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Melt rheology of polydisperse polymers is reviewed with specia emphasis on the separation of effects of
chain orientation and chain stretch, as described consistently by the Molecular Stress Function (MSF) theory.
Based on energy balance considerations, first the Free Energy of a tube segment with a strain-dependent tube
diameter is established, and it is demonstrated that the molecular stress is a function of the orientationa free
energy under these conditions. Then constraint release is introduced as a dissipative process, which modifies the
energy balance of tube deformation, and leads to a strain-dependent evolution equation for the molecular stress
function. For simple shear and extensional flows, the predictions of the MSF model consisting of a history
integral for the stress tensor and a differential evolution eguation for the molecular stress function with orly one
(extensional flows) or two (shear flow) nonlinear material parameters, are in excellent agreement with
experimental data of HDPE, LDPE, LLDPE, PS, and PP melts. The concept of a strain-dependent tube diameter,
which decreases with increasing deformation, explains consistently the strain hardening of linear as well as of
long-chain branched polymer melts.

Keywords: linear polymer melts, long-chain branched polymer melts, molecular stress function theory,
orientation, stretch strain energy function, extensional flow, shear flow.

1. Introduction

In spite of considerable progress made in recent years in understanding the dynamics of
macromolecular systems, there are still considerable challenges in understanding the mdt rheology of
“simple” homopolymers like PE or PS, which are produced commercially by the millions of tons. In this
review, three specific issues will be considered:

Why is it that polydisperse linear and long-chain branched polymer melts show a strain-hardening
behavior which is qualitatively (so not quantitatively) similar in all aspects?

Why is the slope of the dongational viscosity after inception of strain-hardening higher for branched
melts than for linear melts (Wagner, 1999), and how can we quantify this effect?

Why do long-chain branched polymer melts show a reversible or “BKZ” behavior in double-step shear
strain experiments, while the behavior of linear melts isirreversible (Wagner and Ehrecke, 1998)?

We are not concerned here with the linear-viscod astic properties of polymer mets and their relation
to molecular weight and molecular weight distribution, where based on the concept of reptation (de Gennes,
1974) considerable progress has been made in recent years. We are rather concerned with the nonlinear
rheology of polydisperse mdts, which still pases tremendous cha lenges both experimentaly and theoretically.

2. Tube modédsand chain stretch

Intermolecular interaction of concentrated systems of linear polymer chains is modeled by the tube
concept: the mesh of constraints caused by surrounding chains confines the macromolecular chain laterally
to atubdlike region. Doi and Edwards (DE) assumed that the diameter a, of the tube is not changed even by

large non-linear deformations, or equivaently that the tension in the deformed macromolecular chain
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remains constant and equal to its equilibrium value (Doi and Edwards, 1978; 1986). The main contribution to
the extra stress tensor s(t) is then given by the orientation of the tube segments due to the flow. The
resulting constitutive equation is of the single integral form

()= gyrlt- 9L (dete 21)

-¥

if the tube segments are assumed to aign independently of each other in the flow field (the “Independent
Alignment (1A)” approximation). The strain measureis given by

ShE° 5<£“> =5S (2.2)
u® /,

where S is the second order orientation tensor. The bracket denotes an average over an isotropic distribution
of unit vectors u and can be expressed as a surfaceintegra over the unit sphere

1 J1. .
< >0 ° 4_p@$ ]Sm 0odaedj o (2.3)

uC isthelength of the deformed vector u¢, which is calculated from the affine deformation hypothesis (with
F ! as the deformation gradient tensor) as

ut=F; 1. (2.4)

Consequently, the DE mode does not account for any strain hardening in extensiond flows (Figs 1
and 2). It does, however, predict the separability of time and strain effects in the nonlinear stress relaxation

modulus G(t, go): G(t)h(go), which is observed even for polydisperse polymer melts over several decades
of relaxation time.
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Figl Uniaxid visoosty m), of apdydspese liner PS mdt (Bastian, 2001). Comparison of expaimentd deta (symbals) to
pred dions of DE and LM S (zaro parameater) modd.
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Fig2 Uniadd (m,), eubiaid (m,), and paner (my,, m,, ) visoosities of aHDPE meit. Comperison of experimentd dita
(symbdg) topredidions of DE and LMSF (zero pararder) modd s (Bestian, 2001).

