacing D with (Tow*l/cl)D% and T, 0} in Egs (G.1), we obtain the expressions for
temperature gradient boundary and temperature input boundary.
Particular case (4.2a): If we neglect voids effect, the expressions for displacement components, stresses and
temperature distribution in generalized thermoelastic half-space are obtained by replacdng D, with
D#(1 =1,2,3), P=1 inEgs(F.1) respectively, where

DfF=nyus - Nglip,  DE=-(nus- nguy),  DE=nyu, - nyuy .

On replacing D with (Tow’_fl/cl)ﬁg: and Ty D§ in Egs (F.1), we obtain the expressions for
temperature gradient boundary and temperature input boundary.

Sub-case 1: If h® 0, Egs (E.1) yied the expression of displacements, stresses, temperature distribution and
change in the volume fraction field for the insul ated boundary.

Sub-case2: If h® ¥, Egs (E.1) yidd the expression of displacements, stresses, temperature distribution
and changein the volume fraction fied for the isothermal boundary.

Special case 1. By putting k=1 and t; =0 in Egs (E.1), (F.1) and (G.1) we obtain the corresponding
expressions of the thermoelastic haf-space with and without voids, respectively, for L-S
theory.
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Special case 2: For G-L theory, we recover the corresponding expressions of the thermoeastic half-space
with and without voids, respectively, by substituting k =2 in Egs (E.1), (F.1) and (G.1).

5. Inversion of thetransforms

To obtain the solution of the problem in the physical domain, we must invert the transforms in Eqs
(E.1), (F.1) and (G.1) for the two theories, i.e, L-S and G-L. These expressions are functions of z and the

parameter of the Fourier transform x and hence are of the form f~(x, z). To get the function f(x, z) in the
physical domain, weinvert the Fourier transform using

¥
_i N T :1 \ g
f(x, z) % 0f f (x, z) dx 0 9cos(xx) fo-i sm(xx)fo) dx

where f, and f, are respectively, even and odd parts of the function f~(x, z). The method for evaluating

this integral is described by Press et al. (1986), which involves the use of Romberg's integration with
adaptive step size. This also uses the results from successive refinements of the extended trapezoidal rule
followed by extrapolation of the results to the limit when the step size tends to zero.

6. Numerical result and discussion

Following Dhaiwa and Singh (1980) we take the case of a magnesium crystal-like material for
numerical caculations. The physical constants used are

| =2.17° 10°Nm 2, To = 298°K , m=3.278" 10"°Nm2,
r =1.74" 103kgm 3, K =1.7° 10°Wm degree?, wj =3.58x10'!s7?,
Ce =1.04" 10% Jkg ‘degree’, b=2.68" 10° Nm %degree™, P =1,
and void parameters are
a=3688" 105N, X1 = 1.475" 10%"Nm 2, c=1753 10 °nm?,
b=1.13849" 10'°Nm?, Wp =0.0787" 10 3Nm'?, M =2" 10° Nm *degree™?.

A comparison of dimensionless normal stress t_,, boundary temperature field T and change in the
volume fraction field f with distance x for Concentrated force (CF), is shown graphicaly in Figs 1-14, for
L-S and G-L theories for non-dimensional relaxation times t, =0.02, t; =0.05. The solid lines with and

without center symboals, with voids are denoted by LSV and GLV. The dashed lines with and without center
symbols, without voids are denoted by LSWV and GLWV. In Figs 7 and 14 the solid lines with and without

center symbols correspond to the case when U < ¢, the small dashed lines with and without center symbols
correspond to the case U > ¢; and long dashed lines with and without center symbols correspond to the case
when U =¢; for LSV and GLV theories.
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6.1. Normal point force on the boundary of half-space (Insulated boundary)

Casel U <c;

Figure 2 shows the variation of normal stress t,, with distance x. At the point of application of
source due to the presence of voids the values of t,, for LSV and GLV are greater than LSWV and GLWV.
Due to the presence of voids the vaues of t,, for LSV and GLV theories increase with an increase in

distance x whereas for LSWV and GLWV the values of normal stress initially decrease and then become
oscillatory in the whole range.

0.98 —

/ NS
0.00 — o N

Normal stress t,,

/!
—0.33 4 /

-0.65 : :
0 2 4 6 8 10

Distance x

Fig.2. Variation of normal stress t,, with distance x.

