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UNSTEADY MHD FLOW IN THE PRESENCE OF RADIATION
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A magnetohydrodynamic unsteady free convection flow in the presence of radiation is studied. The fluid is
considered to be a gray, absorbing-emitting radiating but non-scattering medium. The differential equations
governing the problem are solved exactly. The effects of radiation and suction parameters on the temperature and
velocity fields are given.

1. Introduction

A free convection flow past different types of bodies is studied because of its wide application in
geophysical and cosmic sciences, industria areas and aerodynamics. A free convection flow past a vertical
plate at normal temperature has been studied extensively under different physical conditions by many authors
and many of these have been referred to in Gebhart et al. (1988). In the case of high temperatures, radiation
effects are quite significant. Studies of the interaction of thermal radiation and free convection were made by
Ali et al. (1984), Hossain et al. (1998), Hossain et al. (1999) and Ghaly (2002) in the case of steady flow.

The present analysis ded's with the magnetohydrodynamic unsteady free convection flow over an
infinite vertical plate in the presence of radiation. The fluid is considered to be a gray, absorbing-emitting
radiating but non-scattering medium.

2. Analysis

Consider the unsteady two-dimensional free convection flow of an dectrically conducting, viscous
and incompressible fluid bounded by an infinite vertical porous plate. A magnetic field of constant density is
applied perpendicular to the plate. The fluid is a gray, emitting and absorbing radiating, but non-scattering
medium, and the Rossd and approximation is used to describe the radiative heