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This study analyzes stress intensity factors for a pair of edge cracks in a semi-infinite medium with a
distribution of eigenstrain and subjected to a far field uniform applied load. The eigenstrain is considered to be
distributed arbitrarily over aregion of finite depth extending from the free surface. The cracks are represented by
a distribution of edge dislocations. By using the complex potential functions of the edge dislocations, a simple
effective method is devel oped to calculate the stress intensity factor for the edge cracks. The method is employed
to obtain some numerical results of the stress intensity factor for different distributions of eigenstrain. The
numerical results revea that the stress intensity factor of the edge cracks is significantly influenced by the
magnitude as well as ditribution of eigenstrain within the finite depth. The eigenstrains that induce compressive
stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn,
enhances the apparent fracture toughness of the material.
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1. Introduction

Eigenstrain (Mura, 1987) is the generic name of such non-éagtic strains as therma expansion, phase
transformation, initial strains, plastic strains, and mismatch strains. The incompatibility of these eigenstrains
results in eigenstresses that are self-equilibrated internal stresses. The free surface of a semi-infinite medium
may undergo various kinds of machining processes like cutting, grinding, milling, etc., as well as heat
treatment processes. Consequently, eigenstrain is developed at and near the free surface of the medium.
Again, the free surface may be exposed to different temperatures than that in other parts of the medium,
which results in a nonuniform temperature distribution near the free surface This also causes the eigenstrain
to devd op at and near the free surface. The effect of this eigenstrain on the stress intensity factor needs to be
analyzed in order to understand and improve the fracture characteristics of the medium. So far, stress
intensity factors of edge cracks in semi-infinite media have been studied extensively for various loading
conditions, such as, far field uniform load, uniform pressure over part of the crack surface, point load, etc.
The works of Stallybrass (1970), Hartranft and Sih (1973), Sneddon and Das (1971), Sneddon (1946), and
Afsar (1997) may be cited as a few examples. More recently, Sekine and Afsar (1999) considered a single
edge crack in a semi-infinite functionally graded material (FGM) and investigated the effect of eigenstrain on
the stress intensity factor followed by the optimization of composition profile for the desired brittle fracture
characteristics in the FGM medium. As an extension of their work, they (Afsar and Sekine, 2000) carried out
further research to investigate the effect of periodic edge cracks on the material distribution for prescribed
fracture characteristics in the semi-infinite medium.

In this study, we concentrate on the two edge cracks in a semi-infinite medium of a homogeneous
material with a distributed e genstrain. It is recognized that an eigenstrainisinherently developed in an FGM
body due to a nonuniform coefficent of thermal expansion, as aresult of cooling from sintering temperature.
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However, it may aso be developed in a semi-infinite medium of a homogeneous material due to various
machining and heat treatment processes. This eigenstrain is considered here for investigating its effects on
the stress intensity factor for a pair of edge cracks in the semi-infinite medium of a homogeneous material. In
our present analysis, the eigenstrain is assumed to be spread over aregion of finite depth only that extends
from the free surface. This assumption is fairly reasonable as the various machining and heat treatment
processes affect the region whose depth from the free surface is indeed small. For such a problem, a simple
and effective method is developed to evaluate the stress intensity factors by using the method of complex
potential functions of edge dislocations representing the cracks. To demonstrate the method, some numerical
results are obtained and presented for different functional forms of eigenstrain distribution.

2. Modd of the problem

A semi-infinite medium shown in Fig.1, is subjected to a far-fidld uniform applied stress s?(. The

region of finite depth w has also an arbitrary distribution of eigenstrain e , which is a function of y only.
Shown in the figure are a so two edge cracks of equal length A and B, both of which are perpendicular to the
free surface. The length of the cracks and the distance between them are denoted by a and d, respectively. A
principa coordinate system x- y and a secondary coordinate system x; - y; are considered, the origins of

which are located at the mouths of cracks A and B, respectively. If we define two complex variables
z=x+iy and z; = x; +iy, that represent the coordinate of a point with reference to the principal and

secondary coordinate systems, respectivey, the following relationship hol ds between them
z=z-d. (2.1)

For the model outlined above, a method is devel oped to eval uate the stress intensity factor for plane
stress in order to investigate the effect of eigenstrain on the stress intensity factors.
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Fig.1. Andytical modd of the problem.

