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Some advantages in treating experimental data on viscoelastic properties of polymeric materials in terms of a 
continuous spectrum instead of generally used fitting these data by means of a discrete relaxation times spectrum 
were demonstrated. The proposed continuous spectrum of a power-like type contains only three adjustable 
parameters. They can be found from integral characteristics of viscoelastic material, such as instantaneous 
modules, Newtonian viscosity, areas under shear and normal stress relaxation curves. The proposed continuous 
spectrum correctly reflects main peculiarities of viscoelastic properties of real polymeric materials in a wide 
frequency range.  
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1. Introduction 
 
 The theory of viscoelasticity the problem of relaxation spectrum calculation. Though this conception 
is formulated in the frames of the linear theory of viscoelasticity, it has the fundamental meaning for 
describing the non-linear behavior of viscoelastic materials as well as the necessary limiting case. 
Theoretical interest in calculating a relaxation spectrum is based on a supposition that it reflects molecular 
movements of macromolecules and thus can be connected with the molecular structure (molecular mass and 
molecular mass distribution, branching and other details of molecular architecture). From the practical point 
of view the knowledge of a relaxation spectrum allows one to find stress-vs.-deformation relationships in any 
arbitrary deformation mode. 
 Meanwhile the principle point is that it is impossible to measure a relaxation spectrum, it can be only 
calculated on the basis of experimental data (frequency dependencies of dynamic functions, creep or 
relaxation functions or others). The main difficulty of this problem is that this function is introduced as a 
formal conception (see, e.g. Gross, 1953; Tschoegl, 1989 and Malkin, 2002) and its determination is based 
on the solution of the ill posed inverse problem (Honerkamp, 1989 and Malkin, 1990). 
 If not to come back to earlier pre-computer era methods of relaxation spectrum calculations (one can 
find them in the classical monograph by Ferry, 1980), today’s methods are based on the computer-aided 
minimization of the functional of errors in approximation of experimental data with some set of separate 
relaxation modes (lines in a discrete spectrum).  
 The formal approach to solving ill-posed problems is based on the regularization procedure as was 
proposed and used by Honerkamp and Weese (1989), Elser et al. (1992). However, other methods have also 
been discussed in the literature.  
 So, the method of direct calculation of constants (relaxation times and their weights) by a non-linear 
fitting procedure (so called IRIS method) was proposed by Baumgärtel and Winter (1989), Jackson et al. 
(1994), and later widely used by many authors including its usage in the software of industrial rheometers. 
This method was thoroughly analyzed by Winter (1997). He supposes that the “simultaneous inversion of 
two interrelated integrals” (for storage and loss moduli) for a relaxation spectrum calculation excludes the ill-
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posedness of the problem under discussion. This statement was not strictly proven and other methods 
discussed in the literature give different predictions concerning the time distribution in a relaxation spectrum.  
 The main problem in fitting experimental data (for example frequency dependence of storage 
modules in a wide frequency range) by a relaxation time spectrum is the non-linearity of the fitting procedure 
that presumes the ambiguity of the results of calculation. In order to avoid this difficulty it is reasonable to 
pass to semi-inverse procedure of calculations. It can be realized by the initial rigid fixing of relaxation times 
distribution. Then only their weights should be found, the distribution might be equidistant in a logarithmic 
scale (Emri and Tschoegl, 1993 and Tschoegl and Emri, 1993) or any other. Also, a linearization procedure 
for the search of parameters of a relaxation spectrum has been proposed (Malkin and Kuznetsov, 2000) that 
makes the results of calculations unambiguous. 
 It is important to stress that different methods of a relaxation spectrum calculation give non-
coinciding results. The comparison and analysis of correlation of the results obtained with the application of 
different fitting procedures has been made by Malkin and Masalova (2001). It was shown that different 
approaches give the set of relaxation times lying inside a rather narrow band, though being not equivalent. 
Then the usage of different calculated spectra is practically equivalent in predictions of mechanical behavior 
of viscoelastic liquids. This result is in line with the general belief that the choice of the algorithm in a 
relaxation spectrum calculation is the problem of “personal preference rather than objective definition” 
(Winter, 1997) and “no line spectrum – produced by whatever method – is ever the true spectrum” (Emri and 
Tschoegl, 1993).  
 However, in the paper of Malkin and Masalova (2001) it was mentioned that different procedures, 
presenting the same results in predicting visco-elastic behavior of a polymer melt “in average”, give non-
equivalent figures for those integral characteristics of visco-elastic behavior, for which the boundary values 
of relaxation times are the most important, that is instantaneous modules and the coefficient of normal 
stresses.  This is a natural consequence of ambiguity in calculated relaxation spectra and due to freedom in 
the choice of boundaries. Meanwhile, the rigid fixation of the boundaries is impossible in the frames of 
discrete spectrum approximation.  
 Sometimes the attempts to pass to continuous spectra were carried out (Baumgärtel and Winter, 1992 
and Jackson et al., 1994). However, this approach was not formulated in the terms allowing one to calculate 
a spectrum basing on a limited set of experimental data.  
 In this paper, the attempt to introduce the concept of a continuous spectrum as having several 
definite advantages in comparison with standard fitting experimental data with discrete spectra is made. 
There are at least two serious advantages – very limited number of free constants that allows one to use very 
limited number of experimental data, and a possibility for an easy correlation of such spectra with integral 
characteristics of visco-elastic behavior of a material. The latter is the base for this study. 
 
