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Melt rheology of polydisperse polymers is reviewed with special emphasis on the separation of effects of 

chain orientation and chain stretch, as described consistently by the Molecular Stress Function (MSF) theory. 
Based on energy balance considerations, first the Free Energy of a tube segment with a strain-dependent tube 
diameter is established, and it is demonstrated that the molecular stress is a function of the orientational free 
energy under these conditions. Then constraint release is introduced as a dissipative process, which modifies the 
energy balance of tube deformation, and leads to a strain-dependent evolution equation for the molecular stress 
function. For simple shear and extensional flows, the predictions of the MSF model consisting of a history 
integral for the stress tensor and a differential evolution equation for the molecular stress function with only one 
(extensional flows) or two (shear flow) nonlinear material parameters, are in excellent agreement with 
experimental data of HDPE, LDPE, LLDPE, PS, and PP melts. The concept of a strain-dependent tube diameter, 
which decreases with increasing deformation, explains consistently the strain hardening of linear as well as of 
long-chain branched polymer melts. 
 
Key words: linear polymer melts, long-chain branched polymer melts, molecular stress function theory, 

orientation, stretch strain energy function, extensional flow, shear flow. 
 
1. Introduction 
 
 In spite of considerable progress made in recent years in understanding the dynamics of 
macromolecular systems, there are still considerable challenges in understanding the melt rheology of 
“simple” homopolymers like PE or PS, which are produced commercially by the millions of tons. In this 
review, three specific issues will be considered: 
• Why is it that polydisperse linear and long-chain branched polymer melts show a strain-hardening 

behavior which is qualitatively (so not quantitatively) similar in all aspects? 
• Why is the slope of the elongational viscosity after inception of strain-hardening higher for branched 

melts than for linear melts (Wagner, 1999), and how can we quantify this effect? 
• Why do long-chain branched polymer melts show a reversible or “BKZ” behavior in double-step shear 

strain experiments, while the behavior of linear melts is irreversible (Wagner and Ehrecke, 1998)? 
 We are not concerned here with the linear-viscoelastic properties of polymer melts and their relation 
to molecular weight and molecular weight distribution, where based on the concept of reptation (de Gennes, 
1974) considerable progress has been made in recent years. We are rather concerned with the nonlinear 
rheology of polydisperse melts, which still poses tremendous challenges both experimentally and theoretically. 
 
2. Tube models and chain stretch 
 
 Intermolecular interaction of concentrated systems of linear polymer chains is modeled by the tube 
concept: the mesh of constraints caused by surrounding chains confines the macromolecular chain laterally 
to a tubelike region. Doi and Edwards (DE) assumed that the diameter 0a  of the tube is not changed even by 
large non-linear deformations, or equivalently that the tension in the deformed macromolecular chain 
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remains constant and equal to its equilibrium value (Doi and Edwards, 1978; 1986). The main contribution to 
the extra stress tensor ( )tσ  is then given by the orientation of the tube segments due to the flow. The 
resulting constitutive equation is of the single integral form 
 

  ( ) ( ) ( )∫
∞−

′′′−=
t

tdtttmt IA
DESσ , (2.1) 

 
if the tube segments are assumed to align independently of each other in the flow field (the “Independent 
Alignment (IA)” approximation). The strain measure is given by 
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where S is the second order orientation tensor. The bracket denotes an average over an isotropic distribution 
of unit vectors u and can be expressed as a surface integral over the unit sphere 
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u′  is the length of the deformed vector u′ , which is calculated from the affine deformation hypothesis (with 

1
tF − as the deformation gradient tensor) as 

 

  uFu 1
t ⋅=′ − . (2.4) 

 
 Consequently, the DE model does not account for any strain hardening in extensional flows (Figs 1 
and 2). It does, however, predict the separability of time and strain effects in the nonlinear stress relaxation 
modulus ( ) ( ) ( )oo htGtG γ=γ, , which is observed even for polydisperse polymer melts over several decades 
of relaxation time. 
 

 
 
Fig.1. Uniaxial viscosity uµ  of a polydisperse linear PS melt (Bastian, 2001). Comparison of experimental data (symbols) to 

predictions of DE and LMSF (zero parameter) model. 
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Fig.2. Uniaxial ( )uµ , equibiaxial ( )eµ , and planar ( )2p1p µµ ,  viscosities of a HDPE melt. Comparison of experimental data 

(symbols) to predictions of DE and LMSF (zero parameter) models (Bastian, 2001). 
 