3. Stressintensity factor
3.1. Stress field in an uncracked medium

First, we consder the semi-infinite medium without any cracks. The uncracked semi-infinite
medium is subjected to a uniform load s2 aong with an arbitrary distribution of the eigenstrain € (y) in the
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region of finite depth w. The resultant stress field in the uncracked semi-infinite medium may be determined
by superposition of the stress due to the eigenstrain e (y) and the applied load s9.

The stress due to egenstrain e’ (y) can be determined following the philosophy outlined by Sekine
and Afsar (1999). Since the depth w is very small compared to that of the lower region of the semi-infinite

medium, the eigenstrain e (y) in the region of finite depth w is completely suppressed by the restraining

effect from the lower region of the semi-infinite medium. Therefore, the stress developed in the region of
finite depth w due to the eigenstrain can be given by

* *

s,=-Ee (3.2)

where E is the Young's modulus. The stress in the remaining part of the semi-infinite medium due to the
eigenstrain is negligible as the region beyond the finite depth w is of infinite dimension over which the stress

is distributed. Thus, the resultant stress field in the region of finite depth w is (s*x +s?() while the stress
beyond wis equal to the applied stress s?( .

3.2. Cracked semi-infinite medium

The resultant stress field calculated for the uncracked semi-infinite medium in the foregoing is
disturbed due to the presence of the cracks A and B. Therefore, it is necessary to determine the redistribution
of the stress field in the presence of the cracks. The redistribution of the stress field due to the presence of the
cracks is computed by representing the cracks by a continuous distribution of edge didocations. First, we
consider the crack A. As shown in Fig.2, the crack A is represented by a continuous distribution of edge

dislocations of densities bj(s) and bJ\(s), which are the x and y components of the resultant density,

respectively. The complex potential functions for these continuous distributions of edge dislocations can be
written as (Sekine and Afsar, 1999)

. agaA . N
A im &1 1 2s U,
Foe) pk+1) Fz+is z-is (z-is)zubx (s)ds=
0B 9]
o . (3.28)
m ¢1 1 2is U A
¥ p(k +1) %z is z- is+ (z- is)zgby (s)ds
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where
n = shear modulus of rigidity, k =Kolosov's constant,

k =3- 4n for plane gtrain, Kk :(3— n)/(1+ n) for plane stress.
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Fig.2. Representation of cracks by continuous distribution of edge dislocations (0 383 - a).

The stresses inside an isotropic eastic medium can be expressed in terms of the complex potential
functions F *(z) and Y #(z) and their complex conjugates as follows (Muskhelishvili, 1975)

Sk tSiy :ZgF A(z)+FA(z)g, (3.33)
sh - s§y+2isfy:-2§zF ¢A(z)+YA(z)g (3.30)

where the prime represents differentiation with respect to z and the over bar represents the complex
conj ugate.
Similarly, the stresses for the dislocations representing the crack B as shown in Fig.2 can be given by

sho+shy =28 B(a)+F o (z ), (3.49)
sB-sB +2is8 :-zgle ¢B(z1)+YB(z1)g (3.4b)

where FB(z,) and Y B(z,) arethe complex potential functions for edge dislocations representing the crack
B. These functions have the same expressions as those of Egs (3.2a, b), except that z is replaced by z; and

the superscript A is replaced by B. Finaly, the resultant stresses due to the edge dislocations representing the
cracks A and B are abtai ned by superposition as

Sy =S tSo (3.58)
Sy =S +So,, (3.5b)
Sk =Siy Sy (3.50)
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Now, the redistributed stress field in the cracked medium can be determined by adding the
stress components in Egs (3.5a-c) to the stress computed for the uncracked semi-infinite medium. The
redistributed stress fidld must satisfy the boundary conditions along the traction free crack surfaces, i.e.,

sh +sB +s%+s’ =0; x=0, Of£y£f-a, (3.68)
sh +s8 =0; x=0 Of£y£f-a (3.6b)

It is aso noted that the following re ationships hold between the disl ocation density functions

b, =by =by, 3.79
X X X
by =b}' =-by . (3.7b)

