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Some advantages in treating experimental data on viscoelastic properties of polymeric materialsin terms of a
continuous spectrum instead of generally used fitting these data by means of a discrete relaxation times spectrum
were demonstrated. The proposed continuous spectrum of a power-like type contains only three adjustable
parameters. They can be found from integral characteristics of viscoelastic material, such as instantaneous
modules, Newtonian viscosity, areas under shear and normal stress relaxation curves. The proposed continuous
spectrum correctly reflects main peculiarities of viscoelastic properties of real polymeric materials in a wide

frequency range.
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1. Introduction

Thetheory of viscodasticity the problem of relaxation spectrum cal culation. Though this conception
is formulated in the frames of the linear theory of viscodasticity, it has the fundamenta meaning for
describing the non-linear behavior of viscodastic materials as wel as the necessary limiting case.
Theoretical interest in calculating a relaxation spectrum is based on a supposition that it reflects molecular
movements of macromol ecul es and thus can be connected with the molecular structure (mol ecular mass and
molecular mass distribution, branching and other details of molecular architecture). From the practical point
of view the knowledge of arelaxation spectrum alows oneto find stress-vs.-deformation rd ationships in any
arbitrary deformation mode.

Meanwhilethe principle point is that it isimpossibl e to measure a relaxation spectrum, it can be only
calculated on the basis of experimenta data (frequency dependencies of dynamic functions, creep or
relaxation functions or others). The main difficulty of this problem is that this function is introduced as a
formal conception (see, e.g. Gross, 1953; Tschoegl, 1989 and Makin, 2002) and its determination is based
on the solution of theill posed inverse problem (Honerkamp, 1989 and Malkin, 1990).

If not to come back to earlier pre-computer era methods of relaxation spectrum cal cul ations (one can
find them in the dassical monograph by Ferry, 1980), today’s methods are based on the computer-aided
minimization of the functional of errors in approximation of experimental data with some set of separate
relaxation modes (lines in a discrete spectrum).

The formal approach to solving ill-posed problems is based on the regularization procedure as was
proposed and used by Honerkamp and Weese (1989), Elser et al. (1992). However, other methods have also
been discussed in the literature.

So, the method of direct cal culation of constants (relaxation times and their weights) by a non-linear
fitting procedure (so caled IRIS method) was proposed by Baumgéartel and Winter (1989), Jackson et al.
(1994), and later widely used by many authors including its usage in the software of industrial rheometers.
This method was thoroughly analyzed by Winter (1997). He supposes that the “simultaneous inversion of
two interrelaed integrals’ (for storage and loss moduli) for a relaxation spectrum cal cul ation excludes theill-
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posedness of the problem under discussion. This statement was not strictly proven and other methods
discussed in the literature give different predictions concerning the time distribution in a rel axation spectrum.

The main problem in fitting experimental data (for example frequency dependence of storage
modul es in a wide frequency range) by a relaxation time spectrum is the non-linearity of the fitting procedure
that presumes the ambiguity of the results of calculaion. In order to avoid this difficulty it is reasonable to
pass to semi-inverse procedure of calculations. It can berealized by the initia rigid fixing of rd axation times
distribution. Then only their weights should be found, the distribution might be equidistant in a logarithmic
scale (Emri and Tschoegl, 1993 and Tschoegl and Emri, 1993) or any other. Also, alinearization procedure
for the search of parameters of a relaxation spectrum has been proposed (Malkin and Kuznetsov, 2000) that
makes the results of ca culations unambiguous.

It is important to stress that different methods of a rdaxation spectrum calculation give non-
coinciding results. The comparison and analysis of correlation of the results obtained with the application of
different fitting procedures has been made by Malkin and Masaova (2001). It was shown that different
approaches give the set of relaxation times lying insde a rather narrow band, though being not equival ent.
Then the usage of different calculated spectrais practically equivalent in predictions of mechanical behavior
of viscoelastic liquids. This result is in line with the general bdief that the choice of the algorithm in a
relaxation spectrum caculation is the problem of “persona preference rather than objective definition”
(Winter, 1997) and “no line spectrum — produced by whatever method — is ever the true spectrum” (Emri and
Tschoegl, 1993).

However, in the paper of Makin and Masa ova (2001) it was mentioned that different procedures,
presenting the same results in predicting visco-elastic behavior of a polymer melt “in average’, give non-
equivalent figures for those integral characteristics of visco-dastic behavior, for which the boundary values
of relaxation times are the most important, that is instantaneous modules and the coefficient of normal
stresses. Thisis a natural consequence of ambiguity in calculated relaxation spectra and due to freedom in
the choice of boundaries. Meanwhile, the rigid fixation of the boundaries is impossible in the frames of
discrete spectrum approxi mation.

Sometimes the attempts to pass to continuous spectra were carried out (Baumgértel and Winter, 1992
and Jackson et al., 1994). However, this approach was not formulated in the terms alowing one to cdculate
a spectrum basing on alimited set of experimental data.

