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The flow of a couple dress fluid in the clearance of a curvilinear thrust bearing with a porous pad is
considered. The porous pad is connected with an upper impermesable rotating surface which approaches the lower
fixed bearing surface. The Reynolds and Poisson equations are uncoupled by using the Morgan-Cameron
approximation and a closed-form solution is obtained. Expressions for the pressure and capacity load of the
bearing are given. As an example the bearing modelled by two disks and two spherical surfaces is discussed.
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1. Introduction

In machine engines and installations of many industrial processes the phenomenon of flow of non-
Newtonian fluids occurs. Channeds by which the above mentioned fluids flow through can be created —in a
general case — as rotating or fixed surfaces of revolution. The geometry of the channds depends on
engineering requirements. The most often met channd s are formed by two operating surfaces such as plane,
spherical, quasi-spherical and cylindrical or quasi-cylindrical surfaces.

The example of machine engine units in which one uses such channels are sliding bearings in which
the flowing medium is a lubricant. It is introduced between operating surfaces of a bearing to decrease the
friction, remove the products of friction, etc.

In order to improve the conditions of lubrication of sliding bearings porous inserts are applied. They
can be connected with the bearing bush or shaft, according to the constructional solution. The task of the
porous insert is to store the [ubricant and emit it to the bearing clearance while of bearing works.

A mathematical description of the lubricant flow is required both in the bearing dearance and it the
porous insert to determine theoretically the machine properti es of such abearing.

Cameron and Morgan (Morgan and Cameron, 1957) were the first researchers who presented
theoretical results on the porous bearings. They used a Darcy model to describe the flow in a porous medium.

Now, the rheological models are used in theoretical research to approach real lubricants. The mode
of a couple-stress fluid is an example. It is a mathematical model of a synovial fluid, recognized as the most
effective lubricant in nature. The theory of the couple-stress fluid was presented in 1966 by Stokes (Bujurke
and Jayaraman, 1982; Eringen, 1966; Stokes, 1966).

The purpose of the paper is to study pressure distributions and |oad-capacity of athrust bearing with
a porous insert lubricated by the couple-stress fluid. The bearing is created by two surfaces of revolution
having a common axis of symmetry (Fig.1), the upper surface connected with the porous insert rotates with
the angular velocity w and the lower one is fixed. It is assumed that the porous region is defined by the
Darcy model. In this work will, the influence of the rotational inertia effects of the flowing fluid, the fluid
film squeezing and the permeability of the porous insert on the bearing mechanica parameters be esti mated.
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2. Equation of motion in the bearing clearance

Consider athrust bearing with one porous wall lubricated by a couple-stress fluid as shownin Fig.1.
The fixed surfaces are described by the function R(x) , which denotes the radius of this surfaces. The bearing
clearance is described by the function h(x, J, t) which denotes the distance between the fixed surface and the

lower surface of the porous layer, measured along normal to the fixed surface. The porous layer of thickness
H =const is connected with the rotating surface of the bearing. An intrinsic curvilinear orthogonal
coordinate system x,J, y is connected with the fixed surface, as shownin Fig.1.

Fll-r

Fig.1. Coordinate systemin the clearance of the bearing with one porous wall.

The flow the couple-stress fluid in the dearance can be described by the following equations (Jurczak,
2004; Walicka, 2002a, 2002b; Walicki, 2005)
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the ,prim” denotes derivation with respect to x.
The problem statement is compl ete upon specifi cation of boundary conditions which are
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Here V,, denotesthe val ue of vel ocity on the boundary between thefluid film and porous layer.
Integrating Eq.(2.3) and taking into account the boundary conditions (2.6) we get
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Putting this expression in Eq.(2.2) and integrating its result one gets
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Next, integrating the continuity Eq.(2.1) across the film thickness and taking into account Egs (2.9),

(2.2) and the boundary conditions (2.7) we obtain
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Let us consider now the flow of the couple-stress fluid in the porous insert. Assuming that the fluid
in the layer rotates at the same angular velocity as the upper surface one can write according to the Darcy
law equations (Jurczak, 2004; Wdicka, 2002a, 2002b; Walicki, 2005)

0, =- &P y2rré, (2.15)
me X a
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Oy = (2.16)
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Uy = iy’ (2.17)

where F represents the permeability of the insert. The continuity equation for the porous region has the
same formas Eq.(2.1)

iﬂ RUX +£E+E

=0. (2.18)
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Since the cross vel ocity component must be continuous at the porous wall-film interface

one obtains from Egs (2.15) and (2.18) the modified Reynolds equation
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By substituting formulae (2.15)-(2.17) into Eq.(2.18) we obtain Poisson’'s equation for the pressure
distribution in the porous insert
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The boundary conditions are given by the formulae

plx.3.y)=p,  P(x.3.¥)=po,
(2.21)
fp

=0, x,J)=pl(x,J,h).
W, p(x.J)=p(x.J,h)

