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In the present paper, a viscoelastic boundary layer fluid flow over an exponertialy stretching continuous
sheet has been examined. The flow is assumed to be generated solely by the application of two equal and opposite
forces along the x-axis such that stretching of the boundary surfece is of exponential order in x. Approximeate
analytical similarity solutions (zero and first order) of the highly non-linear boundary layer equation are obtained
for the dimensionless stream function and velocity distribution function after transforming the boundary layer
equation into Riccati type and solving that sequentially. The first-order solution is derived in the form of
confluent hypergeometric Whittaker functions. The solutions are verified at the boundary sheet. These solutions
(zero and first order) involve an exponential dependence of the similarity variable, the stretching velocity and the
stream function on the axial coordinate. The accuracy of the analytical solutions is also verified by the numerical
solutions obtained by employing the Runge-Kutta fourth order method with shooting. The effects of various
physical parameters on the velocity profile and skin-friction coefficient are also discussed in this paper.
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1. Introduction

Beginning with the pioneering work of Sakiadis (1961) on stretching sheet there has been a great
deal of works on various aspects of momentum and heat transfer characteristics in a viscoe astic boundary
layer fluid flow over a stretching plastic boundary (Rajagopd et al., 1984 and 1987; Dandapat and Gupta,
1989; Roallins and Vajravelu, 1991; Andersson, 1992; Lawrence and Rao, 1992; Char, 1994 and Rao, 1996).
Some of the typical applications of such study are the polymer sheet extrusion from a dye, glass fiber and
paper production, drawing of plastic films, etc. Extensive literature is also available including those cited
above on the two-dimensional viscodastic boundary layer fluid flow over a stretching surface where the
velodity of the stretching surface is assumed linearly proportional to the distance from afixed origin. Mcleod
and Rajagopal (1987) discussed uniqueness of the solution of such fluid flow in case of a viscous fluid. Troy
et al. (1987) discussed uniqueness of the solution of the boundary layer equation arising in a viscod astic
fluid flow past a linearly stretching sheet. However, it is often argued that (Gupta and Gupta, 1977)
redlistically stretching of a sheet may not necessarily be linear. This situation has been beautifully dealt with
by Kumaran and Ramanaiah (1996) in their work on boundary layer flow where, probably first time, a
general quadratic stretching sheet has been assumed. They anal ysed their results in terms of stream function.
However, their work was confined to the viscous fluid flow over a stretching sheet.

Recently Ali (1995) investigated thermal boundary layer by considering a power law stretching
surface. A new dimension was added to this investigation by Elbashbeshy (2001) who examined the flow
and heat transfer characteristics by considering an exponentialy stretching continuous surface. The
Elbashbeshy (2001) considered an exponential similarity variable and exponential stretching veocity
distribution on the coordinate considered in the direction of stretching. However, the works of Ali (1995) and
Elbashbeshy (2001) are confined to the study of a viscous fluid flow only.

Inredlity, most of the fluids considered in industria applications are more non-Newtonian in nature,
especialy of viscodastic type than viscous type. To take into account these we extend the work of
Elbashbeshy (2001) to the viscodastic fluid flow in the boundary layer region. Approximate analytical
similarity solutions (zero and first order) are obtained for the stream function by transforming the highly
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non-linear differential equation into Riccati type and then solving this sequentially. The am of the article is
to ana yse the accuracy of the zero-order and first-order solutions by comparing these with the numerical
solution obtained by the Runge-Kutta fourth order method with shooting. The effects of various physical
parameters like the viscod astic parameter and Reynolds number on the skin friction coeffident are also analysed.

2. Formulation of the problem
2.1. Preliminaries

The constitutive equation of an incompressible second order fluid is given by
T =-pl +mA; +a, A, +a,A? (2.1)

where T is the stress tensor, p is the pressure, i is the dynamic viscosity, a,, a, are the normal stress
moduli and kinematical tensors A; and A, aredefined by

A, =(grad )+ (grad q)" ,
2.2)

dA
A, = d—tl + A, {grad q) +(grad q)" <A, .