Doi and Edwards (1986) incorporated a stretch process with a stretch | of the tube segments due to
the flow in order to explain the discrepancies of the DE theory at start-up of shear and extensiona flows.
Pre-averaging the stretch, i.e. assuming that the stretch is uniform aong the chain contour length and an
explicit function | (t) of the observation time, which operates on the orientational configuration resulting

from theintegration over the strain history, the extra stress tensor is given by

t

s(t)=12(t) ynlt - tdSp (tdote (2.5)

-¥

Equation (2.5) generated the necessity to find stretch evolution equations, and a vast variety of
concepts based on different kinetic ideas have been proposed in recent years. Modes of this type invariably
lead to rate-dependent tube stretch, and to obtain agreement with experimental data of pol ydisperse polymer
melts, multi-mode formulations with an excessive number of empirical fit parameters are needed.

While in models with rate-dependent tube stretch, the tube diameter is invariably assumed to stay
constant and equal to its equilibrium value a,, tube stretch can also be introduced by the assumption of a

strain-dependent tube diameter, as first suggested by Marrucci and de Cindio (1980). In this way, also the
pre-averaging of the stretch can be avoided, which is inherently present in models based on Eq.(2.5) or its
differential approximations, and which might be the root cause for the need of a large number of nonlinear
parameters.

A generalized tube model with strain-dependent tube diameter was presented by Wagner and
Schaeffer (1992; 1993; 1994). In the Molecular Stress Function (MSF) theory, tube stretch is caused by the
“squeeze’ of the surrounding polymer chains, leading to a reduction of the tube diameter a from its
equilibrium value a,. Taking into account that the tube diameter a represents the mean field of the
surrounding chains, it is assumed that the tube diameter is independent of the orientation of tube segments.
The extra stressis then given as
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t

s(t)= gynlt- tdf > s (tddte (2.6)

-¥

where the mol ecular stress function f is the inverse of the relative tube diameter
f=a,/a. (2.7

In contrast to Eq.(2.5), tube dretch in Eqg.(2.6) does not depend on the observation time t, but
depends on the strain history, i.e. for time-dependent strain histories, tube stretch varies d ong the tube.
Note that while S is related directly to the deformation history via Eq.(2.4), no a priori dynamics of

the internal variable f is prescribed in the MSF model. Rather, 2 is assumed to be directly related to the

strain energy stored in the polymeric system, and is determined as a solution of an evolution equation
derived from an energy ba ance argument (Wagner et al., 2001).

3. Themolecular stressfunction theory for linear melts

Based on prior work of de Gennes (1974) and Marrucci and Hermans (1980), the molecular stress
function f for linear melts is related to a strain-energy function wy, g of the form

V:\Q‘AT_T_F:(f 2_q) (3.1)

Neglecting dissipative constraint release, i.e. considering the hyper-dastic limit, the power input of
the stress tensor into the polymer system is equal to the increase of the strain energy by tube deformation

(Wagner et al., 2001). f?2 is found as solution of the evolution equation (with velocity gradient k and

plateau modulus Gy, )

1 Wwse _p. S _ £2(k:s), 3.2)
KTt 5G2
to be $2 =g (33)

i.e f2 isan exponentia of the orientational free energy 3KT <Inu¢>0. Note that by use of Eq.(3.3), the
strain energy function of Eq.(3.1) can be expressed as

WLmsF _ 2 2
—YF =(lnu¢ +f“-Inf°-1, 34
3kT (Inug, 34

i.e. as sum of orientationa free energy and stretch energy. The part of the strain energy due to chain stretch

has the desired properties, namely a minimum at equilibrium (f 2 = 1) and a quadrati c dependence on f in the
vicinity of equilibrium.

Predictions of the MSF model are in excdlent agreement with the onset of strain-hardening in
uniaxial, equibiaxial and planar extension of polydisperse linear polymer mdts (LMSF modd), as
exemplified in Figs 1 and 2 (Bastian, 2001).

Now constraint release (CR) is introduced as a dissipative process (Wagner et al., 2001), which
modifies the energy balance of tube deformation, and leads to a strain-dependent evolution equation for the
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mol ecul ar stress function of the form

12 _ .6 1 u
= f24k: S)- CR{. (35)
t S( S i

Constraint release is considered to be the consequence of different convection mechanisms for tube
orientation and tube-cross section, and for constant strain-rate flows can be expressed as