In this paper, the attempt to introduce the concept of a continuous spectrum as having several
definite advantages in comparison with standard fitting experimental data with discrete spectra is made.
There are at | east two serious advantages — very limited number of free constants that alows oneto use very
limited number of experimental data, and a possibility for an easy correation of such spectra with integral
characteristics of visco-dastic behavior of a material. Thelatter isthe base for this study.

2. Resultsand discussion

Two points mentioned above are the grounds for further discussion. First, a similarity (though not
equivalency) of re axation time distributions along the time axis obtai ned by different methods was observed.
Second, wrong predictions for experimental values of the integral characterigtics of a relaxation spectrum
strongly dependent on boundary values of re axation times in a spectrum were found.

The first statement is illustrated in Fig.1, which collects data from the paper of Makin and Masal ova
(2001). The position of the calculated points prompts thet it is reasonable to find a continuous spectrum in
the power-type form as shown by the straight line drawn in this figure additionally to experimental points.
This line is not the “average’ for al experimenta points because the points obtained by different fitting
procedures cannot be fitted by a single dependence but only hint that a spectrum of such forms might be
applicable for any set of calculated points.
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Fig.1. Discrete rdaxation spectra as calculated from the same experimental data by different fitting
procedure 1 — equidistant time distribution; 2 — distribution by power law; 3 — linearization procedure;
4 — non-linear minimization of functional of errors.

So, areaxation time spectrum being discrete presumably looks like

G(t):éN Kot Pd(t- t,) (2.2)
n=0

where t,, and K, are relaxation time values and their we ghts, respectively, N is the number of linesin a
relaxation spectrum, b is a characteristic parameter and d is delta-function which is equal to 1 at the points

t =t,, andiszeroa all other points.
Besides the following relationship describing the time distribution along thetime axisisvdid

th=tmD" (2.2)

where t ., isthemaximal value (boundary) of thetime distribution and D is the step in the distribution.
This power-type discrete spectrum, when transits into a continuous spectrum, is described by a
formula

Gt)=Kot 2, (2.3)

and this spectrum exists from zero till t -

It is necessary to mention that presentations of relaxation properties of viscodastic materias in the
form analogous to Eq.(2.3) can be found in some publications (see e.g. Winter, 1997) though the complete
subsequent analysi s of this form of a relaxati on spectrum was absent.

So, there are three characteristic constants describing a continuous relaxation spectrum: Ky, a and t -
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In order to find these constants it is necessary to have three representative experimenta data. It is
supposed that these experimental points are the moments of a relaxation spectrum, which have definite
physical meaning (see e.g. Vinogradov and Makin, 1980):

The zeroth-moment is an instantaneous modul e

t max 1
Go = () Kot ?dt =
0

T Katkd 2.4
1-a oM™ (24)

Thisis aso the high-frequency limit of the storage-vs.-frequency dependence.
The first moment is Newtonian viscosity

tmax 1
ho= () Kot™?dt= 5

Kot22 . (2.5)
-a
0

The second moment istheinitia coefficient of the first difference of norma stresses

t max 1
Vo= ) KotZ?dt =
0

T K t3? 2.6
3-a O ™ (2.6)

So, there are three experimentall y defined constants, G, , hy and z.

It would seem enough to find three characteristic constants determining a relaxation spectrum.
However, the instantaneous module is rather hardly measured value in regular experiments. Therefore it is
reasonabl e to introduce into discussion the third moment of a rel axation spectrum — a va ue, which to the best
of our knowledgeis not considered in rheological literature. Meanwhile this value is also easily measured in
regular experiments.

For this purpose let us consider the process of relaxation of normal stresses after cessation of steady
flow. This processis described (Malkin, 1968) as
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andthearea, Sy under the normal stress rel axation curve equals
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It is also interesting to mention that the area under shear stress relaxation curve, S, is equa to the
second moment of a relaxation spectrum. So the t(t) measurements can be used instead of z, according to
Eq.(6).

So, any three of rather easily measured rheological characteristics of a material, Gy, hy, zg, S
and Sy, can be used for the determination of a relaxati on spectrum.

The above written formulas can be slightly rearranged in order to make the search for parameters of
aredaxation spectrum easier. So, combining Egs (2.5), (2.6) and (2.8) it is possible to receive the formula for
the experimentally found dimensi onless factor X determined by only one parameter of a spectrum a
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The dependence of X on theright side of EQ.(9) is shownin Fig.2.
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Fig.2. The reationship between the experimentally found dimensionless factor X and characteristic
parameter of arelaxation spectrum a .

Then, measuring the complex X it is easy to find the characteristic parameter a .

Then maximal relaxation time, a very important characteristic parameter used in various
applications for comparying polymers with different molecular masses can be found from Eqgs (2.5)
and (2.6) as

¢ _3-a\g
M 2-ahy

(2.10)

Now it is rather interesting to follow the predictions of the spectrum presented in Eq.(2.3) by varying
its characteristic parameter vaues. In this case the direct problem is considered: calculation of frequency
dependencies of the component of dynamic modules, G((W) and th(w), using the standard

equations

Gdw)= :ge(w)li"‘('t—mr)zdt . Gw)= EG(W)%

Figure 3 demonstrates the results of calculations at the fixed value of t ., and varying vaues of the
slope a . The results are very typicd for viscodastic properties and it is seen that the change in reative
position of the dependencies G((W) and th(w) can bereally reflected by variation of the parameter a . It can
be supposed thet, for example, variation of a isconnected with changesin molecular weight distribution.

dt . (2.12)
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Fig.3. Frequency dependencies of storage and |oss modul es obtained by varying the parameter a at the same
valueof t ., =10.