 Doi and Edwards (1986) incorporated a stretch process with a stretch λ  of the tube segments due to 
the flow in order to explain the discrepancies of the DE theory at start-up of shear and extensional flows. 
Pre-averaging the stretch, i.e. assuming that the stretch is uniform along the chain contour length and an 
explicit function ( )tλ  of the observation time, which operates on the orientational configuration resulting 
from the integration over the strain history, the extra stress tensor is given by 
 

  ( ) ( ) ( ) ( )∫
∞−

′′′−λ=
t

2 tdtttmtt IA
DESσ .  (2.5) 

 
 Equation (2.5) generated the necessity to find stretch evolution equations, and a vast variety of 
concepts based on different kinetic ideas have been proposed in recent years. Models of this type invariably 
lead to rate-dependent tube stretch, and to obtain agreement with experimental data of polydisperse polymer 
melts, multi-mode formulations with an excessive number of empirical fit parameters are needed.  
 While in models with rate-dependent tube stretch, the tube diameter is invariably assumed to stay 
constant and equal to its equilibrium value oa , tube stretch can also be introduced by the assumption of a 
strain-dependent tube diameter, as first suggested by Marrucci and de Cindio (1980). In this way, also the 
pre-averaging of the stretch can be avoided, which is inherently present in models based on Eq.(2.5) or its 
differential approximations, and which might be the root cause for the need of a large number of nonlinear 
parameters.  
 A generalized tube model with strain-dependent tube diameter was presented by Wagner and 
Schaeffer (1992; 1993; 1994). In the Molecular Stress Function (MSF) theory, tube stretch is caused by the 
“squeeze” of the surrounding polymer chains, leading to a reduction of the tube diameter a from its 
equilibrium value oa . Taking into account that the tube diameter a represents the mean field of the 
surrounding chains, it is assumed that the tube diameter is independent of the orientation of tube segments. 
The extra stress is then given as  
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  ( ) ( ) ( )∫
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′′′−=
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where the molecular stress function f is the inverse of the relative tube diameter 
 
  aaf o= . (2.7) 
 
 In contrast to Eq.(2.5), tube stretch in Eq.(2.6) does not depend on the observation time t, but 
depends on the strain history, i.e. for time-dependent strain histories, tube stretch varies along the tube. 
 Note that while S is related directly to the deformation history via Eq.(2.4), no a priori dynamics of 
the internal variable f is prescribed in the MSF model. Rather, 2f  is assumed to be directly related to the 
strain energy stored in the polymeric system, and is determined as a solution of an evolution equation 
derived from an energy balance argument (Wagner et al., 2001). 
 
3. The molecular stress function theory for linear melts 
 
 Based on prior work of de Gennes (1974) and Marrucci and Hermans (1980), the molecular stress 
function f for linear melts is related to a strain-energy function MSFw  of the form 
 

  ( )1f
kT3

w 2 −=MSF . (3.1) 

 
 Neglecting dissipative constraint release, i.e. considering the hyper-elastic limit, the power input of 
the stress tensor into the polymer system is equal to the increase of the strain energy by tube deformation 
(Wagner et al., 2001). 2f  is found as solution of the evolution equation (with velocity gradient κ  and 

plateau modulus o
NG ) 
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i.e. 2f  is an exponential of the orientational free energy 0ukT3 >′< ln . Note that by use of Eq.(3.3), the 
strain energy function of Eq.(3.1) can be expressed as 
 

  1ffu
kT3

w 22
o −−+′= lnlnLMSF ,  (3.4) 

 
i.e. as sum of orientational free energy and stretch energy. The part of the strain energy due to chain stretch 
has the desired properties, namely a minimum at equilibrium ( )1f 2 =  and a quadratic dependence on f in the 
vicinity of equilibrium. 
 Predictions of the MSF model are in excellent agreement with the onset of strain-hardening in 
uniaxial, equibiaxial and planar extension of polydisperse linear polymer melts (LMSF model), as 
exemplified in Figs 1 and 2 (Bastian, 2001). 
 Now constraint release (CR) is introduced as a dissipative process (Wagner et al., 2001), which 
modifies the energy balance of tube deformation, and leads to a strain-dependent evolution equation for the 
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molecular stress function of the form 
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 Constraint release is considered to be the consequence of different convection mechanisms for tube 
orientation and tube-cross section, and for constant strain-rate flows can be expressed as 
 

