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Technologies applied in polymers processing are permanently improved due to updating the knowledge on
material proprieties, processes and phenomena during the processing. To determine the pressure distribution, one
should define the geometrical shape of a channel, in the flow will be held the flow. The aim of calculations
carried out is to determine the possibility of mathematical modelling of polymer flows between conical parallel
surfaces. In this work, the flow of a polymer in conical channels was considered. To describe a melted polymer
the model of a viscoplastic fluid was used but final results were illustrated by a flow of the Bingham fluid. The
Bingham fluid chosen to modelling the flow of a polymer may by considered as legitimate, because its use will
allow us to illustrate analytical methods of calculations. For the flow configuration and model under
consideration the geometrical sizes of the channel and materia coefficients of the fluid will be chosen on the
basis of experimental data contained in literature. In the article, the on defining dimensionless pressure
distribution for the flow in a conical channel as well asina conical annular channel with the influence of inertia
were presented. The results of calculations were introduced intabular formsaswell asin graphic forms.
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1. Introduction

Convergent flows of viscous fluids have received considerable attention in recent years for a variety
of reasons and several distinct approaches to the problem have been used. Such flows occur frequently in
many industrial applications, particulary in manufacturing processes involving polymer melts and in those
instances the prediction of pressurelosses is often of paramount concern.

Manufacturing is often redlized by extrusi on where a molten polymer forms a mixture of liquid polymer
with solidified particles. The flow of this mixture may be modeled as the flow of viscoplagtic fluids (Avenas et al.,
1982; Binding, 1988; Cogswell, 1972, 1978). To describe the rheologica behaviour of such fluids the non-linear
modd of Shulman is often used (Shulman, 1975). Sometimes viscoplastic fluids may incude some polymer
liquid cristals and some filled thermoplastics and they can manifest stresses that develop orthogona to planes of
shear which istypical to viscodadtic fluids.

To obtain a moddl that does exhibit both viscoplastic and viscodastic behaviour we propose the
following two constitutive equations (Walicka, 2002a, 2002b; Walicki, Walicka, 1999)

- model I: T =-pl +MA; +a,A? +b,A,, (1.1)
- model Il T=-pl +M(a +a,AZ+b,A,) (1.2)
where p isthe pressure, a; and b; (i =lor 2) are the material moduli, | isthe unit tensor, A; and A, are

the first two Rivlin-Ericksen tensors defined by (Rivlin and Ericksen, 1955)
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A=L+L", A=A +AL+LTA,, L=gradv (1.3)

here v isthe velodty vector and (&) represents the materia derivative with respect to time. The coefficent M
represents the Shulman function of viscoplasticity which is given by the following formulae (Shulman, 1975)

, . L
M :gt§+(m«)mu Al A:%tr(Af)Ez (1.4)
e u

where t is the yied shear stress, i is the coefficient of plastic viscosity, m and n are non-linearity

indices, A isthe second invariant of the stretching tensor.

Following the considerations suggested in their earlier works the authors present here an
approximate analysis for a convergent flow of generalized second grade fluids. The detailed formulae for
pressure drops is given for a Bingham type fluids (t0 10,m=n= 1) .

2. Pressuredrop in conical die

The flow configuration is presented in Fig.1l. There are three basic modes of deformation: bulk
deformation, simple shear deformation and simple tension; we also have the effect of normal stresses. For
the purpose of this anal ysis we assume that the bulk deformations are sufficiently small to be negl ected.

R ==l /

Fig.1. Schematic diagram of a conica flow.

The corresponding velocity component is u,which is paralld to the axis of z. Considering an
equilibrium of a convergent dement of length dz (Fig.2) we have (Michalski, 2004; Wadicka, 2002a, 2002b;
Walicki, Walicka, 1999):

- for the pressure drops due to shear flow:

Ro Ry
_ Tp _ JYdR
Dps—-Cth F%dR or DpS—ZtOCthR?? (21)

where Y isthe function connected with the flow rate Q. The value of Y for the Bingham fluid is given by
the solution to the following equation
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Fig.2. Schematic diagram of forces for the anaysis of the pressure drop due to tel escopic shear.

for the pressure drops due to extensional flow (schematic diagram of forces for the anaysis of the pressure
drop dueto extensiona flow isshownin Fig.3.)
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Fig.3. Schematic diagram of forces for the analysis of the pressure drop dueto extensiond flow.

