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A BOUNDARY INTEGRAL EQUATION FOR THE 2D EXTERNAL
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Based on the recently discovered second kind Fredholm integral equation for the exterior Riemann problem, a
boundary integral equetion is developed in this paper for the two-dimensional, irrotational, incompressible fluid
flow around an airfoil without a cusped trailing edge. The solution of the integral equation contains one arbitrary
real constant, which may be determined by imposing the Kutta-Joukowski condition. Comparisons between
numerical and analytical values of the pressure coefficient on the surface of the NACA 0009 and NACA 0012
airfoils with zero angle of attack show a very good agreement.
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1. Introduction

The boundary integral equation method (also called boundary € ement method, pand method) is a
very economica method from the computational point of view for investigating the potential flow past
airfails. According to Carabineanu (1996), the work of Hess and Smith (1967) may be considered as the
starting point of this method. The method becomes one of the most frequently used numerical methods for
calculating 2D and 3D potential flow (see eg., Katz and Plotkin (2001)). Various integral equations for
studying the external potential flow problem have been discussed in Hess (1975), and recently in
Carabineanu (1996) and Hwang (2000). Mokry (1990, 1996) has formulated the external potentia flow
problem as an exterior Riemann problem. Murid and Nasser (2003) have formulated a new boundary integral
equation for the exterior Riemann problem. Based on this formulation, a boundary integra equation for the
exterior potential flow problem around an airfoil will be formulated in this paper. The extension of this
integral equation to multi-element airfoils is not difficult. In this paper, we shal consider only the two-
dimensional, steady-state, irrotantial flow around an airfoil, and we shall assume that the fluid is
incompressible and free from viscosity.

Anather important method for computing the external potentia flow in 2D is the conformal mapping
method which consists in transforming the outer-airfoil region (physica domain) onto the exterior of a
standard domain (usually the unit circle) for which an analytic form of the solution of the external potential
flow prablem is known (Abbott and von Doenhoff, 1959; p.47). Since conformal maps cannot be obtained in
a closed form, in general, we have to resort to numerical approximations of such maps which is just as
difficult as solving the original externa potentia flow problem.

2. External potential flow asa Riemann problem

Suppose the airfoil is represented by a simple dose counterclockwise oriented curve C (see Fig.1).
The interior and exterior of C will be denoted by W" and W™, respectively. If a given function f(z) is
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defined in a domain containing C, then the limits of the function f (z) when the point z moves to a point
t] C frominside or outsideof C will bedenoted by f*(t) and f~ (t), respectively.

i

Fig.1. Physical moddl.
Assumethat the curve C has the parametric representation
C: t=t(t) O£t£b, b>0.

The corner point is assumed to be ¢, ::t(O) :t(b). The points preceding t, in describing C in the
counterclockwise direction will be denoted by t, and the points following t, will be denoted by t, , i.e,
ty ::t(0+) and t_ ::t(b—). The function t(t) will be assumed to be such that t((t) exists and is
continuous for al t1 [0, b] where the derivatives at the end points are understood to be the one side
derivatives, i.e, t(0+), t¢0+), tdb-), teb-) and

t0+)t tdb-),  tq0+) teb-).

Suppose further that the interior angle q, of the corner point t, satisfies 0<(q, < p. Dencte the
angles between the positive x - axis and the normal vectorsto C at the points t; and t, by v, and v,
respectively. Thenitisdear fromFig.1that v, =v;, +p+qy.

Let T(t) denote the tangent functionto C at the point tT C inthedirection of C . Under the above
assumpti ons, T(t) is a continuously differentiable function for all tT C except at the corner point t, where
the tangent is undefined. However, at the corner point t, the one side tangent vector can be defined as

_ t(0+) to-)

T, = d T, = .
Vo)) Y o))

Itisdear from Fig.1 that

T, =€Praly, = g, . 2.1)
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Hence the tangent function T(t) has a discontinuity of the first type at the corner point t,. Suppose
that the complex analytic function W(z) is the complex velocity. If the free stream veocity is of unit

magnitude and angle a to the real axis, then W(z) can be decomposed into the free stream part e 3 and
the complex disturbance vel ocity vv(z) respectively, as follow

W(z)=e '@ +w(z) zZi W . (2.2)

Assuming that one can find a solution for the complex velocity W(z) or the complex disturbance
velodity vv(z) , by the Bernoulli theorem the pressure coefficient Cp(z) isthen given by

Co(2)=1-W(zw(z), 2zl w UG. (2.3)

This pressure coefficient may be then integrated to compute |oads on the airfoil or other components
such as flaps and dlats.

