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The effect of temperature-dependent viscosity on the threshold of ferroconvective instability in a porous
medium is studied using the Brinkman model. It is found that the stationary mode of instability is preferred to the
oscillatory mode. The critical values of the magnetic Rayleigh number marking the onset of ferroconvection are
obtained using the Galerkin technique. It is found that the effect of magnetization is to destabilize the system and
so is the effect of temperature-dependent viscosity. The porous medium is found to have a stabilizing influence
on the onset of convection. The problem isimportant in energy conversion devices invol ving ferromagnetic fluids
as working media.
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1. Introduction

The last millennium has seen many fascinating materials that possess promising physical properties
and which are technologically useful. The ferrofluid is one such material. The magnetic materials play an
important role in the overdl development of many scientific applications. The ferrofluid has to be
synthesized and it has widespread applications in various fields ranging from physics, chemistry, e ectrical
engineering, biomedicine and instrumentation to computer technology. Its commercia usage includes novel-
zero leakage, rotary-shaft seals used in computer disc drives (Bailey, 1983), liquid cooled loudspeakers
(Hathaway, 1979) and energy conversion devices (Berkovskii et al., 1993).

The study of thermoconvective instability of ferrofluids has been the subject of investigation for the
past four decades due to its remarkable applications. The magnetization of ferrofluids depends on the
magnetic field, the temperature and density of the fluid. The variation of any one of these causes a change in
the body force. This induces convection in ferromagnetic fluids in the presence of a magnetic field gradient.
This mechanism, known as ferroconvection, is similar to the Rayleigh-Bénard convection in ordinary fluids
(Chandrasekhar, 1961).

The convective instability of ferromagnetic fluids heated from beow in the presence of a vertical
uniform magnetic field was studied by Finlayson (1970). Lalas and Carmi (1971) made a nonlinear analysis
of the convective instability problem in magnetic fluids using the energy method. Rosensweig et al. (1978)
analyzed the penetration of ferrofluids in the Hd e-Shaw cdl.

Rayleigh-Bénard convection in liquids is known to be used for making measurements of properties
of the fluid. It is advantageous, therefore, to have a steady dynamics in the fluid to facilitate the
measurements. In this context, the problem of ferroconvection in a porous medium provides an ided
experimental  situation. Lapwood (1948) andyzed the stability of convective flow using Rayleigh's
procedure The Rayleigh instability of a thermal boundary layer in flow through a porous medium was
considered by Wooding (1960). The effect of variable viscosity on the setting up of convection currentsin a
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porous medium was examined by Patil and Vaidyanathan (1981). Nield (1995) investigated the onset of
convection in a fluid-saturated porous medium with time-peri odi ¢ volumetric heating.

The influence of variable viscosity on laminar boundary layer flow and heat transfer to a
continuously moving flat plate was examined by Pop et al. (1992). Siddheshwar (2004) analyzed the
thermorheological effect on magnetoconvection in fluids with weak eectrical conductivity. More recently,
Siddheshwar and Chan (2005) studied the effects of thermorheology and thermomechanical anisotropy on
the onset of Rayl @ gh-Bénard and Bénard-Marangoni convections in a porous medium.

The effect of a homogeneous magnetic field on the viscosity of a fluid with solid partid es possessing
intrinsic magnetic moments was investigated by Shliomis (1972). Siddheshwar (1995) studied convective
instability of a ferromagnetic fluid with fluid-permeable and magnetic boundaries. The effect of a magnetic
field on afluid of variable viscosity in ferroconvection in a rotating medium was examined by Vai dyanathan
et al. (2002). Siddheshwar and Abraham (2003) considered the therma instability in a layer of a
ferromagnetic fluid when the boundaries of the layer are subjected to synchronous/asynchronous imposed
time-periodic boundary temperatures and time-periodic body force. The effect of anisotropy of porous
medium on a fluid of variable viscosity in ferroconvection has been investigated by Ramanathan and Suresh
(2004).

All the above works did not consider the effect of temperature-dependent viscosity on
ferroconvection in a sparsdy distributed porous medium. In this paper an attempt is made to study the effect
of temperature-dependent viscosity on ferroconvection in a porous medium using the Brinkman model. The
Oberbeck-Boussinesq approximation is used in obtaining the governing eguations. The Boussinesg
approximation, adopted by Chandrasekhar (1961), was, in fact, first introduced by Oberbeck. It is only
recently that a rational explanation has been provided for the Oberbeck-Boussinesqg approximation
(Raagopal et al., 1996). The Gaerkin technique is employed to obtain the critica values marking the onset
of ferroconvection in porous media.

