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This study analyzes stress intensity factors for a pair of edge cracks in a semi-infinite medium with a 
distribution of eigenstrain and subjected to a far field uniform applied load. The eigenstrain is considered to be 
distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by 
a distribution of edge dislocations. By using the complex potential functions of the edge dislocations, a simple 
effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed 
to obtain some numerical results of the stress intensity factor for different distributions of eigenstrain. The 
numerical results reveal that the stress intensity factor of the edge cracks is significantly influenced by the 
magnitude as well as distribution of eigenstrain within the finite depth. The eigenstrains that induce compressive 
stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, 
enhances the apparent fracture toughness of the material. 
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1. Introduction 
 
 Eigenstrain (Mura, 1987) is the generic name of such non-elastic strains as thermal expansion, phase 
transformation, initial strains, plastic strains, and mismatch strains. The incompatibility of these eigenstrains 
results in eigenstresses that are self-equilibrated internal stresses. The free surface of a semi-infinite medium 
may undergo various kinds of machining processes like cutting, grinding, milling, etc., as well as heat 
treatment processes. Consequently, eigenstrain is developed at and near the free surface of the medium. 
Again, the free surface may be exposed to different temperatures than that in other parts of the medium, 
which results in a nonuniform temperature distribution near the free surface. This also causes the eigenstrain 
to develop at and near the free surface. The effect of this eigenstrain on the stress intensity factor needs to be 
analyzed in order to understand and improve the fracture characteristics of the medium. So far, stress 
intensity factors of edge cracks in semi-infinite media have been studied extensively for various loading 
conditions, such as, far field uniform load, uniform pressure over part of the crack surface, point load, etc. 
The works of Stallybrass (1970), Hartranft and Sih (1973), Sneddon and Das (1971), Sneddon (1946), and 
Afsar (1997) may be cited as a few examples. More recently, Sekine and Afsar (1999) considered a single 
edge crack in a semi-infinite functionally graded material (FGM) and investigated the effect of eigenstrain on 
the stress intensity factor followed by the optimization of composition profile for the desired brittle fracture 
characteristics in the FGM medium. As an extension of their work, they (Afsar and Sekine, 2000) carried out 
further research to investigate the effect of periodic edge cracks on the material distribution for prescribed 
fracture characteristics in the semi-infinite medium. 
 In this study, we concentrate on the two edge cracks in a semi-infinite medium of a homogeneous 
material with a distributed eigenstrain. It is recognized that an eigenstrain is inherently developed in an FGM 
body due to a nonuniform coefficient of thermal expansion, as a result of cooling from sintering temperature. 
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However, it may also be developed in a semi-infinite medium of a homogeneous material due to various 
machining and heat treatment processes. This eigenstrain is considered here for investigating its effects on 
the stress intensity factor for a pair of edge cracks in the semi-infinite medium of a homogeneous material. In 
our present analysis, the eigenstrain is assumed to be spread over a region of finite depth only that extends 
from the free surface. This assumption is fairly reasonable as the various machining and heat treatment 
processes affect the region whose depth from the free surface is indeed small. For such a problem, a simple 
and effective method is developed to evaluate the stress intensity factors by using the method of complex 
potential functions of edge dislocations representing the cracks. To demonstrate the method, some numerical 
results are obtained and presented for different functional forms of eigenstrain distribution. 
 
2. Model of the problem 
 
 A semi-infinite medium shown in Fig.1, is subjected to a far-field uniform applied stress 0

xσ . The 

region of finite depth w has also an arbitrary distribution of eigenstrain *ε , which is a function of y only. 
Shown in the figure are also two edge cracks of equal length A and B, both of which are perpendicular to the 
free surface. The length of the cracks and the distance between them are denoted by a and d, respectively. A 
principal coordinate system yx −  and a secondary coordinate system 11 yx −  are considered, the origins of 
which are located at the mouths of cracks A and B, respectively. If we define two complex variables 

iyxz +=  and 111 iyxz +=  that represent the coordinate of a point with reference to the principal and 
secondary coordinate systems, respectively, the following relationship holds between them 
 
  dzz1 −= .  (2.1) 
 
 For the model outlined above, a method is developed to evaluate the stress intensity factor for plane 
stress in order to investigate the effect of eigenstrain on the stress intensity factors. 
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Fig.1. Analytical model of the problem. 
 