If we assume that the flow does not have suction or blowing, i.e., the normal component of the
velodity is zero for al t1 C|{t0}, then from Mokry (1990), the function vv(z) satisfies the exterior Riemann

problem

Relo(t)w (t)]= o) (24)

where
o)=-iTt) ad df)=- ImeaT(), T Clfto) 2.5)

and the circulation C of the fluid along the boundary C is given by

G=¢y (t)dt. (2.6)
C

Since in an unconfined flow, the vel ocity disturbance is required to vanish far away from the airfoil,
the problem (2.4) needs to be supplemented by the far field boundary condition vv(¥): 0. In this way we
arrive at the exterior Riemann problem

Relc(tw (t)]=ot), w¥)=0, ti C|ft}. @7)

The functions c(t) and g(t) given by Eq.(2.5) are continuously differentiable on C except at the
corner point t, where they have there a discontinuity of the first type. The Riemann problem with

discontinuous coefficients have been treated in the classical references (Gakhov, 1966; pp.449-454) and
(Muskhdishvili, 1977; pp.271-275) by reducing it to a Hilbert problem. We shall here extend the integral
equation derived in Murid and Nasser (2003) for the exterior Riemann problem in regions with smooth
boundari es to sol ve the Riemann problem (2.7).

The solution of the Riemann problem with discontinuous coefficients at a point t, is sought in the
class of functions which are integrable on the boundary C . It follows that the solution is HOlder continuous
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everywhere except possibly at the discontinuous point t, (Gakhov, 1966; p.407). At the point ty, we have

two cases, namely,
1. asolution may be required to be bounded at the point t,, i.e., a solution is sought which is bounded

everywhereon C;
2. asolution may be admitted which has integrable singul arities at the point t;.
According to the Kutta-Joukowski condition, the velocity must be bounded at the corner point t;.
Hence the solution of the exterior Riemann problem (2.7) must be sought in the class of bounded functions at
thepoint t;.
Mathematically, the K utta-Joukowski condition requires the pressure coefficient C, (t) to satisfy

C,0+)=C,(tp-). 29

This condition implies also that, unless the trailing edge is cusped, the flow has a stagnation point at
the trailing edge (Katz and Plotkin, 2001; p.88). Thus by EQ.(2.3), the pressure coefficient Cp(t) a the

corner point t, equalsone, i.e,
C,(t(0)=c,(tb)) =1. (2.9)
3. Solvability of the Riemann problem (2.7)

In this section, we shall study the solvability of the exterior Riemann problem (2.7). Let R, bethe

conformal mapping from the exterior region W onto the interior of the unit cirde, D™, such that
Re(¥):0, and Rél be its inverse. Then by Osgood-Caratheodory theorem (Henrici, 1974; p.383), the

mapping function R, can be extended to a homeomorphism from \/M_ onto D . The exterior Riemann
problem (2.7) will then be mapped by the conformal mapping R, to theinterior Riemann problem

RSV (x)|=3(), W(0)=0, xT TI{x}, 3.1)

inthe unit disc D™ where T istheunit cirdle, x, = Re(to) and

) =clR K)=-iT[R*() and  Fx)=olRe' (), T TIfxo}- (32)

The function R;! is analyticin T |{x0}, and hence the functions E(x) and @(x) are continuously
differentiable on T except a the point X, = Re(to) where they have a discontinuous of the first type.

