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The time-dependent, two-dimensional compressible Newtonian flow over the reservoir-die region is solved 

assuming that slip occurs along the die wall following a nonmonotonic slip law. The combination of 
compressibility and nonlinear slip leads to self-sustained oscillations of the pressure drop and of the mass flow 
rate at constant piston speed, when the latter falls into the unstable negative slope regime of the flow curve. The 
effect of the reservoir volume on the amplitude, the frequency and the waveform of the pressure oscillations is 
studied and comparisons are made with experimental observations concerning the stick-slip polymer extrusion 
instability.  
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1. Introduction 
 
 Slip at the wall is considered to be a key factor in polymer extrusion instabilities, such as the stick-slip 
instability (Denn, 2001 and Hatzikiriakos and Migler, 2004). A characteristic of the stick-slip instability not 
encountered with other types of extrusion instability, such as sharkskin and gross melt fracture, is that this is 
accompanied by pressure and mass flow rate oscillations which result in extrudate shapes characterized by 
alternating rough and smooth regions (Denn, 2001 and Hatzikiriakos and Migler, 2004). Recent work 
concerning numerical modeling of the stick-slip instability has been reviewed by Achilleos et al. (2002) who 
discuss three different instability mechanisms: (a) combination of nonlinear slip with compressibility; (b) 
combination of nonlinear slip with elasticity; and (c) constitutive instabilities. In the present work, we 
investigate further the compressibility-slip instability by means of numerical simulations.  
 The compressibility-slip mechanism has been tested by Georgiou and Crochet (1994a; b) in the 
Newtonian case, with the use of an arbitrary nonmonotonic slip equation relating the wall shear stress to the 
slip velocity. These authors numerically solved the time-dependent compressible Newtonian Poiseuille and 
extrudate-swell flows with non-linear slip at the wall, showing that steady-state solutions in the negative-slope 
regime of the flow curve (i.e., the plot of the wall shear stress versus the apparent shear rate or the plot of the 
pressure drop versus the volumetric flow rate) are unstable, in agreement with linear stability analysis. Self-
sustained oscillations of the pressure drop and of the mass flow rate at the exit are obtained, when an unstable 
steady-state solution is perturbed, while the volumetric flow rate at the inlet is kept constant. These oscillations 
are similar to those observed experimentally with the stick-slip extrusion instability. In a recent work, 
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Georgiou (2003) obtained similar results for the compressible, axisymmetric Poiseuille and extrudate-swell 
flows of a Carreau fluid with slip at the wall, using an empirical slip equation that is based on the experimental 
measurements of Hatzikiriakos and Dealy (1992a; b) on a HDPE melt. Unlike the experimental observations [see, e.g., 
Weill (1980), Hatzikiriakos and Dealy (1992b) and Durand et al. (1996)], however, the limit cycles of the periodic solution 
obtained in all these numerical studies do not follow the steady-state branches of the flow curve.   
 As stated in Georgiou (2003), including the reservoir is necessary in order to account for the 
compression and decompression of most part of the fluid, and obtain limit cycles following the steady-state 
branches of the flow curve, i.e., for obtaining pressure and extrudate flow rate oscillations characterized by 
abrupt changes, as in the experiments. Only such abrupt changes can lead to extrudates with alternating 
relatively smooth and sharkskin regions, which is the basic characteristic of the stick-slip instability. Note that 
the reservoir region is taken into account in various one-dimensional phenomenological models, which are also 
based on the compressibility/slip mechanism (Georgiou, 2004). These describe very well the pressure 
oscillations but they are not predictive, because they require as input certain experimental parameters.  
 The objective of the present work is to extend the simulations of Georgiou (2004) by including the 
reservoir region and study the effect of the reservoir length on the pressure oscillations. According to 
experiments (Myerholtz, 1967; Weill, 1980; Hatzikiriakos and Dealy, 1992b and Durand et al., 1996), the 
period of the oscillations scales roughly with the volume of the polymer melt in the reservoir. Weill (1980) and 
Durand et al. (1996) also studied experimentally the effect of the reservoir length on the durations of 
compression and relaxation and found that both times increase linearly with the reservoir length, which 
indicates that the latter does not affect the waveform of the oscillations.  
 In Section 2, the governing equations, the slip equation and the boundary and initial conditions are 
discussed. In Section 3, we describe briefly the numerical method, present the numerical results, and make 
comparisons with experimental observations. Finally, in Section 4, we summarize the conclusions.  
 