3. Stress intensity factor 
 
3.1. Stress field in an uncracked medium 
 
 First, we consider the semi-infinite medium without any cracks. The uncracked semi-infinite 
medium is subjected to a uniform load 0

xσ  along with an arbitrary distribution of the eigenstrain ( )y∗ε  in the 
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region of finite depth w. The resultant stress field in the uncracked semi-infinite medium may be determined 
by superposition of the stress due to the eigenstrain ( )y∗ε  and the applied load 0

xσ . 

 The stress due to eigenstrain ( )y∗ε  can be determined following the philosophy outlined by Sekine 
and Afsar (1999). Since the depth w is very small compared to that of the lower region of the semi-infinite 
medium, the eigenstrain ( )y∗ε  in the region of finite depth w is completely suppressed by the restraining 
effect from the lower region of the semi-infinite medium. Therefore, the stress developed in the region of 
finite depth w due to the eigenstrain can be given by 
 

  ∗∗ ε−=σ Ex   (3.1) 
 
where E is the Young’s modulus. The stress in the remaining part of the semi-infinite medium due to the 
eigenstrain is negligible as the region beyond the finite depth w is of infinite dimension over which the stress 
is distributed. Thus, the resultant stress field in the region of finite depth w is ( )0

x
*
x σ+σ  while the stress 

beyond w is equal to the applied stress 0
xσ . 

 
3.2. Cracked semi-infinite medium 
 
 The resultant stress field calculated for the uncracked semi-infinite medium in the foregoing is 
disturbed due to the presence of the cracks A and B. Therefore, it is necessary to determine the redistribution 
of the stress field in the presence of the cracks. The redistribution of the stress field due to the presence of the 
cracks is computed by representing the cracks by a continuous distribution of edge dislocations. First, we 
consider the crack A. As shown in Fig.2, the crack A is represented by a continuous distribution of edge 
dislocations of densities ( )sb A

x  and ( )sb A
y , which are the x and y components of the resultant density, 

respectively. The complex potential functions for these continuous distributions of edge dislocations can be 
written as (Sekine and Afsar, 1999) 
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where 
 
  =µ shear modulus of rigidity,          =κ Kolosov’s constant, 
   

  ν−=κ 43  for plane strain,               ( ) ( )ν+ν−=κ 13  for plane stress. 
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Fig.2. Representation of cracks by continuous distribution of edge dislocations ( )as0 −≥≥ . 
 

 The stresses inside an isotropic elastic medium can be expressed in terms of the complex potential 
functions ( )zAΦ  and ( )zAΨ  and their complex conjugates as follows (Muskhelishvili, 1975) 
 

  ( ) ( )



 Φ+Φ=σ+σ zz2 AAA

yy
A
xx ,  (3.3a) 
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where the prime represents differentiation with respect to z and the over bar represents the complex 
conjugate. 
 Similarly, the stresses for the dislocations representing the crack B as shown in Fig.2 can be given by 
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where ( )1

B zΦ  and ( )1
B zΨ  are the complex potential functions for edge dislocations representing the crack 

B. These functions have the same expressions as those of Eqs (3.2a, b), except that z  is replaced by 1z  and 
the superscript A is replaced by B. Finally, the resultant stresses due to the edge dislocations representing the 
cracks A and B are obtained by superposition as  
 
  B

xx
A
xxxx σ+σ=σ ,  (3.5a) 

 
  B

yy
A
yyyy σ+σ=σ ,  (3.5b) 

 
  B

xy
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xyxy σ+σ=σ .  (3.5c) 
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 Now, the redistributed stress field in the cracked medium can be determined by adding the 
stress components in Eqs (3.5a-c) to the stress computed for the uncracked semi-infinite medium. The 
redistributed stress field must satisfy the boundary conditions along the traction free crack surfaces, i.e., 
 
  0*

x
0
x

B
xx

A
xx =σ+σ+σ+σ ;          0x = ,          ay0 −≤≤ ,  (3.6a) 

 
  0B

xy
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xy =σ+σ ;                          0x = ,          ay0 −≤≤ .  (3.6b) 

 
 It is also noted that the following relationships hold between the dislocation density functions 
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 Now applying the boundary conditions given by Eqs (3.6a, b) and using the relations in Eqs (2.1) 
and (3.7a, b), we obtain 
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 Equations (3.8a) and (3.8b) are two singular integral equations and it is seen that there is a coupling 
between the Burgers vectors xb  and yb  which give the Mode I and Mode II stress intensity factors, 
respectively. 
 