Consequently, Eq.(3.1) is aRiemann problemin D™ with discontinuous coefficients.
The solution of the Riemann problem (3.1) which satisfies \Tv(O) =0 can be written in the form

w(z)=2zw(z), zZ1 D"

where the function Wl(i) isanandytic functionin D™ . Thisimplies that the function Wl(i) is asol ution of
the interior Riemann problem
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Rele, 0w ()|=3(),  xT T I{xo}, (33)
intheunit disc D* where

cl(x):xc(Rél(x)):—ixT(Rél(x)), xT T1{xo}. (3.4)

Denote the points preceding X, in describing T in the counterclockwise direction by x, and the

points following X, by x,. Then x_ :e(ZP'O)ixU. Since C is counterdockwise oriented, hence
T=- Re(C). Therefore

Let us set

] = (xT(Rél(x)))2 , x1 T 1{xo}, (3.5

then

Gal) = m = Ty ) = % T.T J =e 2P0
GZ(XU) (XUT(Rél(XU )))2 (XUTL)2 ( oy TL)

Thus according to Gakhov (1966); p.413, the index k of the interior Riemann problem (3.3) in the
class of bounded functions at the corner point t, is given by

é 2(p- o - O)u
k=8 2P~ Go-Ou_ 4
& 2p 4

where the symbol [x] denotes the greatest integer not exceeding x .

Consequently, in accordance with Muskhdishvili (1977); pp.273-274, the interior Riemann problem
(3.3) is uniquely solvable in the class of bounded functions at the point x,. Hence the exterior Riemann
problem (2.7) is uniquely solvablein the class of bounded functions at the corner point t; .

4. Boundary integral equation for the external flow around airfoils

Two Fredholm integral equations have been recently derived in Murid et al. (2002) and Murid and

Nasser (2003) for the interior and exterior Riemann problems in domains with C? - smooth boundaries.
Checking carefully the derivation of the integral equations in those papers, we find that the property of
smoothness of the boundary was employed twice, the first time in applying the Sokhotskyi formulas, and

again in proving the continuity of the kerne N(c)(t,w). If we assume the boundary C is the airfail
described above (Fig.1), then for the exterior and interior Riemann problems (2.7) and (3.3), the coefficient
c(t) is given by c(t): - iT(t), t1 C|{t0}, and hence N(c)(t,w):- N(W, t). From Henrici (1986); p.394, the
kernel N(W, t) is continuous for dl (W, t)T C’ C such that t* ty. Using this fact and the fact that the
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Sokhotskyi formulas (Gakhov, 1966; p.32), remain valid for all non-corner points on piecewise smooth
Jordan curve, we see that theorems 2.1 and 2.2 in Murid and Nasser (2003) are vdid for the above airfoil C
except for the corner point t, . Define the function L(z) by

L(z):z—ticéc(tz)g%dt, zi C, (4.2)

then theorems 2.1 and 2.2 in Murid and Nasser (2003) become:

Lemma 1. If f(z) is a solution of the interior Riemann problem

Relc)f * ()] =at),  tT Clfto}, 42)

then the function my(t):= Imlc(t)f +(t)J, t1 C|{t,}, satisfiestheintegral equation

my (£) + N (ws )y (w)j | = 1mle) ()], 1 € I{to}- (4.3)
c
Lemma 2. If vv(z) is a solution of the exterior Riemann problem (2.7), then the function
n(t Imlc )] t1 C|{t0},satisfie£theintegral equation
n() ON(w, )l =- 1Imc)L @), 7 Cifto)- (4.4)

To avoid the difficulties in the calculation of itsright hand side, - |m[c(t)L+ (t)] , theintegrd Eq.(4.4)
will be modified as follows. It is obvious that the constant function f (z) =-e '@ jsan analytic function in

the interior smply connected region W* and satisfies the interior Riemann problem (16). Thus by Lemma 1,
the function

my(t) = 1mle(t) £ * ()] = Reler 27 1)], t1 Cift,}, (4.5)

isasolution of theintegral Eq.(4.3).
By Sokhotskyi formulas, the function L(z) defined by Eq.(4.1) satisfies

oft)L"(t)- clt)L (t)=29(t). th Clfto},
which implies

mle(t)L* (1)) = 1mlet)L ()], t1 Clft}. (4.6)