2. Results and discussion 
 
 Two points mentioned above are the grounds for further discussion. First, a similarity (though not 
equivalency) of relaxation time distributions along the time axis obtained by different methods was observed. 
Second, wrong predictions for experimental values of the integral characteristics of a relaxation spectrum 
strongly dependent on boundary values of relaxation times in a spectrum were found.  
 The first statement is illustrated in Fig.1, which collects data from the paper of Malkin and Masalova 
(2001). The position of the calculated points prompts that it is reasonable to find a continuous spectrum in 
the power-type form as shown by the straight line drawn in this figure additionally to experimental points. 
This line is not the “average” for all experimental points because the points obtained by different fitting 
procedures cannot be fitted by a single dependence but only hint that a spectrum of such forms might be 
applicable for any set of calculated points. 
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Fig.1. Discrete relaxation spectra as calculated from the same experimental data by different fitting 

procedure: 1 – equidistant time distribution; 2 – distribution by power law; 3 – linearization procedure; 
4 – non-linear minimization of functional of errors. 

 
 So, a relaxation time spectrum being discrete presumably looks like 
 

  ( ) ( )∑
=

β− τ−τδτ=
N

0n
nnKtG  (2.1) 

 
where nτ  and nK  are relaxation time values and their weights, respectively, N is the number of lines in a 
relaxation spectrum, β  is a characteristic parameter and δ  is delta-function which is equal to 1 at the points 

nτ=τ  and is zero at all other points. 
 Besides the following relationship describing the time distribution along the time axis is valid 
 
  n

maxn
−∆τ=τ  (2.2) 

 
where maxτ  is the maximal value (boundary) of the time distribution and ∆  is the step in the distribution. 
 This power-type discrete spectrum, when transits into a continuous spectrum, is described by a 
formula 
 
  ( ) α−τ=τ 0KG , (2.3)  
 