Equation (2.1) was derived by Coleman and Noll (1960) using the postulates of gradually fading
memory. Using some experimental data verification Fosdick and Rajagopa (1979) gave the range of vaues
of m, a; and a, as

nso, a, £0, a;+ta,*0. (2.3)

Making use of Eq.(2.1) Beard and Walters (1964) derived the steady state two-dimensional boundary
layer equation for aviscodastic fluid flow in the form

2 3 3 3 2 2 0%
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This equation has been derived with the assumption that the normal stress is of the same order of
magnitude as that of the shear stress, in addition to the usual boundary layer approximations.

2.2. Flow governing equations

The physicd problem consists of a steady state two-dimensional boundary layer flow of an
incompressible viscodastic fluid of the type Walters liquid B over a stretching sheet (Fig.1). In formulating
the problem we consider the foll owing assumption.

(i) The boundary sheet is assumed to be moving axially with a veocity of exponential order in the axial
direction and generating the boundary layer type of flow.

For the above physical consideration of the problem the governing boundary layer equations for
momentum (Rajagopal et al., 1984 and Sonth et al., 2002) are
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—+—=0, (25)
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(2.6)

where u and v are the veocity components in the x and y directions respectively, ¢ is the kinematics

coefficient of viscosity, Kk, is the éastic parameter. Other quantities have their usua meanings (Abd et al.,
2002 and Dandapat and Gupta, 1989). In deriving EQ.(2.6) it is assumed that

0] The normal stress is of the same order of magnitude as that of the shear stress, in addition to the
usua boundary layer approximations.
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Fig.1. Boundary layer over an impermeable exponentially stretching sheet.

2.3. Boundary conditions on velocity

The boundary sheet is assumed to be stretched with a large force in such a way that stretching
velodity dong the axial direction x is of exponentia order of the directiona coordinate. Hence, we empl oy
the following boundary conditions on vel ocity.

u:UW(X)_er(pQI__ a y=0,
e
v=0 at y:O’ (27)

where U, isaconstant and | isthe reference length.
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3. Solution of the momentum boundary layer equation

Equation (2.6) may be rewritten in terms of the stream function y (x, y), which satisfies the equation
of continuity (2.5), by writing

u:ﬂ—y, v:ﬂ—y. (3.2)
y i

Further, the stream function y (x, y) may be non-dimensiondised by assuming

X 6
y (% y)=y291U, f (h)expia-2, (32)
e2l g
U X 0
h= _0@( i 4 3.3
y 21 peZIz (3.3)

Here f is the dimensionless stream function and h is the similarity variable. Making use of

Egs (3.1)-(3.2) in Eq.(2.6) we obtain a fourth order non-linear ordinary differential equation of the
form

3.20
St (34

* 4 1
2fhz - ffhh = fhhh - I(lgsfh fhhh - E ffhhhh - 2

Here, k; = kUw is the dimensi onl ess viscoel astic parameter.

The boundary conditions on f are

f=0,  f,=1 a  h=0,
(35)
fh =0 as h® ¥
Integrating Eq.(3.4), we obtain
"é i 1 3., 0l
fo + ffp =- S+ (\)i»?fh2 + klith fanh = = fannh - = i u[g dh (3.6)
é I 2 2 %u
0
where S= fhh(O).
For h® ¥ , weget
é i 1 3., 00
S=- B3 Ky 3fn funn = = fnnn - = fraygdh. (3.7)
é I 2 2 Eu

0

Weintegrate Eq.(3.6) once again and apply boundary conditions of Eq.(3.5). Thisyidds
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1., e 1 3., ¢, U
fo+5 17 =1- S+ CEERT + 1 B, fonny - > My = o, g Gch,. (38)
OSO e a H

Now, the solution procedure of the Eq.(3.8) may be reduced to the sequential solutions of the
Ri ccati-type equations

£(n) +% £ (F = RxH >G(fh(”'1), £ g n-2) fh(ﬂhﬁ)). (3.9)

This iteration agorithm has to be solved by substituting suitable zero-order approximation fh(o) (h)
for fh(h) onthe R>H >S of Eq.(3.8).