Ro
+. drR
Dpe =2 GeE (2.39)
R
where s . isgiven by
2totgd
Se=03% yr3ar (2.30)
R ¢

for the pressure drops due to normal stresses (schematic diagram of forces for the analysis of the
pressure drop dueto normal stressesis shownin Fig.4.)
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Fig.4. Schematic diagram of forces for the anal ysis of the pressure drop dueto normal stresses.

Ro
. OR
DpnzzdnE' (2.4)
R
Tofind t,, consider the stress equation of motion in ther-direction
fp_1d
—==—(rt,, ). 25
o = ar ) (25)
Integrating this equation with the boundary condition t,, =0 for r =0 we obtain
1.9
t, =—cf—dr, 2.6
=1 O (2.6)
but on the diewall thereis
trel . =tn =F(R) (2.7)

where F (R) isaknown function of R (Walicka, 2002a, 2002b).

3. Example of application

For the Bingham type fluid one has

-1
MZtrz?%g :m—rR , e:toYtan‘],
e ds Ty, 2
ts

F.(R)=(a; +2b,)



The study of pressure dropsin the flow of a polymer ... 363

Thevalueof Y isgiven by the solutions to Eq.(2.2); its solutions for alarge vadue of K =K, and for
asmall value of K =K are, respectively

v =aK, +2, Y, =1+ 2K, whee K=_"2_
3 pR%t,

The pressure drops are as follows

_ 2tgoeotd

S T Py Dpe 3 u’ (3'1)
and
a, +2b,)t3 a,+2b,)t2
nl:% Pi1s Dpy2 :% P2 (3.2)
or
a, +2b,)t2 a,+2b,)ts
Dpnl :% Ps1, n2 :% Ps2 (3'3)
wherefor alarge K
b, = 4K, (1- b3)- 4Inb,
P :16K,?(1- b6)+1—§K“(1- b3)- %Inb, (3.4)
P :16K“2(1- b6)+4—§K“(1- b3)- glnb,
and for asmall K
by =22Kg [L- b¥2)- 3Inb,  py = 4K 1- b3),
(3.5)
Psx = 4)y/2K (1- b3’2)+ 2K (1- b3)],
here K; = K|R=F‘,1 . The above formulae may be rewritten as
Dp; » :21’2ﬁ where :%, (3.6)
2 PR
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and z, or z, arethe dimens onless coefficients of local pressuredrop, r - thefluid density, u; - the veocity in
the R, cross-section of the die. Thenthe coefficients z, and z, areequd to

Zy=Zg + 01, Z,=2Zg +02, (3.7)
for large K and

Z; =Zgs+ 0 Z; =ZpstUs2s (3.8
for small K ; here

Zg —%(Zcot,] +tanJ)aEi— b*- %Bglnbg,
2

2 )
Zgs :%(Zmﬂ +tanJ)Z1- b¥/2 - %(Bg)”zlnbg,

Re e
a; +2b, 632 16 ) 1 > 0
_ .= v 3.9
O = = &3 (1 b )+ 5 Bg(l b ) 18(Bg) Ian, (3.9)

(@, +2b,) me32(, ), 40 3) 4/, 32,0
=322 772) 222 (1- b8 )+ ==Bgl1- b®)- =(Bg)?Inby
rRiZ 83( )+ 9 g( ) 3( g) n H’

=——— —Bg|(l- b"),
gsl rRZ 3 g( )

%ﬂe“(fﬂg)/zai 729 %+ 2eglt- b3)§-

The Reynol ds and Bingham numbers are equal, respectively, to

2-
ru;

B\H

1
m

(2Ri) _ : _ 2Rty
i , Re=Re(1); Bg= - (3.10)
m

Re(m) =

In polymer melts processing the following formulafor z is frequently accepted (Avenas et al., 1982)

_ _320323 - %), (3.12)

as the first approximation for the pressure drop in the die. It is clear that this formula represents only the
pressure drop dueto the shear flow of a Newtonian fluid.
Note thet thereis BgK; = 2; for alarge K; the value of Bg is small and the right sides of the third

and fourth term from formulae (3.9) may limit to thefirst term in square brackets.
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4. Conical annular channel — solution to Bingham fluid

Let us consider the flow between conical parald surfaces (the thickness of the slot is constant), as
shownin Fig.5.

R (x)
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Fig.5. Clearance between conicd paralld surfaces.

