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In the present paper, a viscoelastic boundary layer fluid flow over an exponentially stretching continuous 
sheet has been examined. The flow is assumed to be generated solely by the application of two equal and opposite 
forces along the x-axis such that stretching of the boundary surface is of exponential order in x. Approximate 
analytical similarity solutions (zero and first order) of the highly non-linear boundary layer equation are obtained 
for the dimensionless stream function and velocity distribution function after transforming the boundary layer 
equation into Riccati type and solving that sequentially. The first-order solution is derived in the form of 
confluent hypergeometric Whittaker functions. The solutions are verified at the boundary sheet. These solutions 
(zero and first order) involve an exponential dependence of the similarity variable, the stretching velocity and the 
stream function on the axial coordinate. The accuracy of the analytical solutions is also verified by the numerical 
solutions obtained by employing the Runge-Kutta fourth order method with shooting. The effects of various 
physical parameters on the velocity profile and skin-friction coefficient are also discussed in this paper.  
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1. Introduction  
 
 Beginning with the pioneering work of Sakiadis (1961) on stretching sheet there has been a great 
deal of works on various aspects of momentum and heat transfer characteristics in a viscoelastic boundary 
layer fluid flow over a stretching plastic boundary (Rajagopal et al., 1984 and 1987; Dandapat and Gupta, 
1989; Rollins and Vajravelu, 1991; Andersson, 1992; Lawrence and Rao, 1992; Char, 1994 and Rao, 1996). 
Some of the typical applications of such study are the polymer sheet extrusion from a dye, glass fiber and 
paper production, drawing of plastic films, etc. Extensive literature is also available including those cited 
above on the two-dimensional viscoelastic boundary layer fluid flow over a stretching surface where the 
velocity of the stretching surface is assumed linearly proportional to the distance from a fixed origin. Mcleod 
and Rajagopal (1987) discussed uniqueness of the solution of such fluid flow in case of a viscous fluid. Troy 
et al. (1987) discussed uniqueness of the solution of the boundary layer equation arising in a viscoelastic 
fluid flow past a linearly stretching sheet. However, it is often argued that (Gupta and Gupta, 1977) 
realistically stretching of a sheet may not necessarily be linear. This situation has been beautifully dealt with 
by Kumaran and Ramanaiah (1996) in their work on boundary layer flow where, probably first time, a 
general quadratic stretching sheet has been assumed. They analysed their results in terms of stream function. 
However, their work was confined to the viscous fluid flow over a stretching sheet.  
 Recently Ali (1995) investigated thermal boundary layer by considering a power law stretching 
surface. A new dimension was added to this investigation by Elbashbeshy (2001) who examined the flow 
and heat transfer characteristics by considering an exponentially stretching continuous surface. The 
Elbashbeshy (2001) considered an exponential similarity variable and exponential stretching velocity 
distribution on the coordinate considered in the direction of stretching. However, the works of Ali (1995) and 
Elbashbeshy (2001) are confined to the study of a viscous fluid flow only.  
 In reality, most of the fluids considered in industrial applications are more non-Newtonian in nature, 
especially of viscoelastic type than viscous type. To take into account these we extend the work of 
Elbashbeshy (2001) to the viscoelastic fluid flow in the boundary layer region. Approximate analytical 
similarity solutions (zero and first order) are obtained for the stream function by transforming the highly 
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non-linear differential equation into Riccati type and then solving this sequentially. The aim of the article is 
to analyse the accuracy of the zero-order and first-order solutions by comparing these with the numerical 
solution obtained by the Runge-Kutta fourth order method with shooting. The effects of various physical 
parameters like the viscoelastic parameter and Reynolds number on the skin friction coefficient are also analysed. 
 
2. Formulation of the problem 
 
2.1. Preliminaries 
 
 The constitutive equation of an incompressible second order fluid is given by  
 
  2

12211p AAAIT α+α+µ+−=  (2.1) 
 
where T is the stress tensor, p is the pressure, µ  is the dynamic viscosity, 1α , 2α  are the normal stress 
moduli and kinematical tensors 1A  and 2A  are defined by  
 
  ( ) ( )T1 qqA gradgrad += , 
   (2.2) 

  ( ) ( ) 1
T

1
1

2 dt
d AqqAAA ⋅+⋅+= gradgrad .  

 
 Equation (2.1) was derived by Coleman and Noll (1960) using the postulates of gradually fading 
memory. Using some experimental data verification Fosdick and Rajagopal (1979) gave the range of values 
of µ , 1α  and 2α  as 
 
  0≥µ ,          01 ≤α ,          021 ≠α+α . (2.3) 
 
 Making use of Eq.(2.1) Beard and Walters (1964) derived the steady state two-dimensional boundary 
layer equation for a viscoelastic fluid flow in the form  
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 This equation has been derived with the assumption that the normal stress is of the same order of 
magnitude as that of the shear stress, in addition to the usual boundary layer approximations.  
 