2. Mathematical formulation

An infinitely spread horizontal layer of Oberbeck-Boussinesq, ferromagnetic fluid of thickness d
saturating a sparsely distributed porous medium heated from bedow is considered. Let DT be the
temperature difference between the upper and lower boundaries of the fluid. A Cartesian coordinate system
is taken with the z-axis vertically upwards (Fig.1).
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Fig.1. Schematic of flow configuration.
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The fluid viscosity is assumed to be temperature-dependent in the following form (Straughan, 2004;
Siddheshwar, 2004; Siddheshwar and Chan, 2005)

n(T)= ml[l- d(T - Ta)z] (2.1)

where d isasmall positive quantity.
The governing equations used are (Finlayson, 1970; Siddheshwar, 2004)

N)q:O, (2.2)
N - - o e T T
oS0+ (qoR)ql = - Np-+r g + K x{H »8) + Kfn{T g + Kig™ - ), (2.3)
"ogq H Ko
é M 6 AMoe  H
& oC, H 2 k,N 2.4
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r=roll- a(T- T, (2.5)
N>B =0, N"H =0, B=my(M +H) (2.6)

wherethe superscript T, in Eq.(2.3) denotes the transpose.
The lineari zed magnetic equation of state for a single component fluid is

M =M,y +c(H - Hy)- K[T- T,]. 2.7)

The magnetic boundary conditions are that the normal component of the magnetic induction and
tangential components of the magnetic fidd are continuous across the boundary. The temperature is assumed
constant on each boundary, i.e, T=T, a z=d/2 and T =T, a z=- d/2. Thebasic state is assumed to be

guiescent. Taking the components of magnetization and magnetic field in the basic state to be [0,0, Mg (z)]
and [0,0, Hy (z)] , We obtai n the foll owing basi ¢ state quantities

i
g, =0, Tb(z):Ta -bz, p= pb(z), rb(z):r0[1+abz], i
y (2.8)
B 422 é Kbz é Kbz '
rrb(z)—mlll db®z ] eHO Trcl gMo 1+cl b

wherek is the unit vector along the z-axis. In the succeeding section we study the stability of the basic state
within the framework of the linear theory.

3. Linear stability analysis

The basic dtate is disturbed by a small therma perturbation. Let the components of the perturbed
magnetization and the magnetic field be (M{, M5, Mb(z)+ Mg) and (H{, HS, Hb(z)+ Hg) respectively.
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The perturbed temperature and viscosity are taken to be Tb(z)+T( and rn,(z)+m respectively. On
linearization, and assuming Kbd (1+ c)Ho, and using the expressions for H, and M in Eq.(2.8), Egs
(2.6) and (2.7) become

H ¢+ M ¢= g1+|\/| e (=12
09

u

1

i

y (3.1)
H$+Mg=(1+c)Hg- KTC !
b

The second of Eq.(2.6) implies that H (= Nf ¢, where f ¢ is the perturbed magnetic scalar potential.

In a further analysis techniques as in Vaidyanathan et al. (1997) and Ramanathan and Suresh (2004), are
used and the vertical component of the momentum equation becomes
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Tl ee (3.2)
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where N2 :(ﬂz/ﬂx2)+(ﬂ2/ﬂy2) and N2 = ( 2/91 22 ) The linear form of Eq.(2.4) in the perturbed
state becomes
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where r ,C =1 4C,, y +myKH, . Using Eq.(3.1) in thefirst of Eq.(2.6), we obtain
2
g‘% Mo %2t 6+ (1+c)ﬂ_f2¢- kT %. (3.4)
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Following the analysis of Finlayson (1970), the normal mode solution of al dynamical variables can
be written as

ew(z tha
(zt e(p[l(k X+Kk y)] (3.5)
(208

w m_qo

wherek is the wave number given by k? = kf + k§ .
Using Eq.(3.5), Egs (3.2)-(3.4) become
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The following non-dimensiona terms are introduced for further anaysis

w=-9w ¢="¢ 7= kla\/_ :
n d? rOCbnd
(3.9)
f'= (1+C)kla\/2_ . a' =kd, z =2
r ,CKbnd d

where the quantities with asterisks are dimensionless. Using the above non-dimensional terms, Eqgs (3.6)-
(3.8) takethe form