Figure 3 depicts the variation of temperature distribution T with distance x. Due to the presence of
voids the values of T for LSV and GLV increase slowly in therange O£ x£6 and decrease slowly in the

range 6.1£ x £ 10. For LSWV and GLWYV thevalues of T increaseintheranges 0£ x£3 and 7.5£ x£ 10
and decrease in other ranges.

2.00
1.75
1.50

1.25

Temperature T

T T
0 2 4 6 8 10

Distance x

Fig.3. Variation of temperature T with distance x.
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Case2. U >¢;

The variation of normal stress t,, with distance x is shownin Fig.4. The values of t,, show opposite
oscillatory behaviour in the whole range for LSWV and GLWV. The values of t,, for LSV are grester than
GLV but thetrend of variation is same for both the theories in the whole range.
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Fig.4. Variation of normal stress t,, with distance x.

Figure 5 depicts the variation of temperature distribution T with distance x. Due to the presence of
voids the values of T for LSV and GLV decrease sharply with an increase in distance x. For LSWV, initialy
the values of T increase sharply whereas for GLWV increase slowly and then become oscillatory for both
theories in the whol e range.
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Fig.5. Variation of temperature T with distance x.
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Case3. U =¢;

The variation of normal stress t,, with distance x are shown in Fig.6. The values of t,, show an
opposite oscillatory behaviour in theranges 1.7 £ x£ 2.5, 3.7 £ x£ 10 and shows same behavior in the rest
of the ranges for LSWV and GLWV whereas for LSV and GLV the values of t,, show asmall variation in

the whole range. The values of t,, for LSV are larger than GLV but the trend of variation is same for both
the theories in the whol e range.

0.73
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s N
0.00 J%lm ] \\f: S
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—0.73 1 LSV
nnnnn GLV
,,,,, LSWV
coessoe GLWV

Normal stress 1,

—1.45

s \—/_//

—2.90

Distance x

Fig.6. Variation of normal stress t,, with distance x.

Figure 7 depicts the variation of temperature distribution T with distance x. Due to the presence of
voids the values of T for LSV and GLV decrease sharply with an increasein distance x. For LSWV, initialy

the values of T increase sharply whereas for GLWV increase dowly and then become oscillatory for both theoriesin
thewholerange.
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Fig.7. Variation of temperature T with distance x.
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Figure 8 depicts the variation of changein the volume fraction field f with distance x. The val ues of
f for the case U <c; are greater than U >c¢; and U =c,; in the whole range. Thevalues of f for the case

U <c; increase gradually and approach zero whereas for U >c¢; and U =c¢; the values of f initialy
decrease and then increase in the whole range for both the theories.
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Fig.8. Variation of change in the volume fraction field with distance x due to mechanica source.
6.2. Thermal point source on the surface of half-space (Temperatue gradient boundary)

Casel U <¢;

Figure 9 shows the variations of normal stress t,, with distance x. Due to voids effect, the vaues of
t,, for LSV and GLV are larger than LSWV and GLWYV in the whole range. Due to voids effect the val ues
of t,, for LSV and GLV decrease with an increase in distance x whereas for LSWV and GLWV, the vaues
of t,, increase or decrease along an oscillatory path with an increasein distance x.
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Fig.9. Variation of normal stress t,, with distance x. (Temperature gradient boundary)
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The variation of temperature distribution T are shown in Fig.10. Due to the presence of voids the
values of T for LSV and GLV decrease slowly whereas for LSWV and GLWV, near the point of application
of source, the values of T increase sharply and then become oscillatory in the whole range.
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S

=70 \ \ \ \ |

Distance x

Fig.10. Variation of temperature T with distance x. (Temperature gradient boundary)

Case2. U >¢;

Figure 11 depicts the variation of t,, with distance x. Due to the presence of voids the values of t,,
for LSV and GLV increase slowly with an increase in distance x. Initidly, the values of t,, for GLWV are
greater than LSWYV and then become oscillatory in the whole range for both the theories.

0.9 4

Normal stress tg

Distance x

Fig.11. Variation of normal stress t,, with distance x. (Temperature gradient boundary).
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Figure 12 shows the variation of temperature distribution T with distance x. Due to the presence of
voids the values of T for LSV and GLV increase slowly with an increase in distance x. The values of T show
an oscillatory behaviour in the whole range for LSWV and GLWV.