Substituting Eq.(4.6) into Eq.(4.3) leads to
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imle(t)L* (@)]=m ()« N OIm (wWaef, T Clfto) 47

c
where ﬁ(t) isgiven by Eq.(4.5). Substituting Eq.(4.7) into Eq.(4.4) implies that the function r(t) defined by

rt)=nft)- m@), 7 Ci{t}, (48)

isasolution of theintegral equation

r(t)- N (w, t)r (w)jow) =-2my(t), tT Cl{to}. (4.9)

c
Thus we have the following corollary:

Corollary 1. If vv(z) isa solution of the exterior Riemann problem (2.7), then the real function

() =1melw () ReT@] .t clfto), (4.10)

satisfiestheintegral Eq.(4.9).
If the function vv(z) is the unique solution of the exterior Riemann problem (7) in the class of
bounded function at the corner point t, and the function r(t) is given by Eq.(4.10), then

w ()= Relo(t)w (t)JCJEti)'mIC(t)W' ) r((tt) i Clt) (411)

In accordance with the Cauchy integral formulathisimplies that

w(z)= (‘)rrL?dt, 2T W . (4.12)

Since the function vv(z) is bounded at the corner point t,, the function r(t)/T(t) must satisfy the
condition (Gakhov, 1966; p.55)

~—

rty) - r(t,
(ty (t,

(4.13)

—
—

~—|

According to Eq.(2.1) and since r(t) is a rea-valued function; the condition (4.13) implies that the
function r(t) sati sfies the conditions

rit,)=0 and r(t, )=0. (4.14)
Thus we have proved the following lemma

Lemma 3. If vv(z) is the unique solution of the exterior Riemann problem (2.7) in the class of bounded
functions at the corner point ty, then the real function
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()= imcw (1)) Rele™T(),  tT Cifto) (4.15)
isasolution of theintegral Eq.(4.9) with the conditions (4.14).

By Lemma 3 and since the exterior Riemann problem is solvable in the class of bounded functions at
the corner point ty, the integral Eq.(4.9) with the conditions (4.14) is solvable. However, from Henrici

(1986; p.398), | =1 is a simple eigenvalue of the kernd N(W, t). This implies in accordance with the
Fredholm alternative theorem that the solution of the integral Eq.(4.9) can bewritten as

rt)=rpt)+corn). T Cl{to} (4.16)

where r (t) is a particular solution of theintegral Eq.(4.9), r h(t) is a solution of the homogeneous integral

equation corresponding to (4.9) and ¢, is arbitrary real constant. Moreover, from Henrici (1986); pp.380-
381; p.397, it follows, that the function rh(t) satisfies

tl(ér(r)1+|tf(t Jrn(t(t))* 0, tgfgﬂ“(‘ Jrn(t(t)) 2 0. (4.17)

Thus one of the conditions (4.14) is enough to determine the arbitrary constant c, in (4.16).
Consequently, we have the following lemma:

Lemma 4. Theintegral Eq.(4.9) with the conditions (4.14) is uniquely solvable.
Asaresult of the Corollary 1, and Lemmas 3, 4, we have the following corollary:

Corodlary 2. If n(t) is the unique solution of the integral Eq.(4.9) with the conditions (4.14), then the
function vv(z) given by (4.12) is the unique solution of the exterior Riemann problem (2.7) in the class of
bounded functions at the corner point t, and its boundary values are given by

w(t)=-e- @, tT Cl{t,}. (4.18)

T(t

From Egs.(2.2) and (4.18), the complex vel ocity on the boundary C isgiven by

~—

w- (t)=- rfy) t1 Cl{to}. (4.19)

t
T(t)'
On substituting Eq.(4.19) into Eq.(2.3) we conclude that the pressure coefficient on the surface of the
airfail isgiven by

Co(t)=1-r(t)?, tT Cl{t,}. (4.20)

