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The thermal boundary layer on an exponentially stretching continuous surface with an exponential 
temperature distribution in the presence of the magnetic field effect is investigated numerically. The local 
similarity solution is applied to the governing equations. Comparisons with previously published work are made 
and the results are found to be in excellent agreement. Numerical results for temperature distribution and the 
local Nusselt number have been presented for different values of the governing parameters. In particular, it has 
been found that the magnetic field decreases the temperature difference at the wall of the stretching surface, 
while the Nusselt number decreases with it.  
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1. Introduction 
 
 The problem of heat transfer in the boundary layer induced by a continuous stretching surface with a 
given temperature distribution in a quiescent conducting fluid is important in several manufacturing processes 
in industry. Examples of such processes are the extrusion of plastic sheets, glass-fiber and paper production, 
metal spinning and the cooling of a metallic plate in a cooling bath. After Sakiadis (1961), many authors have 
studied the problem of flow induced by a surface moving with constant velocity (Tsou et al., 1967; Griffin and 
Throne, 1967; Grubka and Bobba, 1985). Recently, Ali (1994) studied the thermal boundary layer of a 
continuous stretching surface. The similarity solutions of flow and thermal boundary layer on an exponentially 
stretching surface are studied by Magyari and Keller (1999). These solutions involve an exponential dependence 
of the temperature distribution in the direction parallel to that of the stretching.  
 The study of magnetohydrodynamics of a conducting fluid finds applications in a variety of 
astrophysical and geophysical problems. The effects of the magnetic field on the natural convection heat 
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transfer have been discussed by Romig (1964), Elbashbeshy (1998), considered heat transfer over a stretching 
surface with a variable surface heat flux. The convective heat transfer in an electrically conducting fluid at a 
stretching surface has been studied by Vajravelu and Hadjinicolaou (1997). Other studies dealing with hydromagnetic 
flows can be found in Grandet et al. (1992), Takhar and Ram (1994), and Duwairi and Damseh (2003). 
 When the combined effects of the magnetic and fluid forces are incorporated into the governing 
equations of an exponentially stretching surface with an exponential temperature distribution, the analytical 
solutions as well as the similarity solutions become intractable. The aim of the present paper is to introduce a 
local similarity solution of an exponentially stretching surface with an exponential dependence of the 
temperature distribution in the presence of the magnetic field effect. Numerical solutions are obtained to study 
the characteristics of the thermal boundary layer in terms of different governing parameters. 
 
2. Governing equations 
 
 Consider a two-dimensional flow of an electrically conducting and incompressible viscous fluid near 
an impermeable plane wall stretching with velocity wU  and a given temperature distribution wT , the x-axis is 
taken along the wall in the upward direction and the y-axis perpendicular to it into the fluid. A uniform 
magnetic field 0B  is assumed to be applied in the y-direction. It is assumed that the induced magnetic field of 
the flow is negligible in comparison with the applied one which corresponds to a very small magnetic Reynolds 
number (Pai, 1962). Under boundary layer approximation, the continuity, momentum, and energy equations 
can be written as 
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 This system of Eqs (2.1)-(2.3) is subjected to the following boundary conditions 
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u and v are the x and y components of the velocity field, respectively. υ denotes the kinematic viscosity, α  is 
the thermal diffusivity, σ  is the electrical conductivity and oB  is the magnetic field flux density. The 
stretching velocity wU  and the exponential temperature distribution are defined as 
 
  ( ) Lx
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 If the magnetic field influence is absent, the folowing parameters can be applied to Eqs (2.1)-(2.4) to 
obtain similarity solutions (Magyari and Keller, 1999) 
 
  ( ) ( )η′= feUyxu Lx

o, ,  (2.7) 
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 In the present problem, considering the magnetic field effects, the similarity parameters (Eqs (2.7)-
(2.10) can be used to transform Eqs (2.1)-(2.4) to η  local similarity transformations. Thus, the governing 
equations using the dimensionless functions ( )ηf  and ( )ηθ  become 
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 The corresponding boundary conditions transform to 
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 In the above equations the prime denotes derivatives with respect to η . ( ) 212
o LB ρυσ=Ha , 

