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The response of a micropolar cubic crystal due to various sources has been investigated. The eigen-value
approach after applying Laplace and Fourier transforms has been employed to solve the problem. The integral
transforms have been inverted by using a numerical technique to obtain the displacement, microrotetion and
stress components in the physical domain. The results of normal displacement, normal force stress and tangential
couple stress have been compared for a micropolar cubic crystal and micropolar isotropic solid and illustrated

graphically.
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1. INTRODUCTION

The classical theory of éasticity does not explain certain discrepancies that occur in the case of
problems involving elastic vibrations of high frequency and short wave length, that is, vibrations due to the
generation of ultrasonic waves. The reason lies in the microstructure of the material which exerts a special
influence at high frequencies and short wave lengths.

An atempt was made to eiminate these discrepancies by suggesting that the transmission of
interaction between two particles of a body through an dementary area lying within the materia was
affected not soley by the action of a force vector but also by a moment (couple) vector. This led to the
existence of couple stress in easticity. Polycrystaline materials, materials with fibrous or coarse grain
structure comein this category. The analysis of such materials requires incorporating the theories of oriented
media. For thisreason, micropolar theories were devel oped by Eringen (19664, b) for dastic salidsand fluids.

Following various methods, the dastic fidds of various loadings, inclusion and inhomogeneity
problems, and interaction energy of point defects and dislocation arrangement have been discussed
extensively. Generadly, al materials have dastic anisotropic properties and this implies that the mechanica
behavior of an engineering material is characterized by the direction dependence. However, the three
dimensional study for an anisotropic material is much more complicated to obtain than theisotropic one, due
to the large number of éastic constants involved in the calculation. In recent years, the eastodynamic
response of anisotropic continuum has recei ved the attention of severd researchers. In particular, transversly
i sotropic and orthotropic materials, which may not be distinguished from each other in plane strain and plane
stress, have been more regularly studied. The orthotropic material has the symmetry of its dastic properties
with respect to two orthogonal planes. Thetetragonal materia is a particular type of orthotropic materia that
has the same properties ad ong two axes and different properties along the third axis and a cubic materid isa
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tetragonal materia that is invariant to an additional change of coordinates. Kumar and Choudhary(2002a, b,
2003) discussed different types of problems in a micropolar orthotropic continua.

A wide class of crystals such as W, S, Cu, Ni, Fe, Au, Al etc., which are frequently used substances,
beong to cubic materials. Cubic materials have nine planes of symmetry whose normals are on the three
coordinate axes and on the coordinate planes making an angle p/4 with the coordinate axes. With the
chosen coordinate system along the crystaline directions, the mechanical behavior of a cubic crystal can be
characterized by four independent dastic constants A, A,, A and A,.

To understand the crystal easticity of a cubic material, Chung and Buessem (1967) presented a
convenient method to describe the degree of the e asticity anisotropy in a given cubic crystal. Later, Lie and
Koehler (1968) used a Fourier expansion scheme to calculate the stress fields caused by a unit force in a
cubic crystal. Steeds (1973) gave a complete discussion on the displacements, stresses and energy factors of
the dislocations for two-dimensional anisotropic materials. Boulanger and Hayes (2000) investigated
inhomogeneous plane waves in cubic dastic materias. Bertram et al. (2000) discussed generation of discrete
isotropic orientation distributions for linear eastic cubic crystals. Kobayashi and Giga (2001) investigated
anisotropy and curvature effects for growing crystals. Domanski and Jablonski (2001) studied resonances of
nonlinear eastic waves in cubic crystal. Destrade (2001) considered the explicit secular equation for surface
acoustic waves in monoclinic dastic crystals. Zhou and Ogawa (2002) investigated eastic solutions for a
solid rotating disk with cubic anisotropy. Minagawa et al. (1981) discussed the propagation of plane
harmonic waves in a cubic micropolar medium. Recently Kumar and Rani (2003) studied time harmonic
sources in a themally conducting cubic crystal. However, no attempt has been made to study source
problemsin micropolar cubic crystals.

The present investigation is to determine the components of displacement, microrotation and stresses
ina micropolar cubic crystal due to various types of sources. The solutions are obtained by using the eigen-
value approach after employing the integral transformation technique. The integra transforms are inverted
using anumerical method.

2. Problem formulation

We consider a homogeneous micropolar cubic crystal of infinite extent with a Cartesian coordinate
system (x, Y, z). To analyze the displacements, microrotation and stresses at the interior of the medium due

to various sources, the continuum is divided into two half-spaces defined by
i. half spacel [{<¥, -¥<y£0, |7<¥,
ii. half spacell [x<¥ , 0E£y<¥, |7 <¥ .

If we restrict our analysis to the plane strain paralld to the xy - plane with the displacement vector
u= (ul, Uy, 0) and microrotation vector f = (0, o,f 3) , thenthefidd equations and condtitutiverdations for such a
medium in the absence of body forces and body coupl es given by Minagawa et al. (1981) can berecdled as

oy + o, +(A, + f°u, lp - a)Ta o Ty, 21

Ay X2 A ﬂyz (A2 A4)ﬂXﬂy (AS A4) Ty r 2 , (2.1)
1%u, 1u, 1%u, s T,

Ay A= : 2.2

Poge TG A A gy (A ARG (22)
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&u, fu, 6 7%
BN2f 5 + 2 M2 =r : 2.3
3 (As - A4)§ " 1y 2As- A3 Jﬂtz (2.3)
_a Tuy fluy
ty = A —+A —=, 24
2 = Pyt t A (24)
aa1u2 Hu,
ty = Cf g2+ +f 25
21 A4 3 Asg‘l]y 3Ia (2.5)
_p T,
My = B;— 2.6
b3 = B3 Ty (2.6)
L et us introduce the dimensionl ess variabl es defined by the expressions
w w w W A
x¢=—x, yé=—1y, uf=—u,, ug=—u,, ff=—F,,
: oY ubs L usu fgE L
(2.7
gy =t tad el G e e
A Byw Cy
where
w*Z:A“',AS, :ﬁ (2.8)
r)
Using formulae (2.7), the system of Eqgs (2.1)-(2.3) reduces to (dropping the primes)
Tuy, o, 120 0 o u2+A4(A3-A4)ﬂf3 2 120,
—==rcC , (2.9
Arge Hhrg A+ A I TR
a e p T (A2+A4)“ o Al AT 2 T, 210
we oy A T g2
AW oo U, Tu® ,A(A- A _ 2 AT
B N“f o +(A; - 2—= i oorjwc——— (2.11)
3 I s+ (A A4)g x '"Yz A 3 A T2
Theinitial conditions are given by
u, (% v,0)=u,(x y,0)=0; n=12,
(2.12)

f3(x y,0)=f5(x y,0)=

Applying the Laplace transform with respect to time ‘t" defined by
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¥

{0 v, p) T3k v, P = Jun(x o) Fa(x, yothe Pt . n=12,

and then the Fourier transform with respect to ‘X’ defined by

{Gn(x’ y. p). F3(x. v, p)}= Un(x% y, p), F5(x y, p)} ®dx, n=12

® O X

on Egs (2.9)-(2.11) and with the help of initid conditions (2.12), we obtain

where

where

o N -
DUy =by U3 +a;,DU;, +a43 Df 5,
ae N -
DUy =by Uy + 3y Du;y +hys fs,

D2f 3= b3 f~3 +ag DU; +bgy Uy

b =TGP HCA  rpt A ixA(As- A
A A AP
2 ) A 5~
o |xc1/jlz(:4383A4), b33:B_t§(ZB3+rjc12p2+2(A3-A4)\;32§,
ag=- Pl A) XAt A) AR A
A A A A,Byw 2
alZ:%’ D:diy

Equations (2.15)-(2.17) may be written as

DW(x, Y, p) = A(X, p) W(X, Y, p)

a1, 6
&V 0 &0 190 c_t=
W = o A:g * * Ty V:Qu2+’
DVIJ A1 Azﬂ gi; =
3G
gﬁbu 0 09 850 a;; &30
AL =¢c0 by bye, Ay=cay 0 0=+

€0 by byy Gayz 0 0

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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O and | arerespectively zero and the identity matrix of order 3.
To solve Eq.(2.19), we assume
W(x y, p)=X(x, p)e?, (2.21)
which leads to the eigen value problem. The characteristic equation corresponding to matrix A is given by
det[A- ql]=0, (2.22)
which on expansion provides us with
A +14q" +1 5% +1 5=0 (2.23)
where
| 1= - (anp8y; + 8438 +hy; +by +byy),
| 5= a3 (aybas - 3 ) + Ay (020851 - Aisy) +bypbas - gy +byy (b +b33),  (2:24)

| 5= bll(b23b32 - b22b33)-

The eigen values of matrix A are the characteristic roots of EQ.(2.23). The vectors X(x, p)
corresponding to the eigen values g can be determined by solving the homogeneous equation

[A- qI] X(x, p)=0.