Since the function r(t) satisfies the conditions (4.14), it is clear from (4.20) that the Kutta-
Joukowski condition (2.8) is satisfied. Moreover, it is clear that the function r(t(t )) is continuous for &l
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t1 (0, b). Since the limits of the function r(t) when the point t tends to t, from left and right exist and are
equal, i.e

tI(i)r(r)Lr(t(t)):O, thz)rp_ r(t(t)):O,

the function r (t) can be defined a t, by r(t,)=0. Thus the function r (t) is continuous for al t7 C. The
function Cp(t) will then be given by (4.20) for dl tT C and it will satisfy aso the relation (2.9). Thus, the

condition (4.14) is equivalent to the Kutta-Joukowski condition, and the unique solution of the Riemann
problem (2.7) in the class of bounded functions at the corner point t, satisfies automatically the Kutta-
Joukowski condition.

5. Numerical results

In this section, we shall give some numerica results of theintegral Eq.(4.9) on the airfoil C (Fig.1).
There are significant differences from the smooth boundary case, both in the behaviour of the solutions and
in the properties of the integra operator. If C has corners, the integral operator is no longer compact
(Atkinson and Kendall, 1997; p.389). But it can be expressed as the sum of a compact operator and a non-
compact operator with norm less than one in suitable function spaces. Then we can use an error anaysis
based on collectively the compact operator theory with some modification.

For a boundary integral equation on a smooth boundary, i.e., boundaries of class C%'9, q3 2, and

smooth boundary values, i.e., of class C2, the Nystrom method with the trapezoidal rule converges with

order O(l/ nq) where n is the number of mesh points (Kress, 1990). When the boundary has corners, the

situation is much less convenient. However, it has been shown in Graham and Chandler (1988) that aslightly
modified Nystrém method may still be applied to solve the integral equation and that optimal uniform
convergence is obtai ned when the mesh is graded near each corner. But in Graham and Chandler (1988), the
Nystrom method is used with a locally approximating quadrature method on each graded subinterva.
However, because the boundary integral Eq.(4.9) has an integrand that is smooth exception of the corners
points, it is appropriate to use a quadrature based on a smooth global approximation over each smooth
section of the boundary. Such method has been proposed by Kress (1990).
If anintegrand g issmoothin (0,1) but has singularities at the end-points t =0 and t =1, Kress

(1990) proposes the following quadrature formula

1 2p-1

ope)dt » q wglti) (5.1)

0 i=1

where the weights and mesh points are given by

wo=tw@P ¢ = L yBRO o1 201, (52)
2n éng 2p éng

and the function w: [0,2p]® [O,Zp] is a bijective, strictly monotonically increasing, infinity differentiable
function and is given by
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) V(S)p ’ 0£s£2p, 32,
W(S) P v(s)p +v(2p - s)p SEP P
(5.3)

o .3
g)=-1%-s¢  1op, 1
P 26 P @8 PP 2

Suppose that C isa NACA airfoil with the counterclockwise parametri ¢ representation
C: t=t(t) O£t£2
where t(O):t(Z) isthetrailing edge and t(l) istheleading edge Theintegra Eq.(4.9) is then reduced to
2

(s.t)F(s)ds - (K(s.t)(s)ds =y (t), oO<t<2 (5.4)

=

(t)-

Og,b—‘

where

e T(t(t)],  K(s t)=N(t(s)t)ds)|.

for 0<s,t <2. Using the quadrature formula (5.1) with p =2 to approximate the integrals in Eq.(5.4), we
getfor O0<t <2

F(t)=rt). y(t)=-2rRe

o (t)- ZgleK(tj,t)Fn(tj)- 2gleK(lﬂj,t)Fn(1+tj):y(t), 0<t<2 (5.5
i=1 j=1

where w; and t; aregiven by Eq.(5.2). Define sj and @, j=12,..,4n- 2, by

it 1£j£2n-1 w 1£j£2n-1

j1

5iTlet,, 2ngjean-2 ad  a, :iwj_zm, 2nE j£4n- 2, (56)
then Eq.(5.5) becomes
ra(t)- 4gzajK(sj,t)Fn(sj):y(t). (5.7)
i=1
Collocating at thenode points s, i =1,2,..,4n- 2, one obtains the equivalent linear system
Fn(s,)— 4512ajK(sj ,si)Fn(sj):y(s,). (5.8)
j=

Definethe matrix K, = (k; )(4n_ 2) (an. 2)» the vedtors x, = (% Jian- 2y 1 @ Yo = (% Jan. 2y 2 BY
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kij:ajK(j’Si)’ Xi:Fn(Si)’ YiZY(Si)’
we obtain the (4n- 2)” (4n- 2) linear system

(- Ky)x, =y, (5.9)
By the Kutta-Joukowski condition (4.14), we have

r,0+)=0, F,(2-)=0.