  ( ) ( ) SDWSD :1fa:1faCR
22

2
222

1 ⋅−+−= , (3.6) 
 
with D and W being the rate of deformation and rate of rotation tensor, respectively. The non-linear material 
parameters verify 0a1 ≥  and 0a2 ≥ . Note that in extensional flows, constraint release depends only on the 
parameter 1a , while in a simple shear flow, both the parameters 1a  and 2a  are of relevance. The evolution 
equation for the molecular stress function of linear melts in extensional flows is given by 
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where the parameter ( )1m21m ≤≤−  describes the type of extensional flow, and ε&  is the largest extension 
rate. iiS  are the components of the orientation tensor S. The parameter 1a  can be expressed in terms of 

2
MAXf  as 

 

  
1f

1a 2
MAX

1
−

= .  (3.8) 

 
2

MAXf  governs the steady-state value of the viscosity in extensional flows, and corresponds to the maximum 
of storable elastic energy. It is the only non-linear material parameter of the theory for describing the 
polymer melt rheology of linear polymers in irrotational flows. Note that although dissipative constraint 
release is a rate process, integration of Eq.(3.7) leads to a molecular stress function f which is deformation 
dependent (Wagner et al., 2001). 
 
4. The molecular stress function theory for long-chain branched melts 
 
 The simplest model of a section of a long-chain branched macromolecule consists of one chain 
segment oriented in the direction of the tube defined by the “backbone” of the macromolecule, and one or 
more side chains representing 1−β  crosslinked chain segments (Fig.3). Note that a side chain can contain 
more than one chain segment, depending on the length of the side chain relative to the entanglement length. 
Thus, according to this model, chain segments fall into two distinct categories: either they belong to the 
backbone and are stretched by deformation, or they do not belong to the backbone and are compressed by 
deformation (Wagner et al., 2003). 
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Fig.3. Tube segment of a long-chain branched polymer molecule before and after deformation: one chain segment is stretched, 

while side chain segments are compressed (Wagner et al., 2003). 
 
 When the tube is stretched, one segment is extended, while 1−β  is compressed, leading to a total 
strain energy of  
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 Note that in the vicinity of 1f 2 = , this strain energy function is well behaved, as Eq.(4.1) reduces to 
Eq.(3.1). 
 The parameter β  has values 1≥β , with 1=β  for linear melts. For 2=β , excellent agreement with 
experimental data of a long-chain branched (radiation-crosslinked) PP melt is found (Fig.4). Note that the 
increase in elongational viscosity is steeper for long-chain branched melts than for linear melts. 
 

 
 

Fig.4. Uniaxial viscosity uη  of a long-chain branched PP melt (Bastian, 2001). Comparison of experimental data (symbols) to 
predictions of the MSF model with 2=β  (QMSF model). 
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 Introducing again constraint release as a nonlinear dissipative process, which modifies the energy 
balance of tube deformation, leads to a strain-dependent evolution equation for the molecular stress function 
of the form 
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 The evolution equation for the molecular stress function in constant strain-rate extensional flows is 
then given by 
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 The enhanced slope of elongational viscosity of long-chain branched polymer melts in comparison to 
linear melts is caused by the fact that a significant percentage of the chain segments of a long-chain branched 
molecule is compressed by the elongational flow (the “side chains”), and only part of the chain segments is 
stretched (the “backbone”). In the multi-chain segmental MSF model developed here, for one chain segment 
stretched, 1−β  chain segments are compressed. While for LDPE melts produced by the tubular 
polymerization processes typically values of 2−β  are found, more highly branched autoclave LDPE melts 
show values of 3=β  and even of 4=β  (Fig.5) (Wagner et al., 2003). 
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Fig.5. Elongational viscosity data (symbols) of LDPE melts and predictions by MSF model (Wagner et al., 2003):  
 a) LDPE tubular-o: 2=β  and 30f 2

MAX = ; b) LDPE autoclave-O: 4=β  and 80f 2
MAX = . 

 
5. Comparison of MSF predictions to the elongational and shear rheology of model branched 

polystyrene melts 
 
 It is difficult if not impossible to derive the parameter β  from the topology of randomly branched 
LDPE; therefore we have treated β  (Wagner et al., 2003) as a fit parameter (the only one in the hyperelastic 
limit). However, in the meantime we have analysed the nonlinear rheology of comb shaped model 
polystyrene melts investigated by Hepperle (2003) and Münstedt, and we find that indeed, β  as derived from 
the topology of these model melts by assuming stretch of the backbone chain and compression of the side 
chains, is in quantitative agreement with experimental evidence seen in uniaxial extension (Wagner et al., 
2004): Following the basic idea of the MSF model proposed by Wagner et al. (2003), we assume 
simplistically that all grafted side chains will be increasingly compressed onto the backbone during the 
elongational deformation. Then the parameter β  is obtained as the ratio of the number average molar mass of 
the grafted polymer, nM , to the number average molar mass bbnM ,  of the backbone, which can be 
expressed in terms of the number average mass fraction brn,Φ  of grafted side chains 
 

  
brnbbn

n

1
1

M
M

,, Φ−
==β . (5.1) 