( )∞−= TTcU 0p
2
0Ec , υ= LUoRe , αυ=Pr  denotes the Hartman number, Eckert number, Reynolds 

number, Prandtl number respectively. In the above system of local similarity equations, the effect of the 
magnetic field is included as a ratio of the Hartman number to the Reynolds number. In addition to f ′  and θ , 
the local Nusselt number and local skin-friction coefficient are important physical parameters for this problem. 
These can be defined as 
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3. Solution methodology 
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 The set of nonlinear differential Eqs (2.11) and (2.12) with the appropriate boundary conditions in Eq. 
(2.13) is a boundary value problem which has unknown analytical solutions. There are different well-
established numerical techniques to solve such equations. For this purpose, a FORTRAN computer program is 
developed to solve the above set of differential equations. The finite difference method with a non uniform grid 
is applied, the BVPFD subroutine in the IMSL-library which is assigned to solve the boundary value problems 
is requested by the main FORTRAN program for each trial. The solution domain is identified and the value of 

∞η  at different X location is assigned.  
 A grid independence study was carried out to examine the effect of the step size η , X on the solution. 
According to the optimization study computations were carried out using a uniform grid in the X-direction with 

001.0X =∆ . Instead of using uniform grids in the η -direction, a non-uniform grid is incorporated with the 
first step size 005.0=η∆  and the variable grid parameter is chosen to be 1.02. Under relaxation is required to 
secure convergence of the iteration procedure. The range for the under relaxation factor is taken as 0.1-0.6 for the 
velocity and temperature fields. The convergence criterion in iteration is stated as 
 

  ε≤
ψ

ψ−ψ

b

ab                                                                                                                   (3.1) 

 
where bψ  and aψ  denote one of the main variables f, θ , and the subscripts b and a denote the values 

corresponding to the new iteration and old iteration. The value for the tolerance ε  is taken as 610− . 
 In order to assess the accuracy of our methods as described earlier, we have compared the temperature 
profiles for 5.1a −= , 5.0=Pr , 3, 8 and the value of ReHa 2  is assigned 0 according to the results of 
Magyari and Keller (1999) employing the shooting method in Fig.1. It can be seen that the results are in good 
agreement. Furthermore, the wall temperature gradient ( )0θ′  for different values of a and Pr and in the 
absence of the magnetic field effect is compared with the results of Magyari and Keller (1999) in Tab.1. The 
small difference may, however, be attributed to the different methods used.  
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Fig.1. Comparison between dimensionles temperature profiles obtained in this study and those of Magyari and 
Keller (1999). ( 5.1a −= , 02 =ReHa  and different Prandtl numbers). 

Table 1. Comparison between wall-temperature gradient calculated by the present method ( )∗∗  and that of 

Magyari and Keller (1999) ( )∗ , in the absence of magnetic field effect ( )0Ha = . 

 
Pr 
a 

 0.5 1 3 5 8 10 

-1.5 
 

∗  
∗∗  

0.204049 
0.191914 

0.377413 
0.361516 

0.923857 
0.903084 

1.353240 
1.341428 

1.888500 
1.828580 

2.200000 
2.136932 

-0.5 
 

∗  
∗∗  

-0.175815 
-0.181869 

-0.299876 
-0.326974 

-0.634113 
-0.672150 

-0.870431 
-0.841562 

-1.150321 
-1.083914 

-1.308613 
-1.250740 

0 
 

∗  
∗∗  

-0.330493 
-0.310061 

-0.549643 
-0.531044 

-1.122188 
-1.085222 

-1.521243 
-1.475581 

-1.991847 
-1.926328 

-2.257429 
-2.188474 

1 
 

∗  
∗∗  

-0.594338 
-0.577705 

-0.954782 
-0.919033 

-1.869075 
-1.810391 

-2.500135 
-2.288641 

-3.242129 
-3.005874 

-3.660379 
-3.186202 

3 
∗  
∗∗  

-1.008405 
-0.976654 

-1.560294 
-1.465689 

-2.938535 
-2.890073 

-3.886555 
-3.780721 

-5.000465 
-4.862453 

-5.628198 
-5.585759 

 
 It is of interest to note that the transformed energy Eq.(2.12) in the absence of the applied magnetic 
flux ( )0Bo =  and for 0a = , is reduced to a simple flat plate heat transfer problem for constant wall 
temperature. Such an equation, which is coupled with the simple Blasius equation, is solved by the method 
presented here and compared with the shooting method used by White (1991). The comparisons are not 
presented here but they show a good agreement which emphasizes the accuracy of the selected method. 
 