and this spectrum exists from zero till maxτ .  
 It is necessary to mention that presentations of relaxation properties of viscoelastic materials in the 
form analogous to Eq.(2.3) can be found in some publications (see e.g. Winter, 1997) though the complete 
subsequent analysis of this form of a relaxation spectrum was absent. 
So, there are three characteristic constants describing a continuous relaxation spectrum: 0K , α  and maxτ .  
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 In order to find these constants it is necessary to have three representative experimental data. It is 
supposed that these experimental points are the moments of a relaxation spectrum, which have definite 
physical meaning (see e.g. Vinogradov and Malkin, 1980): 
 The zeroth-moment is an instantaneous module 
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This is also the high-frequency limit of the storage-vs.-frequency dependence. 
 The first moment is Newtonian viscosity 
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 The second moment is the initial coefficient of the first difference of normal stresses 
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 So, there are three experimentally defined constants, 0G , 0η  and 0ζ . 
 It would seem enough to find three characteristic constants determining a relaxation spectrum. 
However, the instantaneous module is rather hardly measured value in regular experiments. Therefore it is 
reasonable to introduce into discussion the third moment of a relaxation spectrum – a value, which to the best 
of our knowledge is not considered in rheological literature. Meanwhile this value is also easily measured in 
regular experiments.  
 For this purpose let us consider the process of relaxation of normal stresses after cessation of steady 
flow. This process is described (Malkin, 1968) as 
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and the area, NS  under the normal stress relaxation curve equals 
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 It is also interesting to mention that the area under shear stress relaxation curve, τS , is equal to the 
second moment of a relaxation spectrum. So the ( )tτ  measurements can be used instead of 0ζ  according to 
Eq.(6). 
 So, any three of rather easily measured rheological characteristics of a material, 0G , 0η , 0ζ , τS  
and NS , can be used for the determination of a relaxation spectrum. 
 The above written formulas can be slightly rearranged in order to make the search for parameters of 
a relaxation spectrum easier. So, combining Eqs (2.5), (2.6) and (2.8) it is possible to receive the formula for 
the experimentally found dimensionless factor X determined by only one parameter of a spectrum α  
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 The dependence of X on the right side of Eq.(9) is shown in Fig.2. 
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Fig.2. The relationship between the experimentally found dimensionless factor X and characteristic 
parameter of a relaxation spectrum α . 

 
Then, measuring the complex X it is easy to find the characteristic parameter α . 
 Then maximal relaxation time, a very important characteristic parameter used in various 
applications for comparying polymers with different molecular masses can be found from Eqs (2.5) 
and (2.6) as 
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 Now it is rather interesting to follow the predictions of the spectrum presented in Eq.(2.3) by varying 
its characteristic parameter values. In this case the direct problem is considered: calculation of frequency 
dependencies of the component of dynamic modules, ( )ω′G  and ( )ω′′G ,  using the standard 
equations 
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 Figure 3 demonstrates the results of calculations at the fixed value of maxτ  and varying values of the 
slope α . The results are very typical for viscoelastic properties and it is seen that the change in relative 
position of the dependencies ( )ω′G  and ( )ω′′G  can be really reflected by variation of the parameter α . It can 
be supposed that, for example, variation of α  is connected with changes in molecular weight distribution. 
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Fig.3. Frequency dependencies of storage and loss modules obtained by varying the parameter α  at the same 

value of 10max =τ . 
 

 Another quite illustrative example of the results of predictions made from Eq.3 is shown in Fig.4, 
which reflects the role of maxτ . It is seen that the changing of maxτ  results in the systematic shift of the 

( )ω′G  and ( )ω′′G  dependencies. In the study of polymeric melts, it corresponds to the shift of dynamic modules due to 
variation of molecular mass. Indeed, it is well known that molecular mass is directly related to maximal relaxation time. 
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Fig.4. Frequency dependencies of the components of dynamic modules – influence of the maximal relaxation 
times, maxτ  (shown at the curves) at constant value of 9.0=α . 
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 Figure 5 presents a comparison of experimental data for polypropylene melt (experimental details 
and original data one can find elsewhere, Malkin and Masalova, 2001) with the curves calculated via Eqs 
(2.11) with a spectrum described by Eq.3. The values of the parameters of a relaxation spectrum are as 
follows: 4