2. Governing equations and boundary conditions 
 
 The geometry of the flow corresponds to the actual setup used in the experiments of Hatzikiriakos and 
Dealy (1992b). There is a contraction region at 45 degrees between the barrel and the die as shown in Fig.1. 
The actual values of the radii of the barrel and the die, denoted respectively by bR  and R, and the length of the 
die, L, are tabulated in Tab.1. In the simulations, the length of the barrel, bL , varied from 20R to 200R.  
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Fig.1. Geometry and boundary conditions for the time-dependent. compressible, axisymmetric flow over the 
reservoir-capillary region, with slip along the capillary wall. 

Table 1. Symbols and values of various lengths concerning the flow geometry. 
 

Symbol Parameter Value 
bR  

bL  

 
R 

L 

Radius of the barrel 

Length of the barrel 

Contraction angle 

Radius of the die 

Length of the die 

0.9525 cm 

 

45 degrees 

0.0381 cm 

0.762 cm 

 
 To non-dimensionalize the governing equations, we scale the lengths by the capillary radius, R, the 
velocity vector, v, by the mean velocity V in the capillary, the pressure, p, by RVη , η  denoting the constant 
viscosity, the density, ρ , by a reference density, 0ρ , and the time by VR . With these scalings, the 
dimensionless continuity and momentum equations for time-dependent, compressible, isothermal viscous flow 
in the absence of body forces become 
 

  0
t

=ρ⋅∇+
∂
ρ∂ v , (2.1) 

 
and 
 

  vvvv 2p
t

∇+−∇=







∇⋅+

∂
∂

ρRe  (2.2) 

 
where Re is the Reynolds number, defined by  
 

  
η

ρ
≡

RV0Re . (2.3) 

 
 The above equations are completed by an equation of state relating the pressure to the density. We 
used the first-order expansion 
 
  pB1 +=ρ  (2.4) 

 
where B is the compressibility number 
 

  
R

VB ηβ
≡ , (2.5) 

 
β  being the isothermal compressibility.  
 Along the capillary wall, slip is assumed to occur following the three-branch multi-valued slip model 
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where wν  is the relative dimensionless velocity of the fluid with respect to the wall, wσ  is the dimensionless 
shear stress on the wall, 2cν  is the maximum slip velocity at 2cσ , and minv  is the minimum slip velocity at 

minσ . The third branch is the power-law slip equation suggested by Hatzikiriakos and Dealy (1992b) for the 
right branch of their flow curve. The first branch results from the slip equation they propose for the left branch 
of their slope curve after substituting all parameters for resin A at C180o  and taking the normal stress as 
infinite. Finally, the second negative-slope branch, which corresponds to the unstable region of the flow curve 
for which no measurements have been possible, is just the line connecting the other two branches. The values 
of all the slip equation parameters and the definitions of the dimensionless numbers iA  can be found in 
Georgiou (2003).  
 The other boundary conditions of the flow are shown in Fig.1. Along the axis of symmetry, we have 
the usual symmetry conditions. Along the barrel and the contraction walls both velocity components are zero 
(no slip). Along the capillary wall, only the radial velocity is zero, whereas the axial velocity satisfies the slip 
Eq.(2.6). At the inlet plane, it is assumed that the radial velocity component is zero while the axial velocity is 
uniform, corresponding to the motion of the piston at constant speed. Note that the imposed volumetric flow 
rate, Q, is scaled by VR 2π . The simulations are carried out on a fixed domain, i.e., the motion of the piston is 
not taken into account. This is a reasonable assumption provided that the piston speed is low. At the capillary 
exit, the radial velocity component and the total normal stress are assumed to be zero.  
 Finally, as the initial condition, we use the steady-state solution corresponding to a given volumetric 
flow rate oldQ  that we perturb to Q at 0t = . 
 