Now applying the boundary conditions given by Egs (3.6a, b) and using the relations in Egs (2.1)
and (3.7a, b), we obtain

e a 2 . ‘
p(ETl)g)‘%dy?(y, S)bx(S)dS+c()‘j<1(y, s)by (s)ds- c()‘j<z(y, S)by(S)dS§= s +s9);
(3.89)
Ofyfa,
éa b a a a u
S A L
(3.8b)
Ofyfa
where
. _ 1 2s 4s?
k(y,s)= o5 oo + e (3.99)
yo)=d Yos 3 y+s
kl(y’ S)_ 2 (y- 5)2 +d? 2 (y+s)2 +d?
+%(y+s)3-3.<3|2(y+s)+13>d2(3/-S)- (v-9° (3.9b)

ly+s2+a2f 2 [y-sp+a2f
2dly+ 5P (y- 8)- 6e?yly )+ ]
ly+sp +a2]°
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oy g)=- St S
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1
2

Equations (3.8a) and (3.8b) are two singular integral equations and it is seen that thereis a coupling
between the Burgers vectors b, and b, which give the Mode | and Mode |1 stress intensity factors,

respectively.
4. Numerical method of solution
An anaytical solution to the singular integral equations as given by Egs (3.8, b) is not possible.

Therefore, a numerical method is adopted to solve the equation. First, the singular integral equation is
normalized over theinterval [ 1L+ 1] by using the substitutions

t==2-1, (4.18)
a
x=2Y_q, (4.1b)
a
__Db _2d
P= ()’ D=7, (4.10)
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2m él BX(t) l\ 1 1 l;l_
p(k+1)§lx- t)d“_?(( t)By(t)dt + (1i<1(x t)B, (t)dt + (1j<z(>< t)By (t)dta—
= [s*x (x)+ s?((x)];
(4.28)
-1£Ex£1,
om €.B,(t) ! 1 1 i
p(k+1)§lx t)dt+-(lj<(x t)B, (t)dt + ?(3(x t)B, (t)dt + (lj<4(x t)B, ()dtE 0:
(4.2b)
-1£x£1
where
1 2t+n) | 4ft+1)f
k(X,t)_ t+x+2 (t+x+2)2 +(t+X+2)3 ' (4.39)
k(x,t):g (x-t) 3 (x+t+2)
l ZI(X t) %+ PZJ 2I(x+t+2)2+P2J
LAxrt+2)’-3 (X+t2+2) 13P2(x-t)-(x-t2)3+ “3b)
(T L
i 2(t+1)(x+t+2)3(x_ t)- 6P2(x+1)(x+t+2)+P4
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2 Zl(x't)2+PZJ 2l(x+t+2)2+P2]
L L1P+t+2)5t- 3x+2)+P? 1P- 3p[x- t)
2 2 (4.30)

(x+t+2)2+P2J2 2 l(x t)2+P2J2
+2(t+2)[P3(x- t)- 3P(x +t +2)%(x- t)+
+3P3(x +t+2)- P(x+t+2)3]/[(x+t+2)2+ Pz]s,
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P ! P
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2 2

B.(t)=bu(s),  By(s)=by(y). (4.3f)

The disloceation density functions Bx(t) and By (t) can be expressed as the product of a fundamental
function W(t), which cheracterizes the bounded-singular behavior of Bx(t) and By(t), and a bounded
continuous function j X(t) and | y(t) inthe dosed interval [ 1 +1] . Thus

B, (t) =W(t)i (t). (4.43)
B, (t)=w(t)j ,(t). (4.4b)
Using the Gauss-Jacobi integra formula in the manner similar to that developed by Erdogan et al.

(1973), the singular integra equation can be converted to a system of linear algebraic equations to determine
the unknowns j X(t) andj (t) as

2m €& 1 u &, u
oyt L+t +kix,, t )t kX, e v+rai ol 1+t k(. , t Ja=
(k+1)eal (b ) k)l X -1, (%p , )+ Ky (X, k)i; 2_1 y(k)( kKo (X, k)g
2n+1
= 225 )+ s3]

(4.58)
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2m 8 o, )+

sz)éaJ X tk 1+tk

gu
+aJ y(tk)(1+tk) + k(% t )+ Ka (X, )t Jya=0;

k=1 TX - T t
(4.5b)
r=123,...n
where the integration and coll ocation points are, respectively, given by (Hills et al., 1996)
k-1 0o
t, = cos, k=123,......n, 4.63)
k 82n+1p (4.63)
x, =cos 2P0 F=123,.....N. (4.6b)
ez2n +lg

