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The effect of temperature-dependent viscosity on the threshold of ferroconvective instability in a porous 
medium is studied using the Brinkman model. It is found that the stationary mode of instability is preferred to the 
oscillatory mode. The critical values of the magnetic Rayleigh number marking the onset of ferroconvection are 
obtained using the Galerkin technique. It is found that the effect of magnetization is to destabilize the system and 
so is the effect of temperature-dependent viscosity. The porous medium is found to have a stabilizing influence 
on the onset of convection. The problem is important in energy conversion devices involving ferromagnetic fluids 
as working media.  

 
Key words: ferroconvection, temperature-dependent viscosity, porous medium, Brinkman model, Galerkin 

technique. 
 
1. Introduction 
 
 The last millennium has seen many fascinating materials that possess promising physical properties 
and which are technologically useful. The ferrofluid is one such material. The magnetic materials play an 
important role in the overall development of many scientific applications. The ferrofluid has to be 
synthesized and it has widespread applications in various fields ranging from physics, chemistry, electrical 
engineering, biomedicine and instrumentation to computer technology. Its commercial usage includes novel-
zero leakage, rotary-shaft seals used in computer disc drives (Bailey, 1983), liquid cooled loudspeakers 
(Hathaway, 1979) and energy conversion devices (Berkovskii et al., 1993). 
 The study of thermoconvective instability of ferrofluids has been the subject of investigation for the 
past four decades due to its remarkable applications. The magnetization of ferrofluids depends on the 
magnetic field, the temperature and density of the fluid. The variation of any one of these causes a change in 
the body force. This induces convection in ferromagnetic fluids in the presence of a magnetic field gradient. 
This mechanism, known as ferroconvection, is similar to the Rayleigh-Bénard convection in ordinary fluids 
(Chandrasekhar, 1961). 
 The convective instability of ferromagnetic fluids heated from below in the presence of a vertical 
uniform magnetic field was studied by Finlayson (1970). Lalas and Carmi (1971) made a nonlinear analysis 
of the convective instability problem in magnetic fluids using the energy method. Rosensweig et al. (1978) 
analyzed the penetration of ferrofluids in the Hele-Shaw cell.  
 Rayleigh-Bénard convection in liquids is known to be used for making measurements of properties 
of the fluid. It is advantageous, therefore, to have a steady dynamics in the fluid to facilitate the 
measurements. In this context, the problem of ferroconvection in a porous medium provides an ideal 
experimental situation. Lapwood (1948) analyzed the stability of convective flow using Rayleigh’s 
procedure. The Rayleigh instability of a thermal boundary layer in flow through a porous medium was 
considered by Wooding (1960). The effect of variable viscosity on the setting up of convection currents in a 
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porous medium was examined by Patil and Vaidyanathan (1981). Nield (1995) investigated the onset of 
convection in a fluid-saturated porous medium with time-periodic volumetric heating. 
 The influence of variable viscosity on laminar boundary layer flow and heat transfer to a 
continuously moving flat plate was examined by Pop et al. (1992). Siddheshwar (2004) analyzed the 
thermorheological effect on magnetoconvection in fluids with weak electrical conductivity. More recently, 
Siddheshwar and Chan (2005) studied the effects of thermorheology and thermomechanical anisotropy on 
the onset of Rayleigh-Bénard and Bénard-Marangoni convections in a porous medium.   
 The effect of a homogeneous magnetic field on the viscosity of a fluid with solid particles possessing 
intrinsic magnetic moments was investigated by Shliomis (1972). Siddheshwar (1995) studied convective 
instability of a ferromagnetic fluid with fluid-permeable and magnetic boundaries. The effect of a magnetic 
field on a fluid of variable viscosity in ferroconvection in a rotating medium was examined by Vaidyanathan 
et al. (2002). Siddheshwar and Abraham (2003) considered the thermal instability in a layer of a 
ferromagnetic fluid when the boundaries of the layer are subjected to synchronous/asynchronous imposed 
time-periodic boundary temperatures and time-periodic body force. The effect of anisotropy of porous 
medium on a fluid of variable viscosity in ferroconvection has been investigated by Ramanathan and Suresh 
(2004). 
 All the above works did not consider the effect of temperature-dependent viscosity on 
ferroconvection in a sparsely distributed porous medium. In this paper an attempt is made to study the effect 
of temperature-dependent viscosity on ferroconvection in a porous medium using the Brinkman model. The 
Oberbeck-Boussinesq approximation is used in obtaining the governing equations. The Boussinesq 
approximation, adopted by Chandrasekhar (1961), was, in fact, first introduced by Oberbeck. It is only 
recently that a rational explanation has been provided for the Oberbeck-Boussinesq approximation 
(Rajagopal et al., 1996). The Galerkin technique is employed to obtain the critical values marking the onset 
of ferroconvection in porous media. 
 