We assume zero-order approximation of as fh(o)(h) as

10 (h)=exp(- SHh), (3.10)

which satisfies the boundary conditions at infinity. Integrating the Eq.(3.10) and making use of boundary
conditionat h =0 of the Eq.(3.5) we get

(0= G»(IOS()- Sh) (3.12)

Substituting dl the derivatives of zero-order approximation f©(h) into R>H >S of Eq.(3.8) and

assuming that first-order iteration £ (1) (h) onthe L>H >S of Eq.(3.8) satisfying all the boundary conditions
a h =0 of Eq.(3.5) we obtain the value of Sas

S = /E(ls_kl) and 190)=-5,. (3.12)

Here the equation for first-order iteration fh(l) (h) takes the form

* 2 *
)+ 2 10 ()= 1+§_)3+4 ';250 g2 2+ fersn ). (3.1

Equation (3.13) is the non-linear Riccati equation and this can be solved for f ® (h) . Inthis solution
process we introduce the foll owing transformation.

£ ()= 200 (3.14)

Hence, Eq.(3.13) istransformed to



326 Sujit Kumar Khan

2t 4y

N * ~2 (]
Upn (h)- 3}1+M(e' 2% . 1)+%k1 (e' 2% . 1)120 (h)=o0. (3.15)

Equation (3.15) may be solved in terms of confluent hypergeometric Whittaker function in the
following form.

<

é u
Uh)=—2  av . [2brexp(- Sh))+BW . (2ybaexp(- Sh) (3.16)
& S0 k3 “2 §
e(pg > hfa

where A and B are arbitrary constants. The functions M m(z) and W m(z) are the Whittaker’'s functions
and they are the independent sol utions of the Whittaker’ s equation

, ¢ 1
dg ¢ 1 _k_ 124 u _
F+gz+z+ 22 Hq—o (317)
e s
where
2 2
W)= 2 e Sy ()
— - m- k< C€e1+m— k=
e2 @ e2 7]
(3.183)
L1 ..
M m(z) = e(pgg E922+rnM§;ael+m— k,1+2m 29,
’ e 29 e2 o
Here, M (a, b, z) is the Kummer’s function (Abramowitz and Stegun, 1970) and it is defined
by
¥ (a) Zn
M(a,b,z)=1+3 n-_.
( ) 21 ibin n!
(a)n = a(a+1)(a+2) ......... (a+ n- 1), (3.18b)

(b), =bb+1)(b+2)........{b+n- 1).

Substituting the solution of U(h) of Eq.(3.16) in EQ.(3.14) and making use of the boundary
condition f((n)=0 a h =0 we obtain the first-order approximate solution for f (h) as
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I((IIT(Z\/_eSO“)HWG: (2\/_e%h)
m2\/_e50h) HwW (2\/_1e“°0h)

(3.19a)
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where
15 b - )g o) G+ T4M, ooy
| = :1(2 bry - k)- ;E}Nk’m(z bll)-Wkﬂm(Z\/b_ll)

"2
and bll M

8%

The expression for velocity function fh(l) (h) is obtained as

ME:T(Z be 9" )+ wk¢m(2\/ﬁe' )
‘2 ‘2
Mk,;”(z b€ S0“) W T(Zﬁe' 50“)

"2

ME:T(Z\/Ee'SO")H w¢m(2 byre ")
2 2

(2\/_e sv") W (2 by esvh)
2

+ay; by e 2%on +Cpp€ Sof g

(3.19b)
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g 25N (3.20a)
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where

. —21- (3+kis§) klu 1
11 = € 452 2 >
é S 2 428

(3.20b)
L
488"
The expressions for by; and | are given by Eq.(3.19b). The functions M§ m(z)Wl{ m(z) are the
derivatives of the Whitaker functions M m(z) and W m(z) respectively and they are defined as

Ci1 =
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: u
M ()= &2 kM L ()+ B+ Mk ()l
kE §2 k,— e 2 g k+l,— HZ
(3.20c)
S g ug
Wk¢(z):§5_ k;%Nk T( ) Wk+1 m(Z)EE
2
The dimensionless skin-friction coefficient C; is expressed as
& i 2 i[s)
B Ty e
Sy Wy Iy vhg
f =" X6 at y:O,
Uge(pg—g
el
or (3.22)