It can readily be shown that the Mode | and Il stress intensity factors can be derived as (Hills et al.,
1996)

K :\/ﬁﬁﬁj x,y(+ 1)- 4.7

The solution of Egs (4.5a, b) providesthe valuesof j , and j , only at theintegration points t, . The

calculation of stress intensity factors, as seen from Eq.(4.7), requires the values of these functions at the
crack tip, i.e, j X(+ 1) and j y(+ 1). These values can be obtained by the following Krenk’s (1975)

interpolation formula

sinf2 " L pp?

. 2 é‘ e2n+l g
+1 t; 4.8
(=558 i 1pg) ) (48)

é2n+12g

Using Egs. (4.5a, b) through (4.8), stress intensity factors can be calculated for a given applied load
and eigenstrain distribution.

5. Numerical results and discussion

In this section, some numerica results of stress intensity factors are calculated and presented for
various distributions of the eigenstrain in the region of finite depth w of the semi-infinite medium. The
1

distributions of the eigenstrain considered are parabolic 1 distribution: e* =g g +19 , parabalic 2
Wg
y20

m ~k
distribution: —e 1- 75 parabolic 3 distribution: —e ¢ +——, linear distribution:
w2 & e Wg
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€ = eg‘H lg, and uniform distribution: e, =€”. These distributions of the eigenstrain are shown in Fig.3.
e Wg

The above five distributions have been chosen merely as examples. In the numerical cal culation, the number
of collocation and integration points n is taken as 100, for which the values of the stress intensity factors,

calculated by setting €® =0, agree well with those obtained by Ishida (1979) as shown in Tab.1. When
e =0, the problem reduces to the semi-i nfinite medium subjected to the applied load only.

e0
Uniform
- Linear
o
| Parabolic 1
- Parabolic 2
| Parabolic 3/
0 -0.2 -04 -0.6 -0.8 -1.0

yiw

Fig.3. Distribution of eigenstrains in the region of finite depth w.

Tablel. Comparison of stress intensity factors predicted by the present model with those predicted by Isida
(1979) for two edge cracks in a semi-infinite medium under uniform tension.

d/a K, K
Present model M. Isida Present model M. Isida

0.1 0.776905 0.777 0.1994 0.2
0.2 0.788869 0.789 0.1853 0.18
0.5 0.817194 0.817 0.1594 0.16
1.0 0.854256 0.854 0.1331 0.13
2.0 0.911070 0.911 0.0909 0.09
3.0 0.964360 0.964 0.0541 0.053
40 1.007198 1.007 0.0316 0.030
6.0 1.058003 1.058 0.0123 0.012
8.0 1.082487 1.082 0.0058 0.006
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Figure 4a exhibits the Mode | and Mode |1 stress intensity factors as a function of normalized crack
length a/w and normalized crack spacing d/w. The stress intensity factors are also normaized dividing

them by the true value of the stress intensity factor K, =1.12152 for a single edge crack in a semi-infinite
medium under afar field uniform | oad s?( only. Theresults correspond to the parabolic 1 distribution of the
elgenstrain as shown in Fig.3. In calculating the stress intensity factor, we define a parameter g= Eeo/s?( in
which €° istheeigenstrainat y =0 and E isthe Y oung's modulus of the material. The parameter ¢, in fact,

istheratio of eigenstress at y =0 to the applied stress s())(. The stress intensity factors shown in Fig.4a are
obtained for g=0.5. The broken lines represent the Mode Il stress intensity factors while the solid lines
represent the Mode | stress intensity factors. It is noted that the Mode Il stress intensity factors are only a
small fraction of the Mode | stress intensity factors. For asmall value of the crack spacing, the Mode |1 stress

intensity factor is higher and it decreases as the crack spacing increases i mplying that the effect of one crack
on the other diminishes. The Mode | stress intensity factor has the reverse trend of the Mode Il stress

intensity factor. The Mode | stress intensity factor increases with the increase of the crack spacing d/w. The
eigenstrain is distributed over the region of finite depth w and the crack tip crosses the region of the
eigenstrain when a/w3 1 showing points of i nflection on the curves of the stress intensity factor. Figures 4b
through 4e depict the normalized stress intensity factors for parabolic 2, parabolic 3, linear, and uniform
distributions of the eigenstrain, respectively. The curves of al the figures have the same characteristics
except that the Mode | stress intensity factors for the uniform distribution of the eigenstrain have quite sharp
points of inflectionat a/w=1.