4. Numerical method of solution 
 
 An analytical solution to the singular integral equations as given by Eqs (3.8a, b) is not possible. 
Therefore, a numerical method is adopted to solve the equation. First, the singular integral equation is 
normalized over the interval [ ]11 +− ,  by using the substitutions  
 

  1
a
s2t −= ,  (4.1a) 

 

  1
a
y2

−=ξ ,  (4.1b) 

 

  ( )wa
DP = ,          

w
d2D = ,  (4.1c) 

 



Analysis of stress intensity factors for a pair of edge cracks ... 275

as 
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  ( ) ( )sbtB xx = ,          ( ) ( )ybsB yy = .  (4.3f) 
 
 The dislocation density functions ( )tBx  and ( )tBy  can be expressed as the product of a fundamental 

function ( )tW , which characterizes the bounded-singular behavior of ( )tBx  and ( )tBy , and a bounded 
continuous function ( )txϕ  and ( )tyϕ  in the closed interval [ ]11 +− , . Thus 
 
  ( ) ( ) ( )ttWtB xx ϕ= ,  (4.4a) 
 
  ( ) ( ) ( )ttWtB yy ϕ= .  (4.4b) 
 
 Using the Gauss-Jacobi integral formula in the manner similar to that developed by Erdogan et al. 
(1973), the singular integral equation can be converted to a system of linear algebraic equations to determine 
the unknowns ( )txϕ  and ( )tyϕ  as  
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where the integration and collocation points are, respectively, given by (Hills et al., 1996) 
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 It can readily be shown that the Mode I and II stress intensity factors can be derived as (Hills et al., 
1996) 
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 The solution of Eqs (4.5a, b) provides the values of xϕ  and yϕ  only at the integration points kt . The 
calculation of stress intensity factors, as seen from Eq.(4.7), requires the values of these functions at the 
crack tip, i.e., ( )1x +ϕ  and ( )1y +ϕ . These values can be obtained by the following Krenk’s (1975) 
interpolation formula 
 

  ( )iy,x

n

1i
y,x t

21n2
1i2

n
1n2
1i2

1n2
2)1( ϕ







 π

+
−







 π

+
−

+
=+ϕ ∑

= tan

sin
.  (4.8) 

 
 Using Eqs. (4.5a, b) through (4.8), stress intensity factors can be calculated for a given applied load 
and eigenstrain distribution. 
 
5. Numerical results and discussion 
 
 In this section, some numerical results of stress intensity factors are calculated and presented for 
various distributions of the eigenstrain in the region of finite depth w of the semi-infinite medium. The 

distributions of the eigenstrain considered are parabolic 1 distribution: 2
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 +ε=ε

w
y1*

xx , and uniform distribution: 0*
xx ε=ε . These distributions of the eigenstrain are shown in Fig.3. 

The above five distributions have been chosen merely as examples. In the numerical calculation, the number 
of collocation and integration points n is taken as 100, for which the values of the stress intensity factors, 
calculated by setting 00 =ε , agree well with those obtained by Ishida (1979) as shown in Tab.1. When 

00 =ε , the problem reduces to the semi-infinite medium subjected to the applied load only.  
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Fig.3. Distribution of eigenstrains in the region of finite depth w. 
 

Table 1. Comparison of stress intensity factors predicted by the present model with those predicted by Isida 
(1979) for two edge cracks in a semi-infinite medium under uniform tension. 

 
ad  IK  IIK  
 Present model M. Isida Present model M. Isida 

0.1 0.776905 0.777 0.1994 0.2 
0.2 0.788869 0.789 0.1853 0.18 
0.5 0.817194 0.817 0.1594 0.16 
1.0 0.854256 0.854 0.1331 0.13 
2.0 0.911070 0.911 0.0909 0.09 
3.0 0.964360 0.964 0.0541 0.053 
4.0 1.007198 1.007 0.0316 0.030 
6.0 1.058003 1.058 0.0123 0.012 
8.0 1.082487 1.082 0.0058 0.006 
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 Figure 4a exhibits the Mode I and Mode II stress intensity factors as a function of normalized crack 
length wa  and normalized crack spacing wd . The stress intensity factors are also normalized dividing 
them by the true value of the stress intensity factor 12152.1K e =  for a single edge crack in a semi-infinite 

medium under a far field uniform load 0
xσ  only. The results correspond to the parabolic 1 distribution of the 

eigenstrain as shown in Fig.3. In calculating the stress intensity factor, we define a parameter 0
x