(2.25)
The set of eigen vectors Xs(x, p), s=12....... 6 may be obtained as
é\@(gl(x’ p)9
Xs(x,p)=¢ * (2.26)
ngz(x, p);_a
where
%99 ey 2
Xqa(xp)=cags,  Xg(x.p)=Cagay*, a=qy; 9=123, (227)
gbg o bydg 5
2 Or0 g" QRZ 0
Xm(* p)=¢ ag + Xgo(x, p)=C- agar®, R=g+3, q=-q;, g=123, (228)
§br ;

- quRB

and
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_ byybys - qs (b23 * a21a13)

g =
Ng

2
_ Qgdg; +aghs,

b , (2.29)
’ qé - bgs
Ng = quga13 +ay5by3 - byays.
The solution of Eq.(2.19) is given by

3

W(x, ¥, p)= & [ DsXs(x, p) exp(dsy)+ DX sualx, ) exp(- ggy) | (2.30)
s=1

where Dy (X =l2..... 6) are arbitrary constants.

Equation (2.30) represents the solution to the general problem in case of micropolar cubic crystals
and can be applied to a class of problems in the domain of Laplace and Fourier transforms.

3. Applications
We consider an infinite micropolar cubic crystal in which an arbitrary normal/tangential load is

acting at the origin of the Cartesian coordinate system. Mathematically, the boundary conditions at the
interface of two half-spaces y =0 are given by

ul(x,0+,t)- ul(x,O' ,t):O, uz(x,0+, t)— uz(x,O' ,t):O,
Fa(x0%t)- f4(x07,t)=0,  myg(x0%.t)- mulxot)=0, (31)

tzz(x,0+,t)- tzz(x,O' , t): -Fy(x,t), t21(x,0+, t)- t21(x,0' , t): - Fy(x t),
3.1. Casel: continousload in normal direction
For acontinous load in normal direction
F(xt)=0, Fo(x,t)=y ,(x)H (). 3.2)
3.2. Casell: continousload in tangential direction
Inthis case
Fo(x )=y (H(t), F,(x,t)=0. (3.3)
Using formulae (2.7), (3.2) and applying Laplace and Fourier transforms defined by Egs (2.13) and

(2.14) on Egs (3.1), after suppressing the primes, and with the help of Eq.(2.30), we obtai n the transformed
components of displacement, mi crorotation and stresses as
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where

and

where

5= ary d2y dsy - gy - dy - dgy
U =q;D,e™ +q,D,e™ +q3Dze™” - (Q1D4e ' +q,Ds€ 2’ +q3Dge )’
U, =a;D; % +a,D,e%Y +a;D,e® +a,D,e” %Y +a,D.e @Y +a;Dge Y,

fa= lelequ +b,D, ey + b;Ds e®BY 4+ b,D, € @y 4 b,Dse a2y 4 byDge€ asy ’

My3 = %[blqlDlequ +b,0,D,6%” +bsq5D5e™” +

- (b1Q1D4 e WY +h,0,D5e" % +bygsDg € qu)] ,

t,y =1, D;e™Y +r,D,e%Y +r;D e - (rlD4 e % +r,Dge" %Y +1;Dg€ qu),

E-zz - SlDlequ +52D2e<12y + Ssteqsy +sD € Qy +s,Dg € a2y +5;Dg€ asy

1¢é (Ag-A) 0
My =——g& iXa A, + 05 Ag +2 = A,
"TAGE A i
sn:qng- ixi+ang, n=12,3,
g A a
_ _4FoGz)72(X)
D, =D, ——QZ%(bz' bs)’
pD
D.=D _4F062Y2()qq (bs- by)
2 5 oD 103\03 - Dy,
4F,G,Y 5 (x
D3 =Dg :%2()%(12(*31' bz)

D=8G,G,, G;=50,03 (bs - bz)' 52Q1Q3(b3 - b1)+ 53Q1Q2(b2 - bl)’

G, = al(r2b3 - r3b2)- a (rlb3 - r3bl)+ a3(rlb2 - erl)'