1.0
0.8
xw
2 0.6
o 04
E dw=025051248 16 32
o
0.2
0 '3:_'
0

Fig.4(a). Normalized stress intensity factors for parabolic 1 distribution of eigenstrain (g = 0.5).



280 A.M.Afsar and SR.Ahmed

Fig.4(b). Normalized stress intensity factors for parabolic 2 distribution of eigenstrain (g = 0.5).
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Fig.4(c). Normalized stress intensity factors for parabolic 3 distribution of eigenstrain (g = 0.5).
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Fig.4(e). Normalized stress intensity factors for uniform distribution of egenstrain (g = 0.5).
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Figure5 illustrates the effect of the type of the eigenstrain distribution on the stress intensity factors.
Both the Mode Il and Mode | stress intensity factors are plotted for the five different distributions of the
eigenstrain as shown in Fig.3. The uniform distribution of the eigenstrain is associated with the minimum
stress intensity factor while the parabolic 3 distribution of the e genstrain gives the maxi mum stress i ntensity
factor. The average eigenstrain over the region of finite depth w is the maximum for the uniform distribution
of the eigenstrain among al the five distributions. This, in turn, induces the maximum magnitude of average
compressive eigenstress that has a reducing effect on the resultant stress intensity factor. Therefore, the
uniform distribution of the eigenstrain gives the minimum stress intensity factor. On the other hand, the
parabolic 3 distribution of the eigenstrain has the minimum average value of the eigenstrain over the region
of finite depth w. This induces an average compressive eigenstress of the lowest magnitude attributing the
least in the reduction of the resultant stress intensity factor. The other three curves for each mode of the
stress intensity factor in Fig.5 fall between the two curves corresponding to the uniform and parabolic 3
distributions of the eigenstrain. This is due to the fact that the average values of these three distributions of
the eigenstrain fa | between the average val ues of the uniform and parabolic 3 distributions of the eigenstrain.

07—
Kl / Ke T /,-— —————— _; ’_"__:_ —————— =
< 05K — Uniform
& 04l —en- Linear
| =0 = T Parabolic 1
» 03} 9=05 !
= | ——— Parabolic 2
o d/w=0.5 !
X 02 e Parabolic 3
0.1

Fig.5. Effects of the distribution of eigenstrain on stress intensity factors.

The normalized Mode | stress intensity factors as a function of the parameter ¢ and normalized
crack length a/w are shown in Fig.6a. The results correspond to d/w =0.5 and thelinear distribution of the
eigenstrain. The higher value of ¢ indicates the higher magnitude of the eigenstrain at y =0. This implies
that the compressive eigenstressat y =0 has also a higher value. Thus, the stress intensity factor has a lower
valuewhen ¢ ishigher. As stated earlier, the compressive e genstress associated with the eigenstrain reduces
the stress intensity factor. If there were no eigenstrain in the semi-infinite medium, the normalized stress
intensity factor would be unity for asmall value of normalized crack length a/w. Because the small value of
a/w implies that the distance d between the cracks is large compared to the crack length a. Thus, one can
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reasonably obtain the val ue of stress intensity factor for a single crack in the semi-infinite medi um subj ected
to the applied load s only, which will givethe ratio K,/Ke =1. However, the value of theratio K, /K, is
less than unity for asmall value of a/w because of the eigenstrain in the finite region of depth w of the semi-
infinite medium. Considering the case of ¢ =0.5 asan example, it is noted that the magnitude of eigenstress
associated with the eigenstrainat y =0 is50% of the applied load for which the stress intensity factor K, is
also 50% of the stress intensity factor K., the value of a single crack when the semi-infinite medium is

subjected to the applied load s?( only. There is also another important point to be noted. When ¢ exceeds
unity, crack closure occurs up to certain length of the crack, i.e., the crack surfaces are in contact and no
stress, i.e., intensity occurs. As an example, the stress intensity occurs only when a/w exceeds 0.5 for
g=15.