0.04 —
0.00

—0.04 —

Temperature T

—0.09 —

—0.14 —

-0.18 T T T T ]
[0} 2 4 6 8 10
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Fig.12. Variaion of temperature T with distance x. (Temperature gradient boundary).

Case3. U =¢;

The variations of normal stress t,, are shown in Fig.13. Near the source application the values of

GLWV are greater than LSWV and experience same oscillatory behavior in the whole range. For LSV and
GLV thevaues of t,, increase sharply with an increase in distance x.
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Fig.13. Variation of normal stress t,, with distance x. (Temperature gradient boundary).
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Figure 14 depicts the variation of temperature distribution T with distance x. The values of T for

LSWV and GLWV depict same oscillatory behaviour in the whole range whereas for LSV and GLV the
values of T increase with an increasein distance x intherange O £ x £ 10.
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Fig.14. Variaion of temperature T with distance x. (Temperature gradient boundary).

Figure 15 shows the variation of f with distance x. For thecase U <c,, thevaluesof f for LSV are
greater than GLV in the whole range, for U >c¢,, the values of f increase dowly whereas for U =c, the
values of f increase sharply with an increasein distance x for both the theories in the whole range.
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Fig.15. Variaion of change in the volume fraction field with distance x due to mechanical source.
(Temperature gradient boundary).
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Conclusion

1. The Fourier transform technique is used to derive stresses, temperature distribution and change in the
volume fraction field due to mechanical and thermal sources.

2. The voids effect in different theories of thermoelasticity, i.e, L-S and G-L for insulated and temperature
gradient boundary for three different types of velocities are investigated.

3. It is observed that the magnitude of norma stress, temperature distribution and change in the volume
fraction field attains a maximum near the point of application of the source.

Nomenclature

K —therma conductivity
T —temperature change
To —uniform temperature

tj —stresstensor
u —displacement vector
a,b,xq,wg,c,M —material constant due to the presence of voids
b=(3l +2ma,
a; —coefficient of linear thermal expansion

dij —Kronecker delta
|, m —Lame s constants
r,ce —density and specific heat at constant strain
tg,t; —thermal relaxation times
f —changein volume fraction field
N:fl+jl+lil
™x "y 1z
L

G VA
Appendix A

For Lord-Shulman theory, t; =0, d;, =1 and for Green-Lindsay theory t, >0, d; =0 (i.e,
k =1 for Lord-Shulman theory and k =2 for Green-Lindsay theory). The thermal relaxations t, and t;

satisfy the inequality t, 3 t, >0 for the G-L theory only and a superposed dot represents differentiation
with respect to time variablet.

Appendix B
Ry =- XZ&U_ZZ_ 1% +2mg’ Ry =- iXbTo & t1Ud2kix%
i £ Mg m Ct g
ixb a +2mo & +2mo
Ry = = Ry =1 ol
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Appendix C

Appendix D

bl +2 - Bix | tU2dyx* 0
Rog = - ( *T)’ Rgp =1 4 &——+-0 2lk i

er Wy c ci p

> Cof (Uclix+t0U 2 xz) _ MUcix
Rg3 =-X - v Rey=- a

Kw; Kewy

R ixbc

Ry =- —=2=, =-—,
36 4 a
2 2§ x

R = szl i ngﬁ? cu® 15 |><W9Ucl . Ry =- MT,c . R _wybc

R,1R:: O
_ 2 .
| 1—'§FR11' Ry + Raz - Rys - Ryg - R28R46+%g’

I, = Rll(RZZ +Rgg + R44) RiaRay - R28(R11R46 + R16R41)+

) Rl?fse (XZ +ixXRyg + Rll)' %{RMR% * RigRag + RygRygix +

- R33(R28R46 +Ri - R44)+ Rf5Ras - Rus(Ras - RogRes )+ Reo(L- R44)}’

l5=- [R14R16(R33R46 - R43R36)' RisRie (R46R34 - R36R44)+
- R126(R44R33' R43R34)' Rzz(R33R44 - R34R43)+

R .
- I_)l(?’{ Rll(R46 Rag + R44R36)+ Ri4Rs6 (R41 * |XR46)+

- Ry (iXRysRag + RaRas )} - Rog{Ru1 (RusRaz - RugRag ) +

+ Ri3Rag (Ryy +iXRyg )~ Rig (iXRyaRs6 + RerRaz )} - {Ri1(ReaRaz - RyaRaq )+
- Ri3(RgsRyg +iXRy4Rag )~ Rus (iXRy3Rag + Ryg Rag )} +