0E σε=γ  in 

which 0ε  is the eigenstrain at 0y =  and E is the Young’s modulus of the material. The parameter γ , in fact, 

is the ratio of eigenstress at 0y =  to the applied stress 0
xσ . The stress intensity factors shown in Fig.4a are 

obtained for 5.0=γ . The broken lines represent the Mode II stress intensity factors while the solid lines 
represent the Mode I stress intensity factors. It is noted that the Mode II stress intensity factors are only a 
small fraction of the Mode I stress intensity factors. For a small value of the crack spacing, the Mode II stress 
intensity factor is higher and it decreases as the crack spacing increases implying that the effect of one crack 
on the other diminishes. The Mode I stress intensity factor has the reverse trend of the Mode II stress 
intensity factor. The Mode I stress intensity factor increases with the increase of the crack spacing wd . The 
eigenstrain is distributed over the region of finite depth w and the crack tip crosses the region of the 
eigenstrain when 1wa ≥  showing points of inflection on the curves of the stress intensity factor. Figures 4b 
through 4e depict the normalized stress intensity factors for parabolic 2, parabolic 3, linear, and uniform 
distributions of the eigenstrain, respectively. The curves of all the figures have the same characteristics 
except that the Mode I stress intensity factors for the uniform distribution of the eigenstrain have quite sharp 
points of inflection at 1wa = . 
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Fig.4(a). Normalized stress intensity factors for parabolic 1 distribution of eigenstrain ( )5.0=γ . 
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Fig.4(b). Normalized stress intensity factors for parabolic 2 distribution of eigenstrain ( )5.0=γ . 
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Fig.4(c). Normalized stress intensity factors for parabolic 3 distribution of eigenstrain ( )5.0=γ . 
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Fig.4(d). Normalized stress intensity factors for linear distribution of eigenstrain ( )5.0=γ . 
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Fig.4(e). Normalized stress intensity factors for uniform distribution of eigenstrain ( )5.0=γ . 
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 Figure 5 illustrates the effect of the type of the eigenstrain distribution on the stress intensity factors. 
Both the Mode II and Mode I stress intensity factors are plotted for the five different distributions of the 
eigenstrain as shown in Fig.3. The uniform distribution of the eigenstrain is associated with the minimum 
stress intensity factor while the parabolic 3 distribution of the eigenstrain gives the maximum stress intensity 
factor. The average eigenstrain over the region of finite depth w is the maximum for the uniform distribution 
of the eigenstrain among all the five distributions. This, in turn, induces the maximum magnitude of average 
compressive eigenstress that has a reducing effect on the resultant stress intensity factor. Therefore, the 
uniform distribution of the eigenstrain gives the minimum stress intensity factor. On the other hand, the 
parabolic 3 distribution of the eigenstrain has the minimum average value of the eigenstrain over the region 
of finite depth w. This induces an average compressive eigenstress of the lowest magnitude attributing the 
least in the reduction of the resultant stress intensity factor. The other three curves for each mode of the 
stress intensity factor in Fig.5 fall between the two curves corresponding to the uniform and parabolic 3 
distributions of the eigenstrain. This is due to the fact that the average values of these three distributions of 
the eigenstrain fall between the average values of the uniform and parabolic 3 distributions of the eigenstrain. 
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Fig.5. Effects of the distribution of eigenstrain on stress intensity factors. 
 

 The normalized Mode I stress intensity factors as a function of the parameter γ  and normalized 
crack length wa  are shown in Fig.6a. The results correspond to 5.0wd =  and the linear distribution of the 
eigenstrain. The higher value of γ  indicates the higher magnitude of the eigenstrain at 0y = . This implies 
that the compressive eigenstress at 0y =  has also a higher value. Thus, the stress intensity factor has a lower 
value when γ  is higher. As stated earlier, the compressive eigenstress associated with the eigenstrain reduces 
the stress intensity factor. If there were no eigenstrain in the semi-infinite medium, the normalized stress 
intensity factor would be unity for a small value of normalized crack length wa . Because the small value of 

wa  implies that the distance d between the cracks is large compared to the crack length a. Thus, one can 
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reasonably obtain the value of stress intensity factor for a single crack in the semi-infinite medium subjected 
to the applied load 0

xσ  only, which will give the ratio 1KK e =I . However, the value of the ratio eKK I  is 
less than unity for a small value of wa  because of the eigenstrain in the finite region of depth w of the semi-
infinite medium. Considering the case of 5.0=γ  as an example, it is noted that the magnitude of eigenstress 
associated with the eigenstrain at 0y =  is 50% of the applied load for which the stress intensity factor IK  is 
also 50% of the stress intensity factor eK , the value of a single crack when the semi-infinite medium is 

subjected to the applied load 0
xσ  only. There is also another important point to be noted. When γ  exceeds 

unity, crack closure occurs up to certain length of the crack, i.e., the crack surfaces are in contact and no 
stress, i.e., intensity occurs. As an example, the stress intensity occurs only when wa  exceeds 0.5 for 

5.1=γ . 
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Fig.6(a). Normalized Mode I stress intensity factors as a function of normalized crack length and parameter 
γ  for linear distribution of eigenstrain. 