2. Mathematical formulation 
 
 An infinitely spread horizontal layer of Oberbeck-Boussinesq, ferromagnetic fluid of thickness d 
saturating a sparsely distributed porous medium heated from below is considered. Let T∆  be the 
temperature difference between the upper and lower boundaries of the fluid. A Cartesian coordinate system 
is taken with the z-axis vertically upwards (Fig.1). 
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Fig.1. Schematic of flow configuration. 
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 The fluid viscosity is assumed to be temperature-dependent in the following form (Straughan, 2004; 
Siddheshwar, 2004; Siddheshwar and Chan, 2005) 
 

  ( ) ( )[ ]2
a1 TT1T −δ−µ=µ                                                                                            (2.1) 

 
where δ  is a small positive quantity.    
 The governing equations used are (Finlayson, 1970; Siddheshwar, 2004) 
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  ( )[ ]a0 TT1 −α−ρ=ρ ,                                                                                                   (2.5) 
   
  0=⋅∇ B ,          0H =×∇ ,          ( )HMB +µ= 0                                                             (2.6) 
 
where the superscript rT  in Eq.(2.3) denotes the transpose. 
 The linearized magnetic equation of state for a single component fluid is  
 
  ( ) [ ]a00 TTKHHMM −−−χ+= .                             (2.7) 
 
 The magnetic boundary conditions are that the normal component of the magnetic induction and 
tangential components of the magnetic field are continuous across the boundary. The temperature is assumed 
constant on each boundary, i.e., 0TT =  at 2dz =  and 1TT =  at 2dz −= . The basic state is assumed to be 
quiescent. Taking the components of magnetization and magnetic field in the basic state to be ( )[ ]zM00 b,,  
and ( )[ ]zH00 b,, , we obtain the following basic state quantities 
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where k is the unit vector along the z-axis. In the succeeding section we study the stability of the basic state 
within the framework of the linear theory. 
 
3. Linear stability analysis 
 
 The basic state is disturbed by a small thermal perturbation. Let the components of the perturbed 
magnetization and the magnetic field be ( )( )3b21 MzMMM ′+′′ ,,  and ( )( )3b21 HzHHH ′+′′ ,,  respectively. 
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The perturbed temperature and viscosity are taken to be ( ) TzTb ′+  and ( ) µ′+µ zb  respectively. On 
linearization, and assuming ( ) 0H1dK χ+β , and using the expressions for bH  and bM  in Eq.(2.8), Eqs 
(2.6) and (2.7) become 
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 The second of Eq.(2.6) implies that φ′∇=′H , where φ′  is the perturbed magnetic scalar potential. 
In a further analysis techniques as in Vaidyanathan et al. (1997) and Ramanathan and Suresh (2004), are 
used and the vertical component of the momentum equation becomes  
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where 00H,V00 KHCC µ+ρ=ρ . Using Eq.(3.1) in the first of Eq.(2.6), we obtain   
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 Following the analysis of Finlayson (1970), the normal mode solution of all dynamical variables can 
be written as 
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where k is the wave number given by 2
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 Using Eq.(3.5), Eqs (3.2)-(3.4) become 
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 The following non-dimensional terms are introduced for further analysis 
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where the quantities with asterisks are dimensionless. Using the above non-dimensional terms, Eqs (3.6)-
(3.8) take the form  
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where the asterisks have been dropped for simplicity and zD ∂∂= . We recover the system of equations 
obtained by Finlayson (1970) from Eqs (3.10)-(3.12) when 0V =  and 0=Da . The typical value of 2M  is 