2.2. Flow governing equations  
 
 The physical problem consists of a steady state two-dimensional boundary layer flow of an 
incompressible viscoelastic fluid of the type Walters liquid B over a stretching sheet (Fig.1). In formulating 
the problem we consider the following assumption.  
(i) The boundary sheet is assumed to be moving axially with a velocity of exponential order in the axial 

direction and generating the boundary layer type of flow.  
 For the above physical consideration of the problem the governing boundary layer equations for 
momentum (Rajagopal et al., 1984 and Sonth et al., 2002) are  
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where u and v are the velocity components in the x and y directions respectively, γ  is the kinematics 
coefficient of viscosity, 0k  is the elastic parameter. Other quantities have their usual meanings (Abel et al., 
2002 and Dandapat and Gupta, 1989). In deriving Eq.(2.6) it is assumed that 
(i) The normal stress is of the same order of magnitude as that of the shear stress, in addition to the 

usual boundary layer approximations.  
 

 
 

Fig.1. Boundary layer over an impermeable exponentially stretching sheet. 
 
2.3. Boundary conditions on velocity 
 
 The boundary sheet is assumed to be stretched with a large force in such a way that stretching 
velocity along the axial direction x is of exponential order of the directional coordinate. Hence, we employ 
the following boundary conditions on velocity.  
 

  ( ) 





==

l
xUxUu 0w exp           at          0y = , 

 
  0v =           at          0y = , (2.7) 
 
  0u =           as          ∞→y  
 
where 0U  is a constant and l is the reference length.  
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3. Solution of the momentum boundary layer equation  
 
 Equation (2.6) may be rewritten in terms of the stream function ( )yx,ψ , which satisfies the equation 
of continuity (2.5), by writing  
 

  
y

u
∂
ψ∂

= ,          
x

v
∂
ψ∂

= . (3.1) 

 
 Further, the stream function ( )yx,ψ  may be non-dimensionalised by assuming  
 

  ( ) ( ) 





ηγ=ψ

l2
xflU2yx 0 exp, , (3.2) 
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=η

l2
x

l2
Uy 0 exp . (3.3) 

 
 Here f is the dimensionless stream function and η  is the similarity variable. Making use of 
Eqs (3.1)-(3.2) in Eq.(2.6) we obtain a fourth order non-linear ordinary differential equation of the 
form  
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 Here, 
γ

=∗ w0
1

Ukk  is the dimensionless viscoelastic parameter.  

The boundary conditions on f are  
 
  0f = ,          1f =η           at          0=η , 
   (3.5)  
  0f =η                                as          ∞→η .  
 
 Integrating Eq.(3.4), we obtain  
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where ( )0fS ηη= . 
 For ∞→η , we get 
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 We integrate Eq.(3.6) once again and apply boundary conditions of Eq.(3.5). This yields  
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 Now, the solution procedure of the Eq.(3.8) may be reduced to the sequential solutions of the 
Riccati-type equations  
 

  ( ) ( ) ( ) ( ) ( ) ( )( )1n1n1n1nnn ffffSHRf
2
1f

2 −
ηηηη

−
ηηη

−
ηη

−
ηη ⋅⋅=+ ,,, . (3.9) 

 
 This iteration algorithm has to be solved by substituting suitable zero-order approximation ( )( )ηη

0f  

for ( )ηηf  on the SHR ⋅⋅  of Eq.(3.8). 

 We assume zero-order approximation of as ( )( )ηη
0f  as 

 
  ( )( ) ( )η−=ηη 0

0 Sf exp , (3.10) 
 
which satisfies the boundary conditions at infinity. Integrating the Eq.(3.10) and making use of boundary 
condition at 0=η  of the Eq.(3.5) we get  
 

  ( )( ) ( )
0

00

S
S1f η−−

=η
exp . (3.11) 

 
 Substituting all the derivatives of zero-order approximation ( )( )η0f  into SHR ⋅⋅  of Eq.(3.8) and 

assuming that first-order iteration ( )( )η1f  on the SHL ⋅⋅  of Eq.(3.8) satisfying all the boundary conditions 
at 0=η  of Eq.(3.5) we obtain the value of S as  
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1
0 k12
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 Here the equation for first-order iteration 
( ) ( )ηη
1

f  takes the form   
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 Equation (3.13) is the non-linear Riccati equation and this can be solved for ( )( )η1f . In this solution 
process we introduce the following transformation.  
 