- Ryp(Ri1Ras - RigRyy + Ri1Ry3 - iXRy3Rs6 )]’

| 4 = - Rop{Ru1(RaaRus - RyRas)- Ria(RagRay +ixRygReg )+
- Ryg (iXRygRa6 + RyRas )}

(D> (D
S
N
<
N—
Soc

X (x)= X (x)



54

R.Kumar and L.Rani

where

Appendix E

u
& a0
Cp Y _&97 Py g
Xuk)=€""4, X2 (X) = g G. d=q. 1=1234,
&, U =S| -
S ¢ gdis1 g
e’ u € /
€ egd,n #H
é 1 u &q u
€ pll;l g aZp o
Xlal(x):g S H’ XaZ(X):g ! IH’ Ia:|+4’ a=-q, 1=1,234,
| > Py q|S| i
e "y e Tty
en d & an o
Py MMy - MyzMyy s, =- My MysQlf - My
Myj2Myg - 4yMyzMys m,3m|5q,2 - MyxMyg
ro = Mi7Mizo = GiMigMig
MygMyzo + 0y My Mg
_ 2 _ 2 2
M1 = Ryg (Rll - q )+ RisRae My = RigRogli - Ry (Rzz - qj )
R
M3 :%(WRB * R14)’ My, = R31(R44 - QIZ) R41Raa

myg =- %(RM - QIZ) RisRsa myg = (R44 - QIZ)(Rss - QI2)+ RizRia

R
M7 = Ry3Ry1 - (R33 - QIZ)R41’ myg = - R4?X St (R33 - qIZ)R46’
ba g, RisR
Mg = (Rll - qg)ﬁﬂll Rie My = (QI2 - Rll)Rl3 - %613,
R 4R
Myy1 = 0 RygRys - l?x B (| :1,2,3,4)-

u=- E(Dﬂiéqlz - Dge%? + Dge s - Dgéqﬂ),

~ P _ _ _
W=5 (ql p. D™ - g, p,DFE™”* + g5 p;DFE™” - q, py Dﬁeq“z),

(E.2)
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7 =- £loDe? - 5,g%" + 5,0 - 5,0,
(E.1)
f=- g(rquIéqlz - 1,Dge%? + r;Dge®” - r4D§Féq“Z),

ty =- %(engéqlz - e,Dge®” + e;Dge % - e4D$éq42),

where

D=0 +hD5,

o = [ei{dz%% (r3ss - 1483)- d30p0y(r2Ss - 14S,)+ dyGr0a(roSs - 135, )} +
- &{d1 030, (35, - 14S3)- Aty (riSs - 1451)+ da0y0a (S - 18y )} +
+e3{d1 0,04 (154 - 145,)- Aoy (1184 - 1451) + Ay (1S, - 18, )+
- e4{d1Q2Q3(r253 - r352)' d2Q1Q3(r153 - r35'1)+dsql(12(r152 - rzsl)}]’

0 = [el{dz(r453Q4 - T38403)- da(r3SpUs - 125402)+ dy (1305 - T2Se0, )+
- ez{dl(r453Q4 - r3s4q3)- d3(r451Q4 - r154(11)""3140351(% - r153Q1)}
+e3{d1 (14,00 - 128402) - da(ra$104 - 118400) + dy (125,01 - 115,00 )}
- e4{d1(r352Q3 - r253q2)- dz(r351Q3 - r153Q1)+d3(r251Q2 - r152Q1)}]’

+
+

Dt =[{d030 (1384 - 14S3)- d30204 (1584 - 14S,)+ Ayl (1pS5 - 135,) +
+ 030 (138 - 14S3)- €050, (1254 - 145;)+ €030, (1283 - 135, )} +
+h{d, (ra0Ss - 130554)- d3(ratss; - 1208,)+ dy (r30sS; - 1,0085) +
+ ez(r4q4s3 - r3q3s4)- e3(r4q4sz - r2q254)+ €1 (r3q352 - erzss)}] ,

Db = [{d1030 (1384 - 14S3)- da0ly0l (r; - 115,) + Ayt (1185 - ra3s;) +
+€,00304 (353 - 1453)- €014 (1281 - 1154)+ €400 (1S - 135y )} +
+h{d; (1,08 - 1305S,)- d3 10y, - 1105S,) +dy(radssy - ri085)+
+ el(r4Q453 - r3q3s4)- es(r4Q451 - r1‘1154)"‘ €1 (r3Q351 - I1hSs )}] ,