 
For linear polymers, naturally 1=β  is obtained from Eq.(5.1). 
 As exemplified in Fig.6, agreement between predicted and observed slopes of the elongational 
viscosity after inception of strain-hardening is excellent for all model branched polystyrene melts 
investigated. Within the experimentally accessible window of elongation rates, time-strain separability of the 
measured elongational viscosities is observed. Also, as far as a maximum strain-hardening could be 
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determined, the data are compatible with the implicit assumption of the MSF model that the material 
parameter 2

MAXf  is the same for all relaxation times of the terminal zone of the relaxation spectrum. 
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Fig.6. Comparison of elongational viscosity data (symbols) of two branched PS melts to predictions (lines) of MSF theory (Wagner 
et al., 2004). 

 a) PS 80-0.6G-22: 14.0brn =Φ , , 2.1=β ; dotted line: ∞→2
MAXf , solid line 25f 2

MAX = ; 

 b) PS 70-3.2G-22: 5.0brn =Φ , , 0.2=β ; dotted line: ∞→2
MAXf , solid line 80f 2

MAX = . 
 
 The shear damping function of model branched PS melts was measured by nonlinear shear relaxation 
experiments (Hepperle, 2003). Although the shear strain range investigated was limited to 5<γ , this is the 
important shear strain range determining the shear stress in steady shear-rate flows. As is well known, 
branching also has significant influence on the shear strain behavior, although the effect is usually much 
smaller than in extensional flows (Wagner et al., 2004): melts with high side chain mass fractions show 
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substantially less shear damping than melts with low side chain mass fractions, and for shear strains up to 5, 
their shear damping functions are close to the hyper-elastic or “BKZ” limit, i.e., the dissipative effect of 
constraint release is very small (Fig.7a). This agrees with earlier investigations of Wagner and Ehrecke 
(1998) demonstrating that a LDPE melt shows a reversible (or BKZ) behavior in double-step shear strain 
experiments in contrast to a (linear) polyisobutene melt, which showed an “irreversible” behavior. With 
decreasing side chain mass fraction, the shear damping behavior of the model branched polystyrene melts 
approaches the behavior of linear polystyrene (PS-r-95), and the influence of the parameter 2a  describing 
the additional dissipative constraint release due to rotational flow becomes important (Fig.7b). 
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Fig.7. Comparison of shear damping function data (symbols) of two PS melts to predictions of MSF theory (Wagner et al., 2004); 
upper dotted line is the prediction assuming no constraint release (i.e., ∞→2

MAXf , 0a2 = ); lower dotted line indicates 

predictions of Doi-Edwards (IAA) theory, i.e., 1f 2
MAX ≡ .  

 a) branched PS 70-3.2G-22: full line is the prediction of MSF model with parameters 2=β , 80f 2
MAX =  and 0a2 = ; 

 b) linear PS-r-95: full line is the prediction of MSF model with parameters 1=β , 6f 2
MAX =  and 4.0a2 = . 
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Conclusions 
 
 Returning to the three specific issues concerning the rheology of linear and long-chain branched 
polymer melts mentioned in the introduction, we can state that: 
• The concept of a strain-dependent tube diameter, which decreases with increasing deformation, explains 

consistently the strain hardening of linear as well as of long-chain branched polymer melts (Wagner et 
al., 2001). 

• The steeper slope of the elongational viscosity after inception of strain-hardening for branched melts in 
comparison to linear melts is due to the fact that in branched melts, only a fraction (“the backbone”) of 
chain segments is stretched, while side chains are compressed (Wagner et al., 2003; 2004). 

• Long-chain branched polymer melts show a reversible or “BKZ” behavior in double-step shear strain 
experiments, because dissipative constraint release occurs only at higher shear strains, in contrast to 
linear melts, were dissipation starts already at smaller shear strains (Wagner et al., 2004). 

 Challenges in nonlinear rheology which still remain to be studied are, to mention just a few, the 
relations between macromolecular architecture of homopolymers and the nonlinear parameters 2

MAXf  and 

2a  of the MSF theory, as well as modeling the nonlinear rheology of blends of linear and long-chain 
branched polymers. 
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