 
 Figure 6b illustrates the normalized Mode II stress intensity factors as a function of parameter γ  and 
normalized crack length wa  for a normalized crack spacing 5.0wd = . The results are plotted for the linear 
distribution of the eigenstrain. Here, we remember that the Mode II stress intensity occurs though the semi-
infinite medium is subjected to mode I loading only. The Mode II stress intensity factors are related to the 
sliding of the crack surfaces relative to each other in the direction parallel to the crack surfaces. It is noted 
that these stress intensity factors are also decreased as the parameter γ  increases. However, it is noted that 
the Mode II stress intensity factor is negative up to a certain crack length and positive when the crack length 
further increases for γ  greater than unity. This implies that a crack surface alters its sliding direction with 
respect to the other during the crack growth. 
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Fig.6(b). Normalized Mode II stress intensity factors as a function of normalized crack length and parameter 
γ  for linear distribution of eigenstrain. 

 
 In Fig.7a, normalized Mode I stress intensity factors are plotted as a function of normalized crack 
spacing wd  keeping the value of normalized crack length wa  constant ( 5.0wa = ). In the lower range of 
crack spacing, the stress intensity factor enhances as the distance d increases. After a certain value of d, the 
stress intensity factor becomes constant that indicates that one crack has no effect on the other, i.e., the single 
crack phenomenon is attained. Figure 7b displays the corresponding Mode II stress intensity factors as a 
function of crack spacing wd  for the constant value of 5.0wa = . From a small value of γ  to unity, the 
stress intensity factors gradually decrease to zero with the increase of crack spacing wd . The zero value of 
the stress intensity factors indicates that the cracks are far away from each other, and a single crack 
phenomenon is obtained, i.e., the Mode II stress intensity disappears. For values of γ  higher than unity, the 
stress intensity factors increase from a negative value to zero with the increase of the crack spacing wd  
indicating the same phenomena as before. However, in this case, the direction of sliding of the crack surfaces 
is opposite to that for small values of γ , i.e., for 1≤γ . 
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Fig.7(a). Normalized Mode I stress intensity factors as a function of normalized crack spacing and parameter 
γ  for linear distribution of eigenstrain. 
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Fig.7(b). Normalized Mode II stress intensity factors as a function of normalized crack spacing and 

parameter γ  for linear distribution of eigenstrain. 
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6. Conclusions 
 
 A simple and effective method is developed to analyze stress intensity factors for a pair of edge 
cracks in a semi-infinite medium with any arbitrary distribution of the eigenstrain and subjected to a far field 
applied load. The method can be applied to calculate the stress intensity factors for a single edge crack by 
using a large value of the distance between the cracks. From the numerical results, it is noted that the stress 
intensity factors significantly depend on the distribution of the eigenstrain. The positive eigenstrain induces a 
compressive eigenstress that reduces the stress intensity factors. This reduction of the stress intensity factors 
is attributed to the toughening of the material. The higher magnitude of an average eigenstrain has a greater 
effect on the stress intensity factors. With increasing the value of crack spacing, the Mode I stress intensity 
factors increase while the Mode II stress intensity factors decrease. For higher values of the eigenstrain, as 
the crack length increases, the Mode II stress intensity factors change sign from negative to positive, thereby 
indicating that the crack surfaces alter their sliding direction during crack growth. 
 
Nomenclature 
 
 a  – crack length 

yx
B
y

A
y

B
x

A
x B,B,b,b,b,b  – dislocation density functions 

 d  – distance between the cracks 
 E  – Young’s modulus 
 III K,K  – stress intensity factors 
 s  – distance along the crack line 
 kt  – integration points 
 w  – depth from free surface 
 yx −  – principal coordinate system 
 11 yx −  – secondary coordinate system 
 z  – complex variable ( )iyxz +=  
 *ε  – eigenstrain 
 κ  – Kolosov’s constant 
 µ  – shear modulus 
 ν  – Poisson’s ratio 
 rξ  – collocation points 

 0
xσ  – applied stress 

 *
xσ  – eigenstress 

 ΨΦ,  – complex potential functions 
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