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Using formulae (2.7), (3.3) and applying Laplace and Fourier transforms defined by Eqs (2.13)

and (2.14) on Egs (3.1), after suppressing the primes, and with the help of Eq.(2.30), the transformed
components of displacement, microrotation and stresses in the case of tangentid load are again given by Egs
(3.4)-(3.9) where
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D, =D 4FCry l(X) (a2b3 . a3b2),
pD
D, =D = 081 (., - o), (3.13)
pD
4F,G,Y (X
D; =Dg = g plgl( )( 10, - azb1)

3.3. Particular cases
3.3.1. Concentrated force

In order to determine displacements, microrotation and stresses due to a concentrated force in
normal/tangential direction described as Dirac delta function, {y l(x),y 2(x)} :d(x) must be used. The

Fourier transform of y l(x) and y 2(x) with respect to the pair (x, x) will be
Vax)=1, (h=12). (3.14)
3.3.2. Uniformly distributed force
The solution due to a uniformly distributed force in normal/tangential direction is obtained by setting

é if |YEa,
iy (=6

D if [X>a,

in Egs (3.1). The Fourier transform with respect to the pair (x, x) for the case of a uniform strip load of unit

amplitude and width 2a applied at the origin of the coordinate system (x =y= 0) in a dimensionless form
after suppressing the primes becomes

76700 = 2ar92)s oo @15

3.3.2. Linearly distributed force

The solution dueto alinearly distributed force in normal/tangentid direction is obtained by substituting

o | <

if |XEa,

{y 100y o(x)} =

o

if  [}>a,

@ D> D> D> D> (.'I)A)('D\
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in Egs (3.1). The Fourier transformof y , (x) , (n =1, 2) in adimensionless form after suppressing the primesis

ée(CladJ

2e1
ORI T | 16

x’cja

*

w

The expressions for the components of displacement, microrotation, force stress and coupI estressare

) 2e1 :
obtained asin Egs (3.4)-(3.9), by replacing )Tn( ) (n 1, 2) by 1, 229nae(cla2/ g and € e w %

ew x’c,a

W*
in the case of a concentrated force, uniformly distributed force and linearly distributed force respectively in
Eq.(3.11) for load in normal direction and in Eq.(3.13) for load in tangentia direction.
3.4. Case | V: moving force

The boundary conditions for a force, moving along the x-axis with uniform veocity U at the
interface of two half-spaces y =0 are given by

ul(x,0+,t)- ul(x,O' ,t):O, uz(x,0+,t)- uz(x,O' ,t):O,
f3(x,o+,t)- f3(x,0' ,t):o, m23(x,0+,t)- m23(x,0' ,t):o, (3.17)
toa (%0 t)- t(x0 ,t)=0, tro (%07 t)- th (.07 t)= - F H{E)d(x- Ut).

Using Eq.(2.7) and then applying Laplace and Fourier transforms from Eqs (2.13) and (2.14) on Egs
(3.17), after suppressing the primes, and with the help of Eq.(2.30), we obtain the transformed components
of displacement, microrotation and stresses as given by Eqgs (3.4)-(3.9) where

4F,G 4F,G
D, =D 02 b. - D. =D. = 0G> b - b
1200 = (o pup e ) D2 =Pe = (e ).
(3.18)
4F,G
Dy =Dg =7— 2 by - b
3 6 (p-ixU)Dqqu(l 2)

3.5. Case V: moving couple

The boundary conditions for a couple, with its axis paralld to the z-axis and moving aong the x-axis
with constant vel ocity U are given by

ul(x,0+,t)- ul(x,O' ,t):O, uz(x,0+,t)- uz(x,O' ,t):O,

Fa(07t)- F4(x0 t)=0,  mex0t)- mulx 0 t)=-FHEA(x-Ut),  (319)
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t21(x,0+,t)- t21(x,0' ,t):o, tzz(x,0+, t)- tzz(x,O' ,t):o.

Using Eq.(2.7) and then applying Laplace and Fourier transforms from Eqgs (2.13) and (2.14) on Egs
(3.19), after suppressing the primes, and with the help of Eq.(2.30), we obtain the transformed components
of displacement, microrotation and stresses the same as given by Egs (3.4)-(3.9) with the changed values of
Dy(m=12........6) as

4ixF,G AixE-G
D,=D, = 0=2 D. =D. = 002 i
T p-ixU)D ( G2 - qzss) 2755 p- ixU D(les Q351),
(3.20)
4ixF,G
D,=D =_"70%2
3 6 (p IXU) (251 Q152)

For al the cases discussed above the transformed displacement, microrotation, force stress and
couple stress components for the region - ¥ <y £0, are obtained by inserting D, =D5 =Dg =0 in Egs
(3.4)-(3.9).