Ancther quite illustrative example of the results of predictions made from Eq.3 is shown in Fig.4,
which reflects the role of t . It is seen that the changing of t .., results in the systematic shift of the
G((W) ad G((W) dependendes. In the study of polymeric mdts, it corresponds to the shift of dynamic modules dueto
vaidaion of madecular mass. Indeed, it iswdl known that molecular massisdredly rdaed to maximd rdaxationtime
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Fig.4. Frequency dependencies of the components of dynamic modules — influence of the maximal relaxation
times, t .« (Shown at the curves) at constant value of a =0.9.
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Figure 5 presents a comparison of experimental data for pol ypropylene melt (experimental details
and original data one can find esewhere, Malkin and Masalova, 2001) with the curves calculated via Eqs
(2.11) with a spectrum described by Eq.3. The values of the parameters of a relaxation spectrum are as

follows: K,=15"10%, a=1.37, t,,. =58.2s. One can see tha the use of the spectrum in a simple

power-like form provides quite satisfactory prediction of experimental datain a wide frequency range (app. 6
decades). However this set of parameters does not predict the existence of the limiting values of modules
(instantaneous modules as in EQ.4). Thisisin line with experimenta data of Fig.5, which do not show the
existence of plateau and, besides confirms that the third moment of a relaxation spectra should be used
instead of instantaneous modules for fitting experimental data (at least if a clearly expressed plateau is
absent). In the example presented in Fig.4 plateau exists becausein this case a < 1.
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Fig.5. Comparison of experimenta data for frequency dependencies of the components of dynamic modules
(solid lines) with dependencies cal culated basing on Eq.3 (dashed lines) for a polypropyl ene melt.

The last remark concerns the transition from the linear domain of viscodastic behavior to a non-
linear region. In many experimental works, it was mentioned (see, eg. Vinogradov and Malkin, 1980) that
increasing shear rate leads to the accel eration of a relaxation process. This effect can be treated in terms of
truncation of an initiad rdaxation spectrum from the low-relaxation-time side. This process can be easily
described in the terms of a continuous spectrum with monotonous shear-rate-dependent shift of the upper
boundary while treating this effect in terms of a discrete spectrum requires jump-like changes in the
relaxation behavior that contradi cts experimental facts.

Though a power-like reaxation spectrum approximation looks rather promising for treating
viscod astic behavior of polymeric materials, it is definitdy not a universal approach. Indeed, according to
Eq.3 the curves G((W) and th(w) are expected to cross as in Fig.3, while other experimental data are known

with the non-crossing G((W) and th(w) dependencies (eg. Sohn and Rgjagopdan, 2004). Definitdy, the
latter presents the other type of viscoeastic behavior.

3. Concluson

It is proposed to treat experimental data on viscoe astic properties of polymeric materials in terms of
a continuous spectrum of a power-like type instead of generally used fitting of viscoeastic characteristics by
means of the set of discrete relaxation times (lines). The proposed approach has some advantages. It contains
only three “free” adjustable parameters, which can be easily found from experimentally measured integral
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characteristics of a viscodastic material, such as instantaneous modules, Newtonian viscosity, areas under
shear and normal stress relaxation curves. The model calculations were made on the basis of this spectrum
with varying values of its parameters. The predicted frequency dependencies of storage and loss moduli
correctly reflect main peculiarities of viscoe astic properties of real polymeric materials, primarily polymer
melts. The rdiability of the proposed approach was illustrated dso by the correspondence of real
experimental data obtained for the polypropylene melt and the results of cdculations in a wide frequency
range. The gpplication of a continuous spectrum in the analysis of experimental data allows one to use the
conception of the truncation of a spectrum in transition to non-linear viscodastic behavior of polymeric
materials.

Nomenclature

G(t) - relaxation spectrum
Gy, - ingtantaneous modules
G( —storage modules
Gt —loss modules
Ko —parameter of acontinuous spectrum in Eqg.3

K, —weigh of n-th relaxation timein a spectrum, Eq.1
N~ —relaxing (after cessation of steady shear flow) first difference of normal stresses
N —total number of linesin adiscrete spectrum

n —current number of alinein adiscrete spectrum
Sy —areaunder the normal stress rel axation curve
S; —areaunder the shear stress rel axation curve
t —time
X —dimensionless parameter defined by Eq.9
a —parameter (slope) of a continuous relaxation spectrum
b — parameter in the equation for a discrete spectrum
& —shear rate
D - step between neighboring linesin adiscrete spectrum
d —deltafunction
hg —initial (Newtonian) viscosity
t —relaxation time
tmax — Maximal relaxation time
zo —initial coefficient of first difference of normal stresses

w —frequency
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