610−  (Finlayson, 1970) and hence it is assumed negligible. It can be shown, following the analysis of 
Ramanathan and Suresh (2004), that oscillatory instability does not occur for the problem under 
consideration. Thus we limit our consideration to stationary instability. The fact that viscosity increases due 
to the presence of suspended particles supports the contention that oscillatory instability can be discounted in 
ferromagnetic fluids. 
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 The boundary conditions are (Finlayson, 1970) 
 

  0DTwDw 2 =φ===      at     
2
1z ±= .                                                                        (3.13) 

 
 The boundary conditions on w and T signify stress-free and isothermal boundaries respectively. The 
boundary condition on φ  indicates that the magnetic susceptibility χ  in respect of the perturbed field is very 
large at the boundaries. It should be mentioned that it is no longer possible to obtain a closed form solution to 
the problem at hand owing to the presence of space varying coefficients in Eq.(3.10). We therefore use the 
Galerkin technique to solve the eigenvalue problem pertaining to stationary instability.        
 Application of the Galerkin technique (Finlayson, 1970) yields the eigenvalue R for the stationary 
convection in the case of stress-free, isothermal, magnetic boundaries in the form   
 

  ( )
( )[ ]7316413

2
7521

XXM1XXMXa
XXXX

R
++

+
=

Da                                                                      (3.14) 

 
where 
 

  
( ) ( ) ( )

( ) ,11
2

1
3

1
2
1

22
1

1
2

1
4

1
22

1
2

1
42

11

zDwwVa4wzDwV4wa2DwV2

wVz1wawDVz1wa2wDVz1wX

+−−+

+−+−−−=
  

 
  ( ) ( ) 111

22
11

2
1

2
2 zDwwV2wDVz1wwVz1waX +−−−= , 

 
  113 TwX = ,     114 DwX φ= ,     ( ) 2

1
22

15 TaDTX += , 

 
  116 DTX φ= ,     ( ) 2

1
2

3
2

17 aMDX φ+φ=  

 

where ∫
−

=
21

21

dzvuvu  and 1w , 1T  and 1φ  are trial functions that satisfy the boundary conditions. The 

velocity, temperature and magnetic potential trial functions that satisfy the boundary conditions in Eq.(3.13) 
are   
 
  zw1 π= cos ,     zT1 π= cos ,     z1 π=φ sin . 
 
 The above choice of trigonometric functions tacitly implies the use of a higher order Galerkin 
technique.  
 For 1M  very large, we obtain the magnetic Rayleigh number N in the form 
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4. Results and discussion 
 
 The effect of temperature-dependent viscosity on ferroconvection in a porous medium has been 
studied using the Brinkman model. The reason for pursuing a linear stability analysis is due to the fact 
thatsub-critical instabilities are discounted in ferromagnetic fluids with no external constraints (Lalas and 
Carmi, 1971; Straughan, 2004). Due to the elegance of the method, the Galerkin technique is employed to 
obtain the critical eigenvalues. However, one can also use the shooting technique or such other methods but 
at the expense of more computational time.   
 Before discussing the important results of the problem, we turn our attention to the possible range of 
values of various parameters arising in the study. The parameter 1M  is a ratio of the magnetic to 
gravitational forces. 1M  is taken to be 1000 (Finlayson, 1970). The parameter 3M  measures the departure 
of linearity in the magnetic equation of state. The chosen values of 3M  are 1, 5, 10, and 25 (Finlayson, 
1970). The range of values of the Darcy number Da and the temperature-dependent viscosity parameter V are 
0 to 100 (Walker and Homsy, 1977) and 0 to 0.5 (Straughan, 2004) respectively. 
 In what follows we analyze the effect of the magnetization parameter 3M , the temperature-
dependent viscosity parameter V and the Darcy number Da on the critical eigenvalue CN  and the critical 
wave number Ca . The other two magnetization parameters 1M  and 2M  do not come into the picture in the 
problem, as discussed earlier, due to the fact that they are quite large and quite small respectively. The results 
of the numerical calculations are depicted through Figs 2-5.   
 Figure 2 is a plot of the critical magnetic Rayleigh number CN  versus V for different values of 3M . 
It is quite explicit that the effect of the departure from linearity in the magnetic equation of state, reflected by 
increasing values of 3M , is to destabilize the system. Further, it is amply clear that the effect of temperature-
dependent viscosity is to reinforce the destabilizing effect of 3M . Figure 3 spells out the stabilizing nature of 
the porous matrix in addition to reiterating the destabilizing effect of V for a fixed value of 3M .      
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Fig.2. Plot of critical magnetic number CN  versus temperature-dependent viscosity parameter V for different 
values of the magnetization parameter 3M . 
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Fig.3. Plot of CN  versus V for different values of the Darcy number Da. 
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Fig.4. Plot of critical wve number Ca  versus V for different values of 3M . 
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Fig.5. Plot of Ca  versus V for different values of Da. 
 