107
g=0.25 diw =0.5
[ =050
08F =075
g 06}
X :
0.4}
02} = 1.50
=2.00
0 ’ | | | | | | | | | | | | | | | | | | |
0 0.5 1.0 1.5 2.0 25

alw

Fig.6(a). Normalized Mode | stress intensity factors as a function of normalized crack length and parameter
¢ for linear distribution of & genstrain.

Figure 6b illustrates the normalized Mode Il stressintensity factors as a function of parameter ¢ and

normalized crack length a/w for anormalized crack spacing d/w=0.5. Theresults are plotted for the linear
distribution of the e genstrain. Here, we remember that the Mode Il stress intensity occurs though the semi-
infinite medium is subjected to mode | loading only. The Mode Il stress intensity factors are related to the
dliding of the crack surfaces relative to each other in the direction pardld to the crack surfaces. It is noted
that these stress intensity factors are also decreased as the parameter ¢ increases. However, it is noted that
the Mode Il stress intensity factor is negative up to a certain crack length and positive when the crack length
further increases for ¢ greater than unity. This implies that a crack surface aters its sliding direction with
respect to the other during the crack growth.
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Fig.6(b). Normalized Mode 11 stress intensity factors as a function of normalized crack |ength and parameter
¢ for linear distribution of e genstrain.

In Fig.7a, normalized Mode | stress intensity factors are plotted as a function of normalized crack
spacing d/w keeping the value of normalized crack length a/w constant (a/w=0.5). In the lower range of
crack spacing, the stress intensity factor enhances as the distance d increases. After a certain value of d, the
stress intensity factor becomes constant that indicates that one crack has no effect on the other, i.e., thesingle
crack phenomenon is attained. Figure 7b displays the corresponding Mode |1 stress intensity factors as a
function of crack spacing d/w for the constant value of a/w=0.5. From a smal vaue of ¢ to unity, the
stress intensity factors gradually decrease to zero with the increase of crack spacing d/w. The zero va ue of
the stress intensity factors indicates that the cracks are far away from each other, and a single crack
phenomenon is obtained, i.e., the Mode I stress intensity disappears. For values of ¢ higher than unity, the
stress intensity factors increase from a negative value to zero with the increase of the crack spacing d/w

i ndi cating the same phenomena as before. However, in this case, the direction of dliding of the crack surfaces
is oppositeto that for small valuesof ¢,i.e, for g£1.
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Fig.7(d). Normalized Mode| stress intensity factors as a function of normalized crack spacing and parameter
¢ for linear distribution of & genstrain.
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Fig.7(b). Normalized Mode Il stress intensity factors as a function of normalized crack spacing and
parameter ¢ for linear distribution of eigenstrain.
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6. Conclusons

A simple and effective method is developed to anayze stress intensity factors for a pair of edge
cracks in a semi-infinite medium with any arbitrary distribution of the eigenstrain and subjected to afar field
applied load. The method can be applied to calculate the stress intensity factors for a single edge crack by
using alarge value of the distance between the cracks. From the numerical results, it is noted that the stress
intensity factors significantly depend on the distribution of the eigenstrain. The positive e genstrain i nduces a
compressive e genstress that reduces the stress intensity factors. This reduction of the stress intensity factors
is attributed to the toughening of the material. The higher magnitude of an average eigenstrain has a greater
effect on the stress intensity factors. With increasing the value of crack spacing, the Mode | stress intensity
factors increase while the Mode 11 stress intensity factors decrease. For higher values of the eigenstrain, as
the crack length increases, the Mode Il stress intensity factors change sign from negative to positive, thereby
indicating that the crack surfaces dter their sliding direction during crack growth.

Nomenclature

a —crack length
by .bg by'.by,B,,B, —dislocation density functions
d —distance between the cracks
E —Young's modulus
K,K, - stressintensity factors
s —distance along the crack line
t, —integration points
w —depth from free surface
x-y —principa coordinate system
X1 - y; —secondary coordinate system
z —complex variable (z=x+iy)
e —eigenstran
k —Kolosov's constant
nm  — shear modulus
n —Poisson’sratio
X, — collocation points

s — applied stress
s, —egenstress
F,Y —complex potentia functions
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