1 f(l)g_z*@:(swkisé) 1 & 7,0
Jore Mg 5Ny 25, Ref 2

Cf:'

u,l . ) .
Here, Re =—% isthe non-dimensional Reynolds number.
g

4. Veification of the solution

Solutions derived in the previous section may be verified at the boundary sheet. Substituting the
expression of | given the Eq.(3.19b) in Eq.(3.19a) and making h =0 therein it can be easily seen that the
boundary condition f (1)(h) =0 at h=0 issatisfied. Now, in order to verify the solution at the second

boundary condition fh(l)(h):l at h=0 we make use of the relations (3.19b) and (3.20c) and we
obtain

M E:,;“(Z\/Ee- )1 we,2)bye )

2 __R+tR+R

M, H2ybe o) 41 w ofbre ) e Q+Q,] oD
2 2
where
P =-(/be - k)Mk’rzn(Z\/Ee- St’h)‘/\/,(+l’r2n(2 by )+
(4.18)

3 (o nlebul nleipuie @)
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(2\/_)‘/‘/ (2 by & " )+

=12 o - K Bae - k)5 2
Ty \IS( ¢ k)q' M, 9(2 by, )N 9(2 b11)++
' ) %]
JLem b e :
122 ?58 o1, (ZV esoh)N+ (2 b“)z

"2 %]

P, =- :% r_Z" \5}_+\/_( ){) (2\/5)\/\/ (2 bpe ), cd (419)

Q =- Mk’T(Z\/Ee' Sh )wkﬂ’m(z by, )+
3 5V ol nloibae =)

M (ZJE)\N (Zble ),[

ol
afr by, nleBe o]
f k2 [}

Substituting h =0 in Egs (4.1) and (4.18) we obtain

Mfm(Z\/Ee' o1 we 2 )bpe 3
2 "2 =1 a  n=o. (4.2)
M o(2/bre ) HW ofbpes) 2
"2

kM
)
Substituting h =0 in Eq.(3.20a) and noting that

1 thp +C=— (4.3)

25

and also making use of Eq.(4.2) it can be easily verified that f{U(h)=1a h=0. Hence, the first-order

solution satisfies the second boundary conditionat h =0.

The accuracy of the zero-order and first-order solutions obtained by Egs (3.11) and (3.19)
respectively may also be verified with the numerical solutions of Eq.(3.4) by employing the Runge-K utta
fourth order method. It is seen that the profiles of zero-order and first-order solutions are very close to the
profile of the numerica solution of the non linear Eq.(3.4) obtained by employing the Runge-K utta fourth
order method with shooting in the region very near the boundary (Fig.2).
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Fig.2. Profilesof f (h) obtained from zero order, first order and numerical sol utions when k; =0.2.

5. Resultsand discussion

Approximate analytical similarity solutions (zero and first order) of the highly non-linear boundary
layer equation of viscodastic fluid flow over an exponentialy stretching impermeable sheet have been
obtai ned. In the process of deriving mathematical solutions, the highly non-linear partial differential equation
characterizing the flow has been converted into a non-linear ordinary differentia equation by applying
suitable similarity transformations. Sequentid similarity solutions of the transformed momentum equation
are obtained by solving the non-linear Riccati type equation andytically. The zero-order solution for the
dimensionless stream function has been obtained analytically which satisfies all the boundary conditions.
The first-order solution of f has also been derived analyticaly in the form of the confluent hypergeometric
Whittaker’ s function. These solutions may be verified with the numerica solution of Eq.(3.4) by employing
the Runge-Kutta fourth order method (Fig.2). In order to solve the fourth order non-linear differentia
Eq.(3.4) numericaly it is necessary to have four boundary conditions. However, there are three boundary
conditions prescribed by Eq.(3.5). Hence, we generate the fourth boundary condition by substituting the first
two boundary conditions of Eq.(3.5) in Eq.(3.4) in the following form

f (0) — 4- 3k; fh2h (0) (5 1)
hhn A '

The graphical analysis of Fig.2. reveds that the profiles of zero and first-order solutions are very
close to the profile of the numerical solution of the non-linear Eq.(3.4). Also, the numerical solution of

Eq.(3.4) for f, (h) using the Runge-Kutta fourth order method with shooting, has been obtained which
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matches very well with the analytical solutions of zero-order fh(o) (h) and first-order fh(l) (h) in the region
which is very close to the boundary sheet (Fig.3). It isimportant to note that al these solutions involve an
exponential dependence of (i) the similarity variable h (ii) the stream function f(h) and (iii) the velocity
component f, (h) on the coordinate x along the direction of stretching.
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Fig.3. Vedocity profile f, (h) obtained from first order solution and numerical solution when ki =0.1.