  ( )( ) ( )
( )η

η
=η η

U
U2

f 1 . (3.14) 

 
 Hence, Eq.(3.13) is transformed to  
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 Equation (3.15) may be solved in terms of confluent hypergeometric Whittaker function in the 
following form.  
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where A and B are arbitrary constants. The functions ( )zM k µ,  and ( )zWk µ,  are the Whittaker’s functions 
and they are the independent solutions of the Whittaker’s equation 
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 Here, ( )zbaM ,,  is the Kummer’s function (Abramowitz and Stegun, 1970) and it is defined 
by  
 

  ( ) ( )
( )∑

∞

=

+=
1n n

n
n

!nb
za

1zbaM ,, , 

 
  ( ) ( )( ) ( )1na..........2a1aaa n −+++= , (3.18b) 
 
  ( ) ( )( ) ( )1nb..........2b1bbb n −+++= .  
 
 Substituting the solution of ( )ηU  of Eq.(3.16) in Eq.(3.14) and making use of the boundary 

condition ( )( ) 0f 1 =η  at 0=η  we obtain the first-order approximate solution for ( )ηf  as   
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 The expression for velocity function ( )( )ηη
1f  is obtained as  
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 The expressions for 11b  and λ  are given by Eq.(3.19b). The functions ( ) ( )zWzM kk µµ ′′ ,,  are the 

derivatives of the Whitaker functions ( )zM k µ,  and ( )zWk µ,  respectively and they are defined as  
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 The dimensionless skin-friction coefficient fC  is expressed as  
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 Here, 
γ

=
lU wRe  is the non-dimensional Reynolds number. 

 
4. Verification of the solution  
 
 Solutions derived in the previous section may be verified at the boundary sheet. Substituting the 
expression of λ  given the Eq.(3.19b) in Eq.(3.19a) and making 0=η  therein it can be easily seen that the 

boundary condition ( )( ) 0f 1 =η  at 0=η  is satisfied. Now, in order to verify the solution at the second 

boundary condition ( )( ) 1f 1 =ηη  at 0=η  we make use of the relations (3.19b) and (3.20c) and we 
obtain   
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 Substituting 0=η  in Eqs (4.1) and (4.1a) we obtain 
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 Substituting 0=η  in Eq.(3.20a) and noting that 
 

  2
0

111111 S2
1cba =++ , (4.3) 

 
and also making use of Eq.(4.2) it can be easily verified that ( )( ) 1f 1 =ηη at 0=η . Hence, the first-order 
solution satisfies the second boundary condition at 0=η .  
 The accuracy of the zero-order and first-order solutions obtained by Eqs (3.11) and (3.19) 
respectively may also be verified with the numerical solutions of Eq.(3.4) by employing the Runge-Kutta 
fourth order method. It is seen that the profiles of zero-order and first-order solutions are very close to the 
profile of the numerical solution of the non linear Eq.(3.4) obtained by employing the Runge-Kutta fourth 
order method with shooting in the region very near the boundary (Fig.2).  
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Fig.2. Profiles of ( )ηf  obtained from zero order, first order and numerical solutions when 2.0k1 =∗ . 
 
5. Results and discussion  
 
 Approximate analytical similarity solutions (zero and first order) of the highly non-linear boundary 
layer equation of viscoelastic fluid flow over an exponentially stretching impermeable sheet have been 
obtained. In the process of deriving mathematical solutions, the highly non-linear partial differential equation 
characterizing the flow has been converted into a non-linear ordinary differential equation by applying 
suitable similarity transformations. Sequential similarity solutions of the transformed momentum equation 
are obtained by solving the non-linear Riccati type equation analytically. The zero-order solution for the 
dimensionless stream function has been obtained analytically which satisfies all the boundary conditions. 
The first-order solution of f has also been derived analytically in the form of the confluent hypergeometric 
Whittaker’s function. These solutions may be verified with the numerical solution of Eq.(3.4) by employing 
the Runge-Kutta fourth order method (Fig.2). In order to solve the fourth order non-linear differential 
Eq.(3.4) numerically it is necessary to have four boundary conditions. However, there are three boundary 
conditions prescribed by Eq.(3.5). Hence, we generate the fourth boundary condition by substituting the first 
two boundary conditions of Eq.(3.5) in Eq.(3.4) in the following form  
 

  ( ) ( )
( )∗

ηη
∗

ηηη
−

−
=

1

2
1

k312

0fk34
0f . (5.1) 

 
 The graphical analysis of Fig.2. reveals that the profiles of zero and first-order solutions are very 
close to the profile of the numerical solution of the non-linear Eq.(3.4). Also, the numerical solution of 
Eq.(3.4) for ( )ηηf , using the Runge-Kutta fourth order method with shooting, has been obtained which 
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matches very well with the analytical solutions of zero-order ( )( )ηη
0f  and first-order ( )( )ηη

1f  in the region 
which is very close to the boundary sheet (Fig.3). It is important to note that all these solutions involve an 
exponential dependence of (i) the similarity variable η  (ii) the stream function ( )ηf  and (iii) the velocity 
component ( )ηηf  on the coordinate x along the direction of stretching.  
 