4. Results and discussion 
 
 In the present study, numerical calculations are performed in terms of the temperature distribution and 
the local Nusselt number for different values of aforementioned physical parameters. Referring to the 
governing Eqs. (2.11) and (2.12) the temperature distribution through the thermal boundary layer and the local 
Nusselt number depend on Pr, a, ReHa 2 , X location. The value of the Eckert number Ec is given a positive 
value equal to 0.001 for all the predicted results. Positive values of Ec mean that the reference temperatures 

oT  must be greater than the free stream temperature ( )∞∞ > TTT o  which is the case considered in the present 
problem. If 0TTo >− ∞  (the considered case) then, according to Eq.(2.6), the wall temperature is greater than 
the free stream temperature and heat is transferred from the wall to the fluid. 
 The dimensionless temperature field and the local Nusselt number depend extensively on a, this effect 
is shown in Figs 2 and 3 for X location 5.0= , 52 =ReHa , 1=Pr . The simplest case is the constant wall 
temperature ( )0a = . It is clear from Fig.2 that the heat transfer process is reversed at some value of a, i.e., the 
flow of heat is directed from the wall to the ambient environment (the lower curves) and then reversed from the 
ambient environment to the wall (the upper curves). Due this, there is an adiabatic case where the heat transfer 
process is stopped. The value of a in the adiabatic case can be examined analytically. 
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Fig.2. Dimensionles temperature profiles at dimensionless 5.0X = , 1=Pr  and 52 =ReHa  for different values of a. 
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Fig.3. Local Nusselt number and the dimensionless X  location at 1=Pr , 52 =ReHa  for different values of a. 
 
 Using Eqs (2.13), (2.12) can be integrated once from 0=η  to ∞ , this gives 
 



Thermal boundary layer an exponentially stretching continous surface ... 295

  ( ) ( ) ( ) ( ) ( ) ( )∫∫
∞∞

− ηη′ηθ+−ηη′=θ′
00

22a2X
2

df1adfe20 Pr
Re

EcHaPr .                       (4.1)  

 

 Equation (4.1) shows that the slope at the stretching surface represented by ( )0θ′  depends on four 

parameters, Pr, a, X and the dimensionless group ReEcHa 2 . The case of no heat transfer between the 
stretched surface and the ambient fluid corresponds to ( ) 00 =θ′ , this case cannot be determined analytically. 
Negative values of ( )0θ′  correspond to heat transfer from the stretched surface to the ambient fluid, the 
reversed case occurred at positive values of ( )0θ′ . The problem of no magnetic field effect ( )0=Ha  is 
discussed by Magyari and Keller (1999), for such a problem the adiabatic case is satisfied at 1a −=  for any 
value of Pr, then the negative slope occurred for 1a −>  whereas, for 1a −<  the reversed heat transfer 
process occurred. Anyhow, from Fig.2 and at selected values of Pr, X, ReEcHa 2  it can be clearly observed 
that heat transfer is increased by decreasing the value of a below the adiabatic value, the presence of the peak 
indicates that the maximum value of temperature occurs in the body of the fluid close to the surface and not at 
the surface. It is interesting to note that this increase in the temperature accompanied by a greater increase in 
the temperature peak value which increases the temperature difference between the stretched wall and the 
adjacent fluid is the reason for triggering the heat transfer process from the ambient fluid to the surface. On 
the other hand, increasing the value of a above the adiabatic value leads, also, to increasing the heat 
transferred from the wall to the ambient fluid. This behavior can be seen in Fig.3. The increase in the local 
Nusselt number in both discussed cases (a above and below the adiabatic value) is clearly noticed. Also, Fig.3 
shows the increase in the local Nusselt number by moving away from the leading edge of the stretched surface, 
this result can be clearly obtained from Eq.(2.15). Figure 4 depicts the influence of the X location on the 
temperature distribution through the thermal boundary layer for 3a −=  and -6 (below the adiabatic value). 
Obviously, the peak is getting larger by moving away from the leading edge. As explained above, the heat 
transfer is enhanced; this result is as concluded from Fig.3. 
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Fig.4. Dimensionles temperature profiles for 3a −=  and 6− , 1=Pr , 52 =ReHa  at different dimensionless 
x location. 
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Fig.5. Influence of magnetic field on dimensionless temperature profiles at 5.0X = , 1=Pr , 2a −=  and 5. 
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Fig.6. Effect of magnetic field on Local Nusselt number distribution at 1=Pr , 2a −=  and 5. 
 Figure 5 presents the temperature distribution in the fluid for some selected values of ReHa 2  at 