CR=a,(t2- 1fVD? s +a,(f2- 1f W>D: 5, (36)

with D and W being the rate of deformation and rate of rotation tensor, respectively. The non-linear material
parameters verify a; 3 0 and a, 3 0. Note that in extensional flows, constraint release depends only on the

parameter a,, while in a simple shear flow, both the parameters a, and a, are of rdevance. The evolution
equation for the molecular stress function of linear meltsin extensional flows is given by

qf2 S L +MS,; - (1+m)Sy

It

&
N
fD> > D> (D

(3.7)

ey eny eny enid

a(F2 - 1)y, +mPs, + (14 mPPsi, i

where the parameter m(— 1Y2EmE 1) describes the type of extensiona flow, and & is the largest extension
rate. §; are the components of the orientation tensor S. The parameter a; can be expressed in terms of
flaay @

1

a =——. (3.8)
' fl\%AX -1

f,\ﬁAx governs the steady-state value of the viscosity in extensional flows, and corresponds to the maxi mum

of storable eastic energy. It is the only non-linear material parameter of the theory for describing the
polymer melt rheology of linear polymers in irrotational flows. Note that although dissipative constraint
release is a rate process, integration of Eq.(3.7) leads to a molecular stress function f which is deformation
dependent (Wagner et al., 2001).

4. The molecular stressfunction theory for long-chain branched melts

The simplest model of a section of a long-chain branched macromolecule consists of one chain
segment oriented in the direction of the tube defined by the “backbone” of the macromolecule, and one or
more side chains representing b- 1 crosdinked chain segments (Fig.3). Note that a side chain can contain

more than one chain segment, depending on the length of the side chain relative to the entanglement length.
Thus, according to this modd, chain segments fall into two distinct categories: either they belong to the
backbone and are stretched by deformation, or they do not belong to the backbone and are compressed by
deformation (Wagner et al., 2003).
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< >

Fg3. Tube ssgmant of along-chain branched poymer mdecule before and dter deformetion: one dnain ssgment is sretched,
whilesdechain sggments are compressed (Wegner e al., 2003).

When the tube is stretched, one segment is extended, while b- 1 is compressed, leading to a tota
strain energy of

(4.1)

0
3kT b f25

Wse _L(p2_g),0- 18 1
b §
Notethat in thevicinity of f2 =1, this strain energy function is well behaved, as Eq.(4.1) reduces to
Eq.(3.2).
The parameter b has values b3 1, with b =1 for linear melts. For b =2, excedlent agreement with

experimental data of a long-chain branched (radiation-crosslinked) PP melt is found (Fig.4). Note that the
increasein e ongational viscosity is stegper for long-chain branched melts than for linear melts.
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Fig4. Uniaxid visoodty h, of along-chan branched PP mdt (Bagtian, 2001). Comparison of expaimentd deta (Symbds) to
predi dions of theM SFmodd with b = 2 (QVISF modd).
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Introducing again constraint release as a nonlinear dissipative process, which modifies the energy

balance of tube deformation, leads to a strai n-dependent evolution equation for the mol ecular stress function
of theform

1 u
= CRy. (4.2)
Tto,.0-1g f2-1 4§

The evalution equation for the molecular stress function in constant strain-rate extensiond flows is
then given by

e u

e u

) , &S11+mSy, - (1+m)S;, u
1f% _, bf” & i 4.3)

it b-18 u '

H+=5e 2.1 > P

& =Sy +mPS,, +(1+m)2 Sy g

e fuax - 1 8]

The enhanced slope of e ongational viscosity of long-chain branched polymer melts in compari son to
linear meltsis caused by the fact that a significant percentage of the chain segments of along-chain branched
molecule is compressed by the e ongationa flow (the “side chains”), and only part of the chain segments is
stretched (the “backbone’). In the multi-chain segmental MSF modd devel oped here, for one chain segment
stretched, b- 1 chan segments are compressed. While for LDPE mets produced by the tubular
polymerization processes typically vaues of b- 2 are found, more highly branched autoclave LDPE melts
show values of b =3 and evenof b =4 (Fig.5) (Wagner et al., 2003).
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Fg5. Eongaiond visoosty data(symbds) of L DPE mdtsand predidions by MSF modd (Wegner et d., 2003):
8 LDPEtbda-a: b =2 and fjGay = 30;b)LDPEatodaveO: b=4 ad 3, =80.