Assuming that the thickness of the clearance is small the equations of movement can be written in the
form (Michalski, 2004; Wdicka, 2002a, 2002b)

19(Ru) | Tuy _ (4.2)
R 1x iy

R x g
raeux—ﬂux +u, ﬂuxg:_ %+1gs§té/” L& Tuy
RS BTN v L A Y
é

where S isthefunction of sign

4.2

S=sgng—=

&Huy O
Sy &

Solving the above equations of movement for the flow of a polymer modelled as a Bingham fluid we
can describe the pressure distribution in the clearance. Anaytic solutions of these equations exist only for

large (K s 5) aswell as for small (K£5’ 10'2) values of the de Saint — Venant numbers

-m/n
k=" 5
4pR,h
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According to (Michalski, 2004; Walicka, 2002a, 2002b)

p=p +[S(x)- s]+[T(x)- 7],
or (4.3)
P= Py +[S(X)' So]+[T(X)' To]

wherethereare
forasmal K
1/2
S(x)—-t—ox- 2t0(2KH) W2
h h?sin¥2a
(4.9
7rts 12 1
T(x)=—2 (2K
( ) 180mz( H)3 h2sn®2a
foralarge K
3tyK
S(X)— 3t0 30' H [ ’
2h h°sina
(4.5)
red é : 2 1
T(x)=- —2_zh?In(xsina)+ 182K, | —————..
( ) 120nf & ( ) ( H) x*h?sin®all
Subtracting formul ae (4.3) we obtain the expression for the pressure drop in the clearance
Dp=pi - Po=(S - )+ (T - To). (4.6)

It may be noticed that if T(x) =0 this expression represents the pressure drop without inertia.
Making suitabl e cal cul ations we will get the dimensionless pressure distribution in the annular channels:
for asmall K without inertia

- Dt & 202k )M u
Br _PR_P toX% g o ( 1/)2 (Xl/2_ el/z)lj 7
Po  Po hpy é sin”"a 9]
and taking into account theinertia
é 1/2 O 21,2 ;
p=P =P LoXo 5% et 2(?52 (il/z ) el/z)ﬂJr 7ftoh _ (ZK)3/286~;2 ) ;2 0 8)
Po P, hpo g sint’2a g 90nfp,sin®?a ex e’ g
for alarge K without inertia
Pr=Pr=P SloXomy o, 2K X0 4.9)

Po P, 2hp, & sna eg
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and taking into account theinertia

. T A 212 é

p_po P, 2hp, & sna eg 120nfp, &

9“u (4.10)
2y

Upon the selection of material and flow parameters and then carrying out the cal cul ations we get the
results, which are presented in Tab. 1.

From the results of andysis and cal culations one can observe that the influence of inertia forces on
dimensi onless pressure distribution is negligibly small in the configuration under consi deration. On this basis
the following conclusions may be drawn:

- theinfluence of inertia of a flowing polymer on the pressure distribution in a conical channd between
paralld surfaces - for the assumed parameters of flow - is negligibly small,

- to deimit the pressure distribution it suffices practicaly to apply the formulae not including the inertia
terms in equations of motion, which results in a considerabl e simplification of cal culations.

Figures 6 and 7 presents the dimensionless pressure distribution for a flow between conical paralld
surfaces without inertia for a Bingham fluid.

Table 1. Specification of results of ca culations for the flow between conical parald surfaces for a Bingham
fluid; large and small K with and without inertia.

B Dimensionless pressuredistribution p (small K)) Dimensionless pressuredistribution p (large K)
X without inertia with inertia without inertia with inertia
0,1 8,20835472 8,20835472 51,47931295 51,47931295
0,2 7,19654461 7,19654457 36,41420372 36,41419336
0,3 6,30156570 6,30156565 27,56994906 27,56993677
04 5,46706306 5,46706301 21,27264190 21,27262894
05 4,67120810 4,67120804 16,37091962 16,37090636
0,6 3,90280577 3,90280572 12,35193464 12,35192120
0,7 3,15520572 3,15520566 8,94211840 8,94210486
0,8 2,42407485 2,42407480 5,97817487 5,97816127
0,9 1,70640341 1,70640335 3,35477477 3,35476112
1,0 1,00000000 1,00000000 1,00000000 1,00000000
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Fig.6. Dimensionl ess pressure distribution for a Bingham fluid and small K .
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Fig.7. Dimensionless pressure distribution for a Bingham fluid and large K.

Nomenclature

A —second invariant of the stretching tensor
A1, A, —firsttwo Rivlin-Ericksentensors
I —unit tensor
m, n —non-linearity indices
p —pressure
v —velocity vector
u; —veocity inthe cross-section of the die
a;, b; —material moduli
n —coefficient of plagtic viscosity
r —densty
to —Yield shear sress
21,2z, —dimensionless coefficientsof local pressure drop
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