Dg :[{d1Q2Q4(r254 - 1487)- A0y 04 (1S - 14S1) + 00 (1S, - 1257) +
+€0,04 (128 - 145)- €010 (11S4 - 1451)+ €400 (118, - 15, )+
+h{d (ra0sS; - 12058,) - do(ra0as; - 11018, )+ g (o008, - 1S, )+
+e1(r4Q452 - er254)' ez(r4Q451 - r1(1154)"‘94 (r2Q251 - rllez)}]’
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Dg, =[{d;0205(r2S5 - 13S,)- Aot (11 - r381)+ dgaty (S, - 1o8)+
+€,0,05(r2S3 - 135,)- €,0105(r1S3 - 1351) + €300 (1S, - 1o5 )} +
+ h{dl(r3q352 - erzss)' dz(r3Q351 - r1Q153)+d3(r2Q251 - r1(1152)+
+el(r3Q352 - erzss)' ez(r3Q351 - r1(115':-3)"’93(r2(1251 - r1Q152)}]’
& =-ixl +(1 +2mg?p, + 25N b7, F. DXUGa &
w,C Cq g
d; =q,(1-ixp), 1=1,234.
Appendix F
Pl gtr = gtz = _
a=- B(Dlequ - D% + D3eq§2),
- P — = _ = _
w= B(blqﬂDlequ - bzquzquZ + bsqusquz)’
T=- %(alﬁléqu - a,D,8% + a353éq§2), (F.1)
t,=- %(nlﬁléqu - n,D,e%? + n353éq§2),
T, =- %(ulﬁléqu - U,B,8% +1,D,8%)
where

D=D¢ +hD§,

Df = (U,08Ry4 - Uz08Ry)- M (U1G8R14 +Uz0fR1 1) + N (U ARy +U,afRy, ),
D =y (UgRyg - UpRyg)+ Ny (UgRyq +UyRis)- N (URy; +UiRys ),

D; = (Upa308 - Uza,q8 +ny8508 - N38,08)- h(Ujag - Uzay +1ya5 - Nya,),

D, = (U130 - Uza,q8 + Magag- nyayqg)- h(uyas - uza, +nag - ngay),

D; = (2,08 - upa, ¢+ a,a8 - Na,a8)- h(usa, - uya, +ma, - nyay),

uy = (1- ixby )af ,
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ixUt ;dy O
— @
a

G

ny =-ixl +ngb, - bTOE?-

a, = mx{RlZquz - (qpq: Rll)(qp’z - Rzz)}
I = ,

af {WR13 (qu : __Rll)' XZleG}
= ;

b|:

6& :WR13R15C]F'2' (QF’Z' RZZ)XZb’ I :1’ 2’3’

and qf aretheroots of the equation

Appendix G

where

aegd® 4 d? O _ =
— A+ — -+ C—+ ¢u, W, T)=0,
dz® ‘(sz“ dez @B( )

R,-R
| $=1- Ry3- Ry, - Rfe"’%’

_ RisRgg Xszse

I g - R33(1' Ry, - R126)' Raz,
a&%bR 0 R.«R 2R
|§:§ 36 +Rag Rz - 16 13736
MRy, a Ry

0 = (D% + Dga®? + D™ + D2 )/,
W=~ (0, P, DI + 4, p,DEE%? + 5D +q, p, D )/D,
T = (s.Dge +5,088%" +5,06%" + 5,D86% /D,
(G.1)
T = (DR + 1, D% + r,Dge%” + 1, D)/,

T, = (.DfE%" + &, D86 + ¢;Dg6* + ¢, D6 /D,

= (0,D#6* + d,Dge% + d, D% +d,Dge%* )/D

Df = ;(d,r, a4 - dgra0y)- €,(dsrs0y - darsts)- €4(darsts - daraa,),



58 R.Kumar and L.Rani

DS = e (dyradz - darit)- € (darsdy - darads)- €5(darsdy - dariay),
DY = e, (01404 - dari0y)- €;(dora0y - daraty)- €4(daryds - dyrygy),
D§ = e3(dyr30s - daraty)- €;(dira0s - darydy) + e (d,rads - darya,).
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