In order to gain some knowledge on the quditative behaviour of the flow characteristics, the
numerical values of the results are plotted graphically for atypical choice of physical parametersin Figs 4-5.

The graphs for the non-dimensional velocity profile fh(l) (h) for different values of the viscod astic parameter

ki are shown in Fig.4. The analysis of the figure demonstrates that the effect of the viscoe astic parameter
k; is to decrease veocity throughout the boundary layer flow fidd, which is quite obvious. The graphs of

the non-dimensiona skin-friction parameter C; vs. viscodastic parameter k; for different values of the
Reynolds number Re are shown in Fig.5. From this figure we notice that the increase of non-dimensional
Viscod astic parameter ki leads to the decrease of skin-friction parameter C; . Thisresult is the consequence

of the fact that the elastic property in a viscod astic fluid reduces the frictiona force. These results may have
great significance in polymer proceeding industry, as the choice of higher order viscodastic fluid would
reduce the power consumption for stretching the boundary sheet. The effect of the Reynolds number on the
skin-friction coefficient is also seen to reduce the skin-friction coefficient C; as a reduction of viscous

property of the fluid results in the decrease of frictiond force or drag force
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Fig.4. Velocity profile £{(h) for different values of k.
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Fig.5. Graph of skin friction parameter C; vs viscodastic parameter kI for different values of Reynolds
number Re.
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6. Conclusons

A mathematical problem has been formulated for the momentum transfer in a viscodagtic fluid flow
over an exponentidly stretching impermeable sheet. In the solution procedure a highly non-linear differential
equation is converted into an ordinary differential equation by applying similarity transformations.
Sequentia similarity solutions of the transformed momentum equation are obtained anal ytically by solving
the non-linear Riccati type equation repeatedly. The first-order approximate sol utions for the stream function

f(h) and the velocity function f,,(h) are obtained in the form of the confluent hypergeometric Whittaker

functions. The solutions are verified at the boundary sheet. These solutions are also compared with the
numerical solution of the problem obtained by employing the Runge-Kutta fourth order method with
shooting and good accuracy has been found near the region very close to the boundary sheet. The zero-order

velodity profile fh(o) (h) and first-order velocity profile fh(l)(h) are also compared with the numerical

solutions obtained by employing the Runge-Kutta fourth order method with shooting and the desired
accuracy has been achieved. Expressions are also obtained for the dimensionless skin-friction coefficient

C; . The derived solutions involve an exponential dependence of (i) the similarity variable h (ii) the stream
function f(h) and (iii) the velodity profile f,,(h) on the flow directional coordinate.

The important findings of the graphical analysis of the results of the present problem are as follows.

1. Both zero-order and first-order solutions of the stream function f (h) have good accuracy near the region
very close to the boundary.

2. Both zero-order and first-order solutions of the velocity function f, (h) have good accuracy near the
region very doseto the boundary.

3. Theeffect of increasing the val ues of the viscoe astic parameter ki isto decrease the vel ocity throughout
the boundary layer.

4. The effect of increasing the values of the viscodagtic parameter ki is to decrease the skin-friction
parameter C; and the effect of increasing values of the Reynolds number Reis also to decrease the skin-

friction coefficient C; .

5. Thelimiting cases of the results of the paper when k; ® 0 arein excedlent agreement with the results of
Elbashbeshy (2001).
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Nomenclature

A; and A, —kinematical tensors
C; —dimensionless skin-friction coefficient
f —dimensionless stream function
ko — elastic parameter
k; — viscoelastic parameter
I —reference length
M (a,b,z) —Kummer's function
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My m(z) @d w, (z) —theWhittaker's functions

— pressure
Re —non-dimensiona Reynolds number
T —dtresstensor
u,v —velocity components
Uy - constant
¢ —kinematics coefficient of viscosity
h —smilarity variable
n —dynamic viscosity
maq,a, —thenormal stress moduli
y(x,y) —stream function
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