 
 

Fig.3. Velocity profile ( )ηηf  obtained from first order solution and numerical solution when 1.0k1 =∗ . 
 

 In order to gain some knowledge on the qualitative behaviour of the flow characteristics, the 
numerical values of the results are plotted graphically for a typical choice of physical parameters in Figs 4-5. 
The graphs for the non-dimensional velocity profile ( )( )ηη

1f  for different values of the viscoelastic parameter 
∗
1k  are shown in Fig.4. The analysis of the figure demonstrates that the effect of the viscoelastic parameter 
∗
1k  is to decrease velocity throughout the boundary layer flow field, which is quite obvious. The graphs of 

the non-dimensional skin-friction parameter fC  vs. viscoelastic parameter ∗
1k  for different values of the 

Reynolds number Re are shown in Fig.5. From this figure we notice that the increase of non-dimensional 
viscoelastic parameter ∗

1k  leads to the decrease of skin-friction parameter fC . This result is the consequence 
of the fact that the elastic property in a viscoelastic fluid reduces the frictional force. These results may have 
great significance in polymer proceeding industry, as the choice of higher order viscoelastic fluid would 
reduce the power consumption for stretching the boundary sheet. The effect of the Reynolds number on the 
skin-friction coefficient is also seen to reduce the skin-friction coefficient fC  as a reduction of viscous 
property of the fluid results in the decrease of frictional force or drag force.  
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Fig.4. Velocity profile ( )( )ηη
1f  for different values of ∗

1k . 
 

 
 

Fig.5. Graph of skin friction parameter fC  vs viscoelastic parameter ∗
1k  for different values of Reynolds 

number Re.  
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6. Conclusions  
 
 A mathematical problem has been formulated for the momentum transfer in a viscoelastic fluid flow 
over an exponentially stretching impermeable sheet. In the solution procedure a highly non-linear differential 
equation is converted into an ordinary differential equation by applying similarity transformations. 
Sequential similarity solutions of the transformed momentum equation are obtained analytically by solving 
the non-linear Riccati type equation repeatedly. The first-order approximate solutions for the stream function 

( )ηf  and the velocity function ( )ηηf  are obtained in the form of the confluent hypergeometric Whittaker 
functions. The solutions are verified at the boundary sheet. These solutions are also compared with the 
numerical solution of the problem obtained by employing the Runge-Kutta fourth order method with 
shooting and good accuracy has been found near the region very close to the boundary sheet. The zero-order 
velocity profile ( )( )ηη

0f  and first-order velocity profile ( )( )ηη
1f  are also compared with the numerical 

solutions obtained by employing the Runge-Kutta fourth order method with shooting and the desired 
accuracy has been achieved. Expressions are also obtained for the dimensionless skin-friction coefficient 

fC . The derived solutions involve an exponential dependence of (i) the similarity variable η  (ii) the stream 
function ( )ηf  and (iii) the velocity profile ( )ηηf  on the flow directional coordinate.  
 The important findings of the graphical analysis of the results of the present problem are as follows.  
1. Both zero-order and first-order solutions of the stream function ( )ηf  have good accuracy near the region 

very close to the boundary.  
2. Both zero-order and first-order solutions of the velocity function ( )ηηf  have good accuracy near the 

region very close to the boundary. 
3. The effect of increasing the values of the viscoelastic parameter ∗

1k  is to decrease the velocity throughout 
the boundary layer. 

4. The effect of increasing the values of the viscoelastic parameter ∗
1k  is to decrease the skin-friction 

parameter fC  and the effect of increasing values of the Reynolds number Re is also to decrease the skin-

friction coefficient fC . 

5. The limiting cases of the results of the paper when 0k1 →∗  are in excellent agreement with the results of 
Elbashbeshy (2001). 
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Nomenclature  
 
 21 AA and  – kinematical tensors  
 fC  – dimensionless skin-friction coefficient 
  f  – dimensionless stream function  
  0k  – elastic parameter 

  *
1k  – viscoelastic parameter 

  l  – reference length  
 ( )z,b,aM  – Kummer’s function 
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 ( )zM ,k µ  and ( )zW ,k µ  – the Whittaker’s functions 
  p  – pressure 
 Re  – non-dimensional Reynolds number 
 T  – stress tensor 

 v,u  – velocity components 
 0U  – constant 
  γ  – kinematics coefficient of viscosity 
  η  – similarity variable 
 µ  – dynamic viscosity 
 µ 21 ,αα  – the normal stress moduli  

  ( )yx,ψ  – stream function 
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