Similarly, for the region O£ y <¥ , the components are obtained by inserting D; =D, =D3 =0 in Egs
(3.4)-(3.9).

3.6. Special case

Taking Ay =1 +2m+ K, A, =1 , A, =m+K, A, =m, B; =g, in Egs (3.4)-(3.9) with Egs (3.11),
(3.13), (3.18) and (3.20) we obtain the corresponding expressions in a micropolar isotropic medium for the
load in norma direction, load in tangentia direction, moving force and moving couple respectively. The
results for the concentrated force, uniformly distributed force and linearly distributed force are obtained by
using (3.14)-(3.16) after substituting (3.11) and (3.13) for the load in normal direction and load in tangential
direction respectively. These results tally with the one obtained when we solve the problem in a micropolar
i sotropic medium.

4. Inversion of thetransform

The transformed displacements and stresses are functions of y, the parameters of Laplace and Fourier
transforms p and x respectively, and hence are of the form f (x, Y, p). To get the function in the physical
domain, first weinvert the Fourier transform using

*

?(X,y, ):Zi Glxxf(X A )
-¥

or (4.2)

*

dco (xx)f - |S|n(xx)f }dx

'C5|H

f(xy.p)=

o
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where f, and f, are even and odd parts of the function f~(x, Y, p) respectively. Thus, expressions (3.4)-
(3.9) give usthetransform T(x, Y, p) of the function f(x, y,t).

Following Honig and Hirdes (1984) the Laplacetransform function f (x, y, p) canbeinvertedto f(x, y,t).

The last step is to evaluate the integral in Eq.(4.1). The method for evaluating this integral (Press et
al., 1986) involves the use of Rhomberg' s integration with adaptive step size. This, also uses the results from
successive refinement of the extended trapezoidal rule followed by extrapolation of the results to the limit
when the step size tends to zero.

5. Numerical results and discussions

For numerical computations, we take the following values of relevant parameters for a micropolar
cubic crystal as

A =1397" 10¥dyne/cm?, Ay =32 10°dyne/cm?,

A, =1375" 10%° dyne/cm?, A, =22" 10 dyne/cm?®,  B; =0.056" 10 dynes.

For the comparison with a micropolar isotropic solid, following Gauthier (1982), we take the
following va ues of rdevant parameters for the case of an aluminium epoxy composite as

r=219gm/cm®, | =7.59" 10 dyne/cm?, m=1.89" 10%° dyne/cm?
K =0.0149" 10 dyne/cm?, g=0.0268" 10°dyne, j =0.00196 cm?.

The values of normal force stress t,, and tangential couple stress m,; for amicropolar cubic crystal
(MCC) and micropolar isotropic solid (MIS) have been studied a t =0.1, 0.2 and 0.5 and the variations of
these components with distance x have been shown by (a) solid line ( ) for MCC and dashed line (-------
-) for MISat t=0.1, (b) solid line with centered symbol (x—x—x) for MCC and dashed line with centered
symbol (x---x---x) for MIS a t =0.2 and (c) solid line with centered symbol (0—o0—o0) for MCC and dashed
line with centered symbol (0---0---0) for MIS a t=0.5. These variaions are shown in Figs 1-16. A
comparison between a micropolar cubic crystal and micropolar isotropic solid is shown. All the results are
for one value of dimensionless width a=1.0 and for U <c;. Computations are carried out for y=1.0 in the

range 0 £ x £ 10.0.

6. Discussonsfor various cases
6.1. Casel: load in normal direction
6.1.1. Concentrated force

The vdues of normal force stress and tangential couple stress for MCC lie in a short range as
compared to the values for MIS. Hence the variations of al the quantities for MIS are more oscillatory in
nature in comparison to the variations for MCC. Very close to the point of application of the source, the
values of tangentia couple stress for both MCC and MIS decrease with an increase in time. The variations of
the quantities converge to zero with an increase in horizontal distance x. These variations of norma force
stress and tangential coupl e stress are shown in Figs 1 and 2 respectively.