 Figures 4 and 5 clearly bring out the fact that the porous matrix greatly influences the size of the 
ferroconvective cell at the onset of convection whereas V has just a marginal influence. The parameter 3M  
also significantly increases the cell size as demonstrated by a decreasing value of Ca  with increasing 3M . 
Considering the fact that the porous matrix (through Da) and the temperature-dependent viscosity (through 
V) signify antagonistic influence on ferroconvection, we may conclude that by an appropriate choice of the 
porous matrix and temperature difference between the boundaries, it is possible to create a situation 
conducive to measurements. Coupled with the above observation is the regulatory nature of the magnetic 
field on ferroconvection that comes handy in the control of ferroconvection. 

 
5. Conclusion  
 
 The two important conclusions that render the present study physically useful are:  
1. External regulation of ferroconvection is possible in temperature-sensitive liquids. 
2. The problem considered in a porous medium ensures that stationary convection is the preferred mode 

and hence measurements are easy to handle.   
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Nomenclature 
 
 a – dimensionless wave number 
 B – magnetic induction 
 HVC ,  – effective heat capacity at constant volume and magnetic field 
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 d – thickness of the fluid layer 

 Da – Darcy number, 
0

2

k
d  

 g – gravitational acceleration, ( )g00 −,,  
 H – magnetic field 
 k – dimensional wave number 
 1k  – thermal conductivity 
 0k  – permeability of the porous medium   
 yx kk ,  – wave number in the x and y directions 

 K  – pyromagnetic coefficient, 
a0 THT

M

,

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 M – magnetization 
 0M  – mean value of the magnetization at 0HH =  and aTT =  

 1M  – ratio of the magnetic force due to the temperature fluctuation to the gravitational force, ( ) g1
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 2M  – ratio of thermal flux due to magnetization to magnetic flux, ( ) C1
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 3M  – measure of non-linearity in the magnetization, ( )χ+
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 N – magnetic Rayleigh number   
 p  – hydrodynamic pressure 

 Pr – Prandtl number, 
1

0
k

Cv ρ  

 q  – velocity of the fluid, ( )wvu ,,  

 R – Rayleigh number, 
1

0
4

vk
Cdg ρβα  

 t – time 
 T – temperature 

 aT  – average temperature of the lower and upper surfaces, 
2

TT 10 +  

 0T  – constant temperature at the lower surface of the layer 
 1T  – constant temperature at the upper surface of the layer 

 V  – temperature-dependent viscosity parameter, 22dβδ  
 ( )zyx ,,  – Cartesian coordinates  
 ∇  – vector differential operator  
 α  – coefficient of volume expansion 
 β  – adverse basic temperature gradient 
 ρ  – density of the fluid 
 0ρ  – reference density at aTT =  
 µ  – dynamic viscosity 

 0µ  – magnetic permeability of vacuum 
 1µ  – reference viscosity at aTT =  

 ν  – kinematic viscosity, 
0

1
ρ
µ  

 φ  – magnetic scalar potential 
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 χ  – magnetic susceptibility, 
a0 THH

M

,



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


∂
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Subscripts 
 
 b – basic state quantity 
 c – critical value 
 
Superscript 
 
 ' – infinitesimal perturbation 
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