%(DZ- az)w:(l- sz)(D2 - az)w- 2V(D2+a2)w- 4Vz(D2 - aZ)DW+

(3.10)
+aJR[M,Df - (1+M,)T]- Dafl- vz2D? - a2+ 2DavzDw,
Prﬂﬂ- Per;P (Df )= ( az)T+(1— M, )Jav/Rw, (3.11)
D?f - Mja%f - DT =0 (3.12)

where the asterisks have been dropped for simplicity and D =1/1z. We recover the system of equations
obtained by Finlayson (1970) from Egs (3.10)-(3.12) when V =0 and Da=0. The typica vaueof M, is

10°® (Finlayson, 1970) and hence it is assumed negligible. It can be shown, following the analysis of
Ramanathan and Suresh (2004), that oscillatory instability does not occur for the problem under
consideration. Thus we limit our consideration to stationary instability. The fact that viscosity increases due
to the presence of suspended particles supports the contention that oscillatory instability can be discounted in
ferromagnetic fluids.



98 A.Ramanathan and N.Muchikel

The boundary conditions are (Finlayson, 1970)
w=D?w=T=Df =0 a Z:i%. (3.13)

The boundary conditions on w and T signify stress-free and isothermal boundaries respectively. The
boundary condition on f indicates that the magnetic susceptibility ¢ inrespect of the perturbed field is very

large at the boundaries. It should be mentioned that it is no longer possibleto obtain a closed form solution to
the problem at hand owing to the presence of space varying coeffidents in Eq.(3.10). We therefore use the
Galerkin technique to sol ve the eigenval ue problem pertaining to stationary instability.

Application of the Galerkin technique (Finlayson, 1970) yidds the eigenvdue R for the stationary
convection in the case of stress-free, isothermal, magnetic boundaries in the form

_ (X, +DaX,)XgX
) a2X3[Ml;(4X6 +2(1+5M I)X3X7] .
where
X, :<W1(1— VZZ)D4W1> - 2a2<wl(1- VZZ)D2W1> + a4<wl(1— Vz? )wl> +
+ 2\/<(DW1)2> - 2a2<wlz> - 4V<leD3Wl> +4Va®(w, ZDw, ),
X, = a2<wl(1— sz)wl> - <Wl(l- VZZ)D2W1> +2V(wy ZDwy ) ,
Xz=(WTy), Xg=(wDfy), Xs :<(DT1)2> +32<T12>’
Xe =(f1DTe), X =((DF 1)) +Mya®(f?)
where (u v> = J/GZJVdZ and w;, T; and f, are triad functions that satisfy the boundary conditions. The
-12

velodity, temperature and magnetic potential trid functions that satisfy the boundary conditionsin Eq.(3.13)
are

w, =cospz, T, =cospz, f,=snpz.

The above choice of trigonometric functions tacitly implies the use of a higher order Galerkin
technique.

For M very large, we obtain the magnetic Rayleigh number N in the form

N = RMl — (Xl +Dax2)x5x7

=— . (3.15)
a X3[X4X6 + X3X7]
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4. Resultsand discussion

The effect of temperature-dependent viscosity on ferroconvection in a porous medium has been
studied using the Brinkman modd. The reason for pursuing a linear stability analysis is due to the fact
thatsub-critical instabilities are discounted in ferromagnetic fluids with no external constraints (Lalas and
Carmi, 1971; Straughan, 2004). Due to the e egance of the method, the Galerkin technique is employed to
obtain the critical eigenvalues. However, one can aso use the shooting technique or such other methods but
at the expense of more computational time.

Before discussing the important results of the problem, we turn our attention to the possible range of
values of various parameters arising in the study. The parameter M, is a ratio of the magnetic to
gravitational forces. M, is taken to be 1000 (Finlayson, 1970). The parameter M5 measures the departure
of linearity in the magnetic equation of state. The chosen values of M5 are 1, 5, 10, and 25 (Finlayson,
1970). The range of values of the Darcy number Da and the temperature-dependent viscosity parameter V are
0to0 100 (Walker and Homsy, 1977) and 0 to 0.5 (Straughan, 2004) respectively.