The problem consists in solving Egs (2.19) and (2.20) with the boundary conditions (2.8) and (2.21).
It is impossible to find a genera solution to these equations, but if an approximation is incorporated, the
solution to this system of equationsis possible. Assuming that
H <<R(x)
and integrating Eq.(2.20) with respect to y over the porous insert and using the Morgan-Cameron (Morgan

and Cameron, 1957) one obtains
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By substituting Eq.(2.22) into Eq.(2.19) the modified Reynolds equation governing the film pressure
may be obtai ned
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Generdly, it is impossible to find the solution to Eq.(2.23) for a genera case of the bearing
configuration. The solution can be obtained only in two cases, namely: for the axial symmetry and for the
steady flow.

In the case of axial symmetry of the flow the solution of Eq.(2.23) takes the form

- [AXt Ao] b - Bﬁ [AXt A]
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where
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Knowing the pressure distribution one may find the load capacity from the following formula

Xo
N =pR?p; +2p (pReosj dx. (2.26)
X

The sense of theangle j arises from Fig.2.

- A

.
-

Fig.2. Elementary load acting on the bearing surface.

3. Example of application

3.1. Theflow in a plane bearing

Let us consider athrust bearing modell ed by two disks as shown in Fig.3.



Influence of rheological parameters on the mechanical parameters ... 227

AV
)
P, n, h
. >
".__‘. \ r
R=x 1 .
R,._F X, -

Fig.3. Thrust plane bearing modelled by two disks.

The dimensionless pressure distribution and the load capacity for the plane bearing are as follows
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here the introduced magnitudes represent the parameters:

P, - pressure, R, - inertia, St - squeeze, K - permeability.

Figure 4 presents the plats of P, versus K . The parameter P, specifies the relaion between inertia,
squeeze and permesbility. From the plots we can reed the va ues of the parameter P, for steedy vauesof R, St, K.
Figs.5-7 present the dimensionless pressure distributions p for different vaues of P p and different

longitude of the clearance bearing and Fig.8 presents nondimensi onal load capacity N.
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Fig.5. Dimensionless pressure distribution p for the Fig.6. Dimensionl ess pressure distribution p for
long clearance. average length of clearance.
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Fig.7. Dimensionless pressure distribution p for the  Fig.8. Dimensionless | oad-capacity N of aplane
short clearance. bearing.

3.1. Theflow in a spherical bearing
L et us consider a spherical bearing shown in Fig.9. Assuming that the flow is steady we have
A(xt)=0, D(x,t)=0. (3.4)

Resolving Egs.(2.24) and (2.25) to the dimensionl ess form one obtains
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Fig.9. Thrust plane bearing modelled by two spherica surfaces.

Figures 10-12 presents the dimensionless pressure distributions p for clearances of different length

and for two different values of the parameter of permesbility K:K =0 and K =0.2. Figure 13 presents
nondi mensi onal load capacity N.
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Fig.10. Dimensi onless pressure distribution p for the long clearance.
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Fig.11. Dimensionless pressure distribution p for the clearance of mean length.
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Fig.12. Dimensionless pressure distribution p for the clearance of short length.
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4. Conclusion

From genera considerations and graphs presented for the plane bearing lubricated by a couple-stress
fluid we can draw the following cond usions:

- the couple-stress fluid (I L 0) is characterized by larger pressures than the Newtonian fluid (I = 0), so0is
the case with the load-capacity of a plane bearing,

- for I" =0 near the long dearance of a bearing the inertia effects P, reduce pressure, however, for |” 1 0
the pressureincreases is observed,

- for the short bearings an oppositeis observed for |” 1 0 the inertia effects cause a faster drop in pressure
than for I” =0,

- theporosity Kt 0, K <<1 produces drops of pressure, however, the smaller the length of the clearance,

the smaller the influence of porosity on pressure distribution.

From the general considerations and graphs presented for a spherical bearing one can deduce that:
— for onerotating surface:

the flow of the couple-stress fluid (1" =0) is characterized by larger pressures than those of the
Newtonian flow,
the porosity reduces the pressure val ues;

— for two fixed surfaces:

the coupl e-stress properties do not have any infl uence on the flow.

Nomenclature

— thickness of the porous layer
— porosity

— load-capacity

— pressure

—radius of the bearing surface
— permeshility of porous layer
— coefficient of plagtic viscosity
— couple-stress viscosity

— dersity

—the angular velocity

— dimensionless values

1 s - caoTgos zZzXI
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