3. Numerical results 
 
 We use the finite element formulation for solving this Newtonian flow problem, employing 
biquadratic-velocity and bilinear-pressure elements. For the spatial discretization of the problem, we use the 
Galerkin forms of the continuity and momentum equations. For the time discretization, the standard fully-
implicit (Euler backward-difference) scheme is used. Various finite element meshes have been used in the 
simulations with the reservoir length, bL , ranging from 20 to 200. These were refined near the walls, and 
around the entrance of the capillary. The longest mesh ( )200Lb =  consisted of 4511 elements corresponding 
to 42403 unknowns. In all results presented below the following values for the slip equation parameters and 
the compressibility number have been used: 23.3m1 = , 0583.0A1 = , 86.2m2 = , 929.0A2 = , 43.4m3 −= , 

04.4A3 =  and 41054.1b −= .  
 We first constructed the steady-state flow curves for the reservoir-capillary region. In Fig.2, we show 
the log-log plot of the pressure drop, measured along the centerline from the piston to the die exit, versus the 
volumetric flow rate obtained with 01.0=Re  and 80Lb = . Due the nonmonotonicity of the slip equation, the 
flow curve exhibits a maximum and a minimum, which define the limits of the unstable regime, i.e., only the 
steady-state solutions corresponding to the two positive-slope branches are stable. As already mentioned, the 
steady-state solutions are perturbed by changing the volumetric flow rate from an old value to the desired one 
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Q. Given that the flow is compressible, the behavior of the time-dependent solution depends on whether the 
new value of Q corresponds to a positive-slope branch, or to the negative-slope branch which is unstable. In 
the first case, the new steady-state is obtained without any oscillations, whereas, in the second case, the 
solution is oscillatory and, after a transition period, becomes periodic. Self-sustained oscillations of the 
pressure drop and the mass flow rate are obtained which are similar to those observed experimentally in the 
stick-slip extrusion instability regime. All the results presented below have been obtained in the unstable 
regime.  
 

P∆

Q
 

 
Fig.2. Flow curve for Re=0.01 and 80Lb = . 

 
 In Fig.3, we show the oscillations of the pressure drop and the volumetric flow rate obtained by 
perturbing the steady-state solution for 01.0=Re , 80Lb =  and 35.1Q = . In Fig.3a, we show two different 
possibilities when the pressure drop is measured across the entire flow domain, ( )totP∆  and across the 
capillary, ( )capP∆ . Sudden jumps of the pressure drop are observed in the latter case. The volumetric flow 
rate at the capillary exit is also characterized by sudden jumps which is consistent with experimental 
observations. Plotting the trajectory of the solution on the flow curve plane (Fig.4) shows that, after a 
transition period, a limit cycle is reached which follows exactly the positive-slope branches of the steady-state 
flow curve. The volumetric flow rate increases together with the pressure following exactly the left positive-
slope branch of the flow curve and, when the pressure reaches its maximum value, Q jumps to the right 
positive slope branch. The volumetric flow rate then starts decreasing together with the pressure following this 
branch till the pressure reaches its minimum and then jumps to the left positive-slope branch and starts the 
next oscillation cycle. This behavior agrees well with experimental observations (Hatzikiriakos and Dealy, 
1992b and Durand et al., 1996). Note also that in our previous study (Georgiou, 2003), the limit cycles did 
not follow the steady-state flow curve due to the omission of the reservoir region. This drawback was also 
exhibited by the one-dimensional model of Greenberg and Demay (1994), which does not include the barrel 
region. Note that one-dimensional phenomenological relaxation/oscillation describe the oscillations of the 
pressure and the volumetric flow rate in the stick-slip instability regime under the assumption that these follow 
the experimental flow curve [see Adewale and Leonov (1997) and Den Doelder et al. (1998) and references 
therein]. The present simulations are the first to show that the limit cycle follows the steady-state flow curve.  
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Fig.3. Pressure and flow rate oscillations for Q=1.35, Re=0.01 and 80Lb = . 
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Fig.4. Trajectory of the solution on the flow curve plane; Q=1.35, Re=0.01 and 80Lb = . 