In what follows we analyze the effect of the magnetization parameter Mj, the temperature-

dependent viscosity parameter V and the Darcy number Da on the critical eigenvalue N and the critical
wave number a. . The other two magnetization parameters M, and M, do not come into the picturein the

problem, as discussed earlier, due to the fact that they are quite large and quite small respectively. Theresults
of the numerical calculations are depicted through Figs 2-5.

Figure 2 isaplot of the critical magnetic Rayleigh number N versusV for different values of M.
It is quite explicit that the effect of the departure from linearity in the magnetic equation of stete, reflected by
increasing values of M4, isto destabilize the system. Further, it is amply clear that the effect of temperature-
dependent viscosity isto re nforce the destabilizing effect of M5 . Figure 3 spdls out the stabilizing nature of
the porous matrix in addition to reiterating the destabilizing effect of V for afixed value of M.

2500
Mz =1 Da =10
2000 -
Nc
15004 Mj;-5
M3 =10

M;=25

1000 ] ] ] ]
0 0,1 0,2 v 0,3 04 0,5

Fig.2. Plot of critical magnetic number N versus temperature-dependent viscosity parameter V for different
values of the magneti zation parameter M 5.
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Fig.3. Plot of N versusV for different values of the Darcy number Da
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Fig.4. Plot of critical wve number a. versusV for different values of M.
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Fig.5. Plot of a- versusV for different values of Da

Figures 4 and 5 dearly bring out the fact that the porous matrix greatly influences the size of the
ferroconvective cell at the onset of convection whereas V has just a marginal influence. The parameter M,
also significantly increases the cdl size as demonstrated by a decreasing value of a. with increasing M.
Considering the fact that the porous matrix (through Da) and the temperature-dependent viscosity (through
V) signify antagonistic influence on ferroconvection, we may conclude that by an appropriate choice of the
porous matrix and temperature difference between the boundaries, it is possible to create a situation
conducive to measurements. Coupled with the above observation is the regulatory nature of the magnetic
field on ferroconvection that comes handy in the control of ferroconvection.

5. Conclusion

The two important conclusions that render the present study physicaly useful are:
1. Externa regulation of ferroconvection is possiblein temperature-sensitive liquids.
2. The problem considered in a porous medium ensures that stationary convection is the preferred mode
and hence measurements are easy to handle.
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Nomenclature

a —dimensionless wave number
B —magnetic induction
Cyn —effective heat capacity at constant volume and magnetic field
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d -—thickness of the fluid layer
2
Da - Darcy number, dk_
0
g —gravitationa acceleration, (0,0, - g)
H —magneticfield
k —dimensiona wave number
k, —thermal conductivity
ko —permeability of the porous medium
ke ky —wave number in the x and y directions
K —pyromagnetic coefficient, - gﬂﬂg
€ ﬂT Q"OvTa\
M  —magnetization
My —mean value of the magnetizationat H =Hgy and T =T,
2
M, —ratio of the magnetic force due to the temperature fluctuation to the gravitational force, zlﬂ%
+cargg
M, —ratioof thermal flux due to magnetization to magnetic flux WIPLS
2 "1+ c)r,C
. T A & Myo
M, —measure of non-linearity in the magneti zation, §1+H7; (1+c)
0
N —magnetic Rayleigh number
p —hydrodynamic pressure
Pr — Prandtl number, - oC
1
g —velocity of thefluid, (u,v, w)
4
R - Rayleigh number, agbd’roC
Vkq
t —time
T —temperature
T, —averagetemperature of the lower and upper surfaces, %
Tp —constant temperature at the lower surface of the layer
T, —constant temperature at the upper surface of the layer
V  —temperature-dependent viscosity parameter, db?d?
(x,y,z) —Cartesian coordinates
N —vector differential operator
a —coefficient of volume expansion
b — adverse basic temperature gradient
r —density of the fluid
ro —referencedensityat T=T,
n  —dynamic viscosity
my — magnetic permeability of vacuum
my —referenceviscosity at T =T,

n

f

— kinematic viscosity, LY
r

0
— magnetic scalar potential
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¢ —magnetic susceptibility, @MQ
efH BH,, T,

Subscripts

b —basic state quantity
c —critical value
Super script

—infinitesimal perturbation
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