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Technologies applied in polymers processing are permanently improved due to updating the knowledge on 
material proprieties, processes and phenomena during the processing. To determine the pressure distribution, one 
should define the geometrical shape of a channel, in the flow will be held the flow. The aim of calculations 
carried out is to determine the possibility of mathematical modelling of polymer flows between conical parallel 
surfaces. In this work, the flow of a polymer in conical channels was considered. To describe a melted polymer 
the model of a viscoplastic fluid was used but final results were illustrated by a flow of the Bingham fluid. The 
Bingham fluid chosen to modelling the flow of a polymer may by considered as legitimate, because its use will 
allow us to illustrate analytical methods of calculations. For the flow configuration and model under 
consideration the geometrical sizes of the channel and material coefficients of the fluid will be chosen on the 
basis of experimental data contained in literature. In the article, the on defining dimensionless pressure 
distribution for the flow in a conical channel as well as in a conical annular channel with the influence of inertia 
were presented. The results of calculations were introduced in tabular forms as well as in graphic forms. 
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1. Introduction 
 
 Convergent flows of viscous fluids have received considerable attention in recent years for a variety 
of reasons and several distinct approaches to the problem have been used. Such flows occur frequently in 
many industrial applications, particulary in manufacturing processes involving polymer melts and in those 
instances the prediction of pressure losses is often of paramount concern. 
 Manufacturing is often realized by extrusion where a molten polymer forms a mixture of liquid polymer 
with solidified particles. The flow of this mixture may be modeled as the flow of viscoplastic fluids (Avenas et al., 
1982; Binding, 1988; Cogswell, 1972, 1978). To describe the rheological behaviour of such fluids the non-linear 
model of Shulman is often used (Shulman, 1975). Sometimes viscoplastic fluids may include some polymer 
liquid cristals and some filled thermoplastics and they can manifest stresses that develop orthogonal to planes of 
shear which is typical to viscoelastic fluids. 
 To obtain a model that does exhibit both viscoplastic and viscoelastic behaviour we propose the 
following two constitutive equations (Walicka, 2002a, 2002b; Walicki, Walicka, 1999) 
 
− model I:     21

2
111Mp AAAIT β+α++−= , (1.1) 

 
− model II: ( )22

2
121Mp AAAIT β+α++−=  (1.2) 

 
where p  is the pressure , αi and βi ( )21i or=  are the material moduli, I  is the unit tensor, 21 AA  and  are 
the first two Rivlin-Ericksen tensors defined by (Rivlin and Ericksen, 1955) 
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here v  is the velocity vector and ( ) &  represents the material derivative with respect to time. The coefficient M  
represents the Shulman function of viscoplasticity which is given by the following formulae (Shulman, 1975) 
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where 0τ  is the yield shear stress, µ  is the coefficient of plastic viscosity, m  and n  are non-linearity 
indices, A  is the second invariant of the stretching tensor. 
 Following the considerations suggested in their earlier works the authors present here an 
approximate analysis for a convergent flow of generalized second grade fluids. The detailed formulae for 
pressure drops is given for a Bingham type fluids ( )1nm00 ==≠τ , . 
 
2. Pressure drop in conical die 
 
 The flow configuration is presented in Fig.1. There are three basic modes of deformation: bulk 
deformation, simple shear deformation and simple tension; we also have the effect of normal stresses. For 
the purpose of this analysis we assume that the bulk deformations are sufficiently small to be neglected. 
 

 
 

Fig.1. Schematic diagram of a conical flow. 
 

 The corresponding velocity component is zυ which is parallel to the axis of z . Considering an 
equilibrium of a convergent element of length dz  (Fig.2) we have (Michalski, 2004; Walicka, 2002a, 2002b; 
Walicki, Walicka, 1999): 
- for the pressure drops due to shear flow: 
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where Y  is the function connected with the flow rate Q . The value of Y  for the Bingham fluid is given by 
the solution to the following equation 
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  ( ) 01K31Y4Y3 34 =++− . (2.2) 
 

 
 

Fig.2. Schematic diagram of forces for the analysis of the pressure drop due to telescopic shear. 
 
- for the pressure drops due to extensional flow (schematic diagram of forces for the analysis of the pressure 
drop due to extensional flow is shown in Fig.3.) 
 

 
 

Fig.3. Schematic diagram of forces for the analysis of the pressure drop due to extensional flow. 
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where eσ  is given by 
 

  ∫
ϑτ

=σ
R

0

3
4

0
e drYr

R
2 tg  (2.3b) 

 
- for the pressure drops due to normal stresses (schematic diagram of forces for the analysis of the 
pressure drop due to normal stresses is shown in Fig.4.) 
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Fig.4. Schematic diagram of forces for the analysis of the pressure drop due to normal stresses. 
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 To find nτ  consider the stress equation of motion in the r-direction 
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 Integrating this equation with the boundary condition 0rr =τ  for 0r =  we obtain 
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but on the die wall there is 
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=
 (2.7) 

 
where ( )RΦ  is a known function of R  (Walicka, 2002a, 2002b). 

 
3. Example of application 
 
 For the Bingham type fluid one has 
 

  
1Y

R
r

Y
R
r

dr
dM

1
z

rz
−

µ=





 υ

−τ=
−

,     
2

Y0
e

ϑτ
=σ

tan , 

 

  ( ) ( ) ( ) ,2
2

2
0

111 1Y2R −
µ

τ
β+α=Φ       ( ) ( ) ( )1YY2R

2
0

222 −
µ
τ

β+α=Φ . 