Thiswill beimposed into the system (5.9) by approximate 1, a thenodes s; and s,,,., asfollows

= F-n(o-")-"Fn(SZ)_Fn(sz)

rn(Sl)» 2 - 2 !

= Fn( ')+Fn(s4n-3)_rn(s4n-3)
rn(S4n-2)» 2 2 - 2 '

Consequently, we have two additional equations

1 1
xl—EXZ:O, x4n_2—5x4n_3:0. (5.10)

By adding Egs (5.10) to the linear system (5.9), we end up with a 4n’ (4n— 2) over-determined
system whose solution x,, can be computed using the MATLAB’s operator \ that makes use of QR

factorization with column pivoting (Trefethen and Bau, 1997; p.139). Once the solution has been computed,
the Nystrom interpolation formula (5.5) can be used to obtain the approximate solution r n(t) . The pressure

coefficient Cp(t) on the boundary C can then be cal culated from (4.20).

a)
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0 nz 04 06 08 1
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b)
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Fig.2. Comparison of numerical and experimental surface pressure distribution on NACA 0009 airfoil with
zero angle of attack. (@) n =12 (46 node points), (b) n =24 (94 node points).
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b)
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Fig.3. Comparison of numerical and experimental surface pressure distribution on NACA 0012 airfoil with
zero angle of attack. (@) n =12 (46 node points), (b) n =24 (94 node points).

In this paper, the integral Eq.(4.9) is tested to calculate numerically the pressure coefficient C, on

the boundary C for the two airfoils, namely, NACA 0009 and NACA 0012, with zero angl es of attack. After
solving the integra Eq.(4.9) with the conditions (4.14), the pressure coefficient Cp(t) on the boundary C

will be calculated from (4.20). The numerical results obtained are shown in Figs 2 and 3 and compared to the
analytic solutions from Abbott and von Doenhoff (1959). It can be seen from these figures that the agreement
between the anal ytical and the numerical solutionsis rather good.

6. Conclusions

A boundary integral equation has been given in this paper for the two-dimensional external potential
flow around airfoils. Its kernel is the transposed of the Neumann kernel and its right hand side has a
discontinuity of the first type. Once the solution of the integral Eq.(4.9) with the conditions (4.14) has been

determined, the velocity a any point z in W can be calculated from the integral (4.12). The integral
equation can be generalized straightforward to multi-element airfoils.

The external potential flow that we have considered in this paper can be formulated as an exterior
Neumann problem (Hess, 1975) which can be solved using the well known second kind Fredholm integral
equation for the Neumann problem (Henrici, 1986; p.281). The integral equation for the Neumann problem
has the same kernel of the integral Eq.(4.9) and its right hand side has a discontinuity of the first type. Thus
solving the integral Eq.(4.9) is equivalent to solving the integral equation for the Neumann problem. The
advantage of the present method over the method of reducing the external potential flow to the Neumann
problem is that for the present method the solution of the Riemann problem is given by the Cauchy integral
(4.12) which can be cdculate easily and sufficiently compared with the solution of the Neumann problem
whichisgiven by apotential of asingle layer (Henrici, 1986; p.281).
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Nomenclature

C —boundary of the airfail

Cp —pressure coefficient
Im —imaginary part
Re —red part

) —unit tangent vector to C at ti C
w(z) - disturbance velocity
) —w)= . wz)
iw
W(z) —complex velocity
C —circulation
gy —interior angle of the corner point

W' —interior domain of the airfoil
W  —exterior domain of the airfoil
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