 
 We then reduced the value of the Re from 0.01 to 0.001 in an attempt to approach the experimental 
value ( )51043.1 −⋅ . As shown in Fig.5, where we compare the oscillations of P∆  during one cycle for 

01.0=Re  and 0.001, 80Lb =  and 35.1Q = , decreasing the Reynolds number has no practical effect on the 
oscillations. However, the artificial overshoots are observed in the flow rate. Thus instead of trying to 
eliminate the overshoots by reducing the time step (which would have resulted in much longer runs), we 
decided to continue the runs with 01.0=Re . Note that in our previous study (Georgiou, 2003) for the 
extrudate-swell flow, in which the reservoir region has been excluded, we observed that as the Reynolds 
number is reduced the amplitude of the pressure-drop oscillations is reduced, the amplitude of the mass-flow-
rate oscillations is increased and the frequency of the oscillations is considerably increased. This shows once 
again the importance of including the reservoir region.  
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Fig.5. Comparison of the pressure oscillations for Re=0.01 and 0.001; 80Lb =  and Q=1.35. 

 
 In order to study the effect of the reservoir length on the pressure oscillations we obtained results for 
various values of bL . In Fig.6, we show the pressure oscillations for different values of bL , 01.0=Re  and 
Q=1.35. We observe that the period of the pressure oscillations increases with bL  while their amplitude seems 
to be less sensitive. This is more clearly shown in Fig.7, where the period and the amplitude of the pressure 
oscillations are plotted versus the reservoir volume. In agreement with experiments (Hatzikiriakos and Dealy, 
1992b; Durand et al., 1996; Sato and Toda, 2001 and Robert et al., 2001), the period T increases linearly 
with the reservoir volume while the amplitude is essentially constant. In Fig.7a, the period appears to pass 
through the origin which is not the case with the experiments. Finally, in order to show the effect of the 
reservoir on the waveform of the pressure oscillations we plotted the normalized pressure oscillations during 
one cycle for 20Lb =  and 200 (Fig.8). The waveform is independent of the reservoir length, i.e., the durations 
of the compression and relaxation increase linearly with the reservoir length. This agrees well with the 
experiments of Weill (1980), Hatzikiriakos and Dealy (1992b) and Durand et al. (1996).  
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Fig.6. Effect of the reservoir length on the pressure oscillations; Q=1.35 and Re=0.01. 
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Fig.7. The period and the amplitude of the pressure oscillations versus the reservoir volume; Q=1.35 and 

Re=0.01. 
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Fig.8. Effect of the reservoir length on the waveform of the pressure oscillations; Q=1.35 and Re=0.01. 
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4. Conclusions 
 
 We solved numerically the time-dependent, compressible flow of a Newtonian fluid over the reservoir-
capillary region, assuming that slip occurs along the capillary wall following a nonmonotonic slip law based 
on the experimental findings of Hatzikiriakos and Dealy (1992a; b) for certain polyethylene melts. By using 
meshes of different length, we have studied the effect of the reservoir length on the pressure oscillations 
occurring when the imposed flow rate falls in the unstable negative-slope regime of the flow curve. Our 
calculations showed that the pressure oscillations follow the steady-state flow curve and that their period 
increases linearly with the reservoir length, while their amplitude and waveform remain unaffected. These 
results are in good agreement with the experiments of Weill (1980), Hatzikiriakos and Dealy (1992b), Durand 
et al. (1996), and others, which have also shown that the period and the shape of the pressure oscillations vary 
also with the imposed flow rate, whereas their amplitude remains unaffected. The effect of Q on the pressure 
oscillations is currently under study.   
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