5. Comparison of M SF predictions to the elongational and shear rheology of model branched
polystyrene melts

It is difficult if not impossible to derive the parameter b from the topology of randomly branched
LDPE; therefore we havetreated b (Wagner et al., 2003) as afit parameter (the only onein the hyperdastic
limit). However, in the meantime we have anaysed the nonlinear rheology of comb shaped model
polystyrene mdts investigated by Hepperle (2003) and Minstedt, and we find that indeed, b as derived from
the topology of these model melts by assuming stretch of the backbone chain and compression of the side
chains, is in quantitative agreement with experimental evidence seen in uniaxial extension (Wagner et al.,
2004): Following the basic idea of the MSF modd proposed by Wagner et al. (2003), we assume
simpligticaly that all grafted side chains will be increasingly compressed onto the backbone during the
elongational deformation. Then the parameter b is obtained as the ratio of the number average molar mass of
the grafted polymer, M, , to the number average molar mass M, , of the backbone, which can be

expressed in terms of the number average mass fraction F |, , of grafted side chains

M, 1

b= = .
M n,bb 1-F n,br

(5.1)

For linear polymers, naturadly b =1 isobtained from Eq.(5.1).

As exemplified in Fig.6, agreement between predicted and observed slopes of the e ongational
viscosity after inception of strain-hardening is excdlent for al modd branched polystyrene melts
investigated. Within the experimentally accessible window of € ongation rates, time-strain separability of the
measured elongational viscosities is observed. Also, as far as a maximum strain-hardening could be
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determined, the data are compatible with the implicit assumption of the MSF modd that the materia
parameter f3, isthe samefor all relaxation times of the terminal zone of the rel axation spectrum.
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Fg6. Comperison of dongetiond visoosity data (symbals) of two branched PS mdtsto predidions (lines) of MSF theory (Wegner
etal., 2004).
g PS8006G22 F , p, =0.14,b =1.2; datedlline f\jax ® ¥, solidline fyjay =25;

b)PS7T0-32G-2: F , ,, =05, b =2.0;dotedlline fGax ® ¥ ,solidlinef Gy =80.

The shear damping function of model branched PS mets was measured by nonlinear shear relaxation
experiments (Hepperle, 2003). Although the shear strain range investigated was limited to ¢<5, thisisthe
important shear strain range determining the shear stress in steady shear-rate flows. As is well known,
branching also has significant influence on the shear strain behavior, although the effect is usually much
smaller than in extensiond flows (Wagner et al., 2004): mets with high side chain mass fractions show
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substantialy less shear damping than melts with low side chain mass fractions, and for shear strains up to 5,
their shear damping functions are close to the hyper-éastic or “BKZ” limit, i.e,, the dissipative effect of
constraint release is very small (Fig.7a). This agrees with earlier investigations of Wagner and Ehrecke
(1998) demonstrating that a LDPE melt shows a reversible (or BKZ) behavior in double-step shear strain
experiments in contrast to a (linear) polyisobutene melt, which showed an “irreversible’ behavior. With
decreasing side chain mass fraction, the shear damping behavior of the model branched polystyrene melts
approaches the behavior of linear polystyrene (PS-r-95), and the influence of the parameter a, describing

the additional dissipative constraint rel ease dueto rotational flow becomes important (Fig.7b).
a)

h(@

b)

h(g)

Fg7. Comperison of shear damping fundion data (symbas) of two PS mdtsto predidions of MSF theary (Wegner e dl., 2004);
upper datted lineis the predidion assuming no condraint rdesse (j.e, f,\ﬁAx ® ¥, a, =0); lowe datted lineindicates
pred dions of Dai-Edwards (IAA) theary i.e, fiaay © 1.
8 branched PS70-32G-22: full lineisthepredidion of MSF modd withperametes b = 2, f,3, =80 ad a, =0;
b) lineer PSr-95: full lineisthepredidion of MSF modd withparametesb =1, fiaa, =6 ada, = 0.4.
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Conclusions

Returning to the three specific issues concerning the rheology of linear and long-chain branched
polymer melts mentioned in the introduction, we can state that:

- The concept of a strain-dependent tube diameter, which decreases with increasing deformation, explains
consistently the strain hardening of linear as wdl as of long-chain branched polymer mets (Wagner et
al., 2001).

The steeper slope of the dongational viscosity after inception of strain-hardening for branched melts in
comparison to linear melts is due to the fact that in branched melts, only afraction (“the backbone™) of
chain segmentsis stretched, whil e side chains are compressed (Wagner et al., 2003; 2004).
Long-chain branched polymer melts show a reversible or “BKZ” behavior in double-step shear strain
experiments, because dissipative constraint release occurs only a higher shear strains, in contrast to
linear melts, were dissipation starts already at smaller shear strains (Wagner et al., 2004).

Challenges in nonlinear rheology which still remain to be studied are, to mention just a few, the

relations between macromolecular architecture of homopol ymers and the nonlinear parameters f,\ﬁAx and
a, of the MSF theory, as wel as modeling the nonlinear rheology of blends of linear and long-chain
branched polymers.
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