 



The study of pressure drops in the flow of a polymer ... 363

 The value of Y  is given by the solutions to Eq.(2.2); its solutions for a large value of lKK =  and for 
a small value of sKK =  are, respectively 
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 The pressure drops are as follows 
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and 
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where for a large K  
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and for a small K  
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here 

iRRi KK == . The above formulae may be rewritten as 
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and 1ζ  or 2ζ  are the dimensionless coefficients of local pressure drop, ρ  - the fluid density, iυ  - the velocity in 
the iR  cross-section of the die. Then the coefficients 1ζ  and 2ζ  are equal to 
 
  2lBl21lBl1 γ+ζ=ζγ+ζ=ζ                   , , (3.7) 
 
for large K  and 
 
  2sBs21sBs1 γ+ζ=ζγ+ζ=ζ                   , , (3.8) 
 
for small K ; here 
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 The Reynolds and Bingham numbers are equal, respectively, to 
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 In polymer melts processing the following formula for ζ  is frequently accepted (Avenas et al., 1982) 
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as the first approximation for the pressure drop in the die. It is clear that this formula represents only the 
pressure drop due to the shear flow of a Newtonian fluid. 
 Note that there is 2Ki =⋅Bg ; for a large Ki the value of Bg  is small and the right sides of the third 
and fourth term from formulae (3.9) may limit to the first term in square brackets. 
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4. Conical annular channel – solution to Bingham fluid 
 
 Let us consider the flow between conical parallel surfaces (the thickness of the slot is constant), as 
shown in Fig.5. 
 

 

 
 

( ) α= sinxxR  
( ) α= sinoo xxR  
( ) α= sinii xxR  

consth =  

 
Fig.5. Clearance between conical parallel surfaces. 

 
 Assuming that the thickness of the clearance is small the equations of movement can be written in the 
form (Michalski, 2004; Walicka, 2002a, 2002b) 
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where S  is the function of sign 
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 Solving the above equations of movement for the flow of a polymer modelled as a Bingham fluid we 
can describe the pressure distribution in the clearance. Analytic solutions of these equations exist only for 
large ( )5K ≥  as well as for small ( )2105K −×≤  values of the de Saint – Venant numbers 
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 According to (Michalski, 2004; Walicka, 2002a, 2002b) 
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 Subtracting formulae (4.3) we obtain the expression for the pressure drop in the clearance 
 
  ( ) ( )oioioi TTSSppp −+−=−=∆ . (4.6) 
 
It may be noticed that if ( ) 0xT =  this expression represents the pressure drop without inertia. 
 Making suitable calculations we will get the dimensionless pressure distribution in the annular channels: 
• for a small K  without inertia 
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and taking into account the inertia 
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• for a large K  without inertia 
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and taking into account the inertia 
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 Upon the selection of material and flow parameters and then carrying out the calculations we get the 
results, which are presented in Tab.1. 
 From the results of analysis and calculations one can observe that the influence of inertia forces on 
dimensionless pressure distribution is negligibly small in the configuration under consideration. On this basis 
the following conclusions may be drawn: 
- the influence of inertia of a flowing polymer on the pressure distribution in a conical channel between 
parallel surfaces - for the assumed parameters of flow - is negligibly small, 
- to delimit the pressure distribution it suffices practically to apply the formulae not including the inertial 
terms in equations of motion, which results in a considerable simplification of calculations. 
 Figures 6 and 7 presents the dimensionless pressure distribution for a flow between conical parallel 
surfaces without inertia for a Bingham fluid. 
 
Table 1. Specification of results of calculations for the flow between conical parallel surfaces for a Bingham 

fluid; large and small K  with and without inertia. 
 

 
x~  

Dimensionless pressure distribution p~ (small K ) Dimensionless pressure distribution p~ (large K ) 
without inertia with inertia without inertia with inertia 

0,1 8,20835472 8,20835472 51,47931295 51,47931295 
0,2 7,19654461 7,19654457 36,41420372 36,41419336 
0,3 6,30156570 6,30156565 27,56994906 27,56993677 
0,4 5,46706306 5,46706301 21,27264190 21,27262894 
0,5 4,67120810 4,67120804 16,37091962 16,37090636 
0,6 3,90280577 3,90280572 12,35193464 12,35192120 
0,7 3,15520572 3,15520566 8,94211840 8,94210486 
0,8 2,42407485 2,42407480 5,97817487 5,97816127 
0,9 1,70640341 1,70640335 3,35477477 3,35476112 
1,0 1,00000000 1,00000000 1,00000000 1,00000000 

 

 
 

Fig.6. Dimensionless pressure distribution for a Bingham fluid and small K . 
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Fig.7. Dimensionless pressure distribution for a Bingham fluid and large K . 
 
Nomenclature 
 
 A  – second invariant of the stretching tensor 
 21 AA  ,  – first two Rivlin-Ericksen tensors 
 I  – unit tensor 
 m , n  – non-linearity indices 
 p  – pressure 
 v  – velocity vector 
 iυ  – velocity in the  cross-section of the die 
 iα , iβ  – material moduli 
 µ  – coefficient of plastic viscosity 
 ρ  – density 
 0τ  – yield shear stress 
 1ζ , 2ζ  – dimensionless coefficients of local pressure drop 
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