348 R.Kumar and P.Ailawalia

BO.O
BO.0
. 400
o
z
€
B 200
w
-
o
3
= Q0
=
g
£ _ono :
X i — MCC{t=0.1
Y ; — _ MISH=0.1
b, i s MCCit=0
—40.0 o n - g w0 MISH=0.2
RO i adadd MCC{t=0.5)
. . onong MSH=0.5)
-
—60.0 T T T T 1
0.0 2.0 4.0 £.0 8.0 10,4
Matansa(x)
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6.1.2. Distributed force (uniformly and linearly)

When a uniformly distributed force is applied, the variations of normal force stress and tangentia
couple stress are more oscillatory in nature as compared to the variations obtained on application of a
linearly distributed force. Also the values of the quantities obtained in the case of a uniformly distributed
force are large for MIS and hence to show the comparison of both the solids, the values of norma force
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stress and tangentia couple stress for MIS have been demagnified by 100 (for uniformly distributed force)
but the values obtained in the case of a linearly distributed force are of comparable magnitude. It is also
observed that the variations of normal force stress and tangentia couple stress in the case of a linearly
distributed force follow a linear law (to the best approximation). While the variations of hormal force stress
and tangentia couple stress in the case of a uniformly distributed force are shown in Figs 3-4, the variaions
for alinearly distributed force are depicted in Figs 5-6 respectivey.
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6.2. Casell: load in tangential direction
6.2.1. Concentrated force

The variations of all the quantities being oscillatory are quite smooth in nature. It is observed that the
values of normal force stress and tangential coupl e stress, very close to the point of application of the source,
decrease with an increase in time. The values of tangential couple stress for MCC are less in magnitude as
compared to the values for MIS and hence to compare the variations of both solids, the values of tangential
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couple stress for MCC have been magnified by 10. These variations of normal force stress and tangential
couple stress are shown in Figs 7-8 respectively.
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Fig.7. Variation of normal force stress t,, with distance x. Concentrated forcein tangentia direction.
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6.2.2. Distributed force (uniformly and linearly)

The variations of normal force stress and tangential couple stress being oscillatory are similar in
nature to the difference in magnitudes in the case of a uniformly distributed force. The values of both the



352

R.Kumar and P.Ailawalia

guantities are small for MCC in

comparison to the vaues for MIS. The variation of normal force stress is

shown in Fig.9, whereas the variation of tangential couple stress is shown in Fig.10. When a linearly
distributed force is applied on the surface of asolid the values of normal force stress for both MCC and MIS
are of comparable magnitude, whereas the va ues of tangential couple stress for MIS liein a short range as
compared to the vaues for MCC. These variations of normal force stress and tangential couple stress are
shownin Figs 11 and 12 respectively.
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6.3. Caselll: moving force

Similar to the cases discussed above, the values of all the quantities obtained for MCC are smaller as
compared to the values obtai ned for M1S. When the force moves along the interface, the body is deformed to
amore extent. This fact is determined by the values of quantities obtained in this case which are much larger
than the values obtained in the previous cases. Close to the point of application of the source, the values of
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tangentia couple stress for both MCC and MIS decrease with an increase in time. The values of normal force
stress and tangentia couple stress for MCC have been magnified by 10 and 100 respectivey. Figures 13-14
show the variations of these quantities respectively, in the case of a moving force.
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6.4. Case | V: moving couple

Since the force acts in two different directions, so the variations obtained in this case are more
oscillatory than the variations obtained in previous cases. The oscillations of the quantities increase with an
increase in time. While the variations of normal force stress and tangential couple stress (separately) for
MCC are quite close to each other for different values of time, the variation for MIS are of comparable
maghitude Thesevariations of normal force stress and tangential couple stress are shown in Figs 15-16 respectively.
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7. Concluson

The properties of a body depend largely on the direction of symmetry. It is observed that the va ues
of al the quantities areless for MCC as compared to the values for MIS. Also the values of tangential couple
stress for both MCC and MIS, near the point of application of the source, decrease with an increase in time.
For a linearly distributed force the variations of norma force stress and tangential couple stress for both
MCC and MIS may be best approximated to a linear law. Also the body is deformed to a greater extent on
the application of a moving force/moving coupl e as compared to other forces applied on the interface.

Nomenclature

AL Ay, Aq, Ay, By — characteristic constants of material
H(t) —Heaviside's unit step function
j —microinertia
my3 —tangential couple stress
ta, tyy —components of force stress
U —magnitude of moving load velocity
u=(u;,u,,0) — displacement vector
d() -Diracddtafunction
r —density of solid
f =(0,0,f5) —microrotation vector
y 1(x) —horizontal load distribution function along x-axis
y,(x) —vertical load distribution function aong x-axis

+— —Laplacian operator
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