0 105.1K ×= , 37.1=α , s2.58mac =τ . One can see that the use of the spectrum in a simple 
power-like form provides quite satisfactory prediction of experimental data in a wide frequency range (app. 6 
decades). However this set of parameters does not predict the existence of the limiting values of modules 
(instantaneous modules as in Eq.4). This is in line with experimental data of Fig.5, which do not show the 
existence of plateau and, besides confirms that the third moment of a relaxation spectra should be used 
instead of instantaneous modules for fitting experimental data (at least if a clearly expressed plateau is 
absent). In the example presented in Fig.4 plateau exists because in this case 1<α .  
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Fig.5. Comparison of experimental data for frequency dependencies of the components of dynamic modules 

(solid lines) with dependencies calculated basing on Eq.3 (dashed lines) for a polypropylene melt. 
 

 The last remark concerns the transition from the linear domain of viscoelastic behavior to a non-
linear region. In many experimental works, it was mentioned (see, e.g. Vinogradov and Malkin, 1980) that 
increasing shear rate leads to the acceleration of a relaxation process. This effect can be treated in terms of 
truncation of an initial relaxation spectrum from the low-relaxation-time side. This process can be easily 
described in the terms of a continuous spectrum with monotonous shear-rate-dependent shift of the upper 
boundary while treating this effect in terms of a discrete spectrum requires jump-like changes in the 
relaxation behavior that contradicts experimental facts. 
 Though a power-like relaxation spectrum approximation looks rather promising for treating 
viscoelastic behavior of polymeric materials, it is definitely not a universal approach. Indeed, according to 
Eq.3 the curves ( )ω′G  and ( )ω′′G  are expected to cross as in Fig.3, while other experimental data are known 
with the non-crossing ( )ω′G  and ( )ω′′G  dependencies (e.g. Sohn and Rajagopalan, 2004). Definitely, the 
latter presents the other type of viscoelastic behavior. 
    
3. Conclusion 
 
 It is proposed to treat experimental data on viscoelastic properties of polymeric materials in terms of 
a continuous spectrum of a power-like type instead of generally used fitting of viscoelastic characteristics by 
means of the set of discrete relaxation times (lines). The proposed approach has some advantages. It contains 
only three “free” adjustable parameters, which can be easily found from experimentally measured integral 
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characteristics of a viscoelastic material, such as instantaneous modules, Newtonian viscosity, areas under 
shear and normal stress relaxation curves. The model calculations were made on the basis of this spectrum 
with varying values of its parameters. The predicted frequency dependencies of storage and loss moduli 
correctly reflect main peculiarities of viscoelastic properties of real polymeric materials, primarily polymer 
melts. The reliability of the proposed approach was illustrated also by the correspondence of real 
experimental data obtained for the polypropylene melt and the results of calculations in a wide frequency 
range. The application of a continuous spectrum in the analysis of experimental data allows one to use the 
conception of the truncation of a spectrum in transition to non-linear viscoelastic behavior of polymeric 
materials.  
 
Nomenclature 
 
 ( )τG  – relaxation spectrum 
 0G  – instantaneous modules 
 G ′  – storage modules 
 G ′′  – loss modules 
 0K  – parameter of a continuous spectrum in Eq.3 
 nK  – weigh of n-th relaxation time in a spectrum, Eq.1 

 −N  – relaxing (after cessation of steady shear flow) first difference of normal stresses 
 N – total number of lines in a discrete spectrum 
 n – current number of a line in a discrete spectrum 
 NS  – area under the normal stress relaxation curve 
 τS  – area under the shear stress relaxation curve  
 t – time 
 X – dimensionless parameter defined by Eq.9 
 α  – parameter (slope) of a continuous relaxation spectrum 
 β  – parameter in the equation for a discrete spectrum 
 γ&  – shear rate 
 ∆  – step between neighboring lines in a discrete spectrum 
 δ  – delta-function 
 0η  – initial (Newtonian) viscosity 
 τ  – relaxation time 
 maxτ  – maximal relaxation time 
 0ζ  – initial coefficient of first difference of normal stresses 
 ω  – frequency 
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