2a −=  and 5. For 2a −= , it can be seen that an increase in the strength of the magnetic field (represented by 
the Hartmann number) leads to an increase in the thermal boundary thickness, so the temperature inside the 
thermal boundary layer increases due to excess heating. This will decrease the temperature difference at the 
wall of the stretched surface. The same effect is noticed for the second ( )5a = , i.e., the decrease in the 
temperature near the wall which can be predicted by a decrease in the peak value mentioned before. For both 
cases, the flow of heat is decreased due to an increase in the strength of the magnetic field. Figure 6 illustrates 
the coclusions drawn from Fig.5. On the other hand, it is clear from this figure that moving away from the 
stretched surface (in the X-direction) results in a greater heat flow, this is assessed as an increase in the 
Nusselt number.  
 
5. Conclusions 
 
 Numerical solutions for the thermal boundary layer of an exponentially continuous stretching surface 
with exponential temperature variations at the wall in the presence of the magnetic field have been examined. 
The following conclusions has been made. 
1. The dimensionless temperature field and the local Nusselt number depend on Pr, a, X and the 

dimensionless group ReEcHa 2 . There are three cases defining the flow of heat which depends upon the 
above parameters.  The case of no heat transfer (adiabatic case), this case can be determined analytically 
in the absence of the magnetic field effect which corresponds to 1a −= . The second case corresponds to 
a value above the adiabatic one; in this case the heat transfer is directed from the wall to the ambient fluid 
(direct flow). Lastly, the flow of heat is directed from the ambient fluid towards the wall (reversed flow); 
this case corresponds to the value of a below the adiabatic value. 

2. The thickness of the thermal boundary layer increases with decreasing a for constant Pr, X and the 
dimensionless group ReEcHa 2 . Increasing a (above the adiabatic value) as well as decreasing it (below 
the adiabatic value) enhances the heat transfer process. 

3. The thickness of the thermal boundary layer increases with increasing the strength of the magnetic field in 
both heat transfer cases (direct and reversed flow), for both cases the local Nusselt number decreases with 
increasing the magnetic field strength. 

4. The effect of X location along the plate decreases the thickness of the thermal boundary layer and 
increases the heat transfer rate.        

 
Nomenclature 
 
 a – constant           
 oB  – magnetic field flux density 
 pc  – specific heat of the fluid at constant pressure 
 Ec  – Eckert number 
 Ha  – Hartmann number 
 L – length of the plate 
 Nu  – Nusselt number 
 Pr  – Prandtl number  
 Re – Reynolds number 
 T – fluid temperature 
 ∞T  – ambient temperature 
 oT  – reference temperature 
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 wT  – wall temperature 
 u – fluid axial velocity 
 oU  – reference velocity 
 wU  – velocity of the vertical surface 
 v – fluid transverse velocity 
 X – dimensionless coordinate along the plate ( )Lx  
 yx,  – coordinates along and normal to the plate, respectively 
 υ  – kinematic viscosity  
 wτ  – coefficient of skin friction 
 α  – thermal diffusivity  
 η  – non-dimensional transformed variable  
 σ  – fluid electrical conductivity  
 ρ  – fluid density 
 θ  – dimensionless temperature  
 
Subscripts 
 
 x – local 
 w – conditions on the wall  
 o – reference  
 ∞  – ambient conditions 
 
Superscripts 
 
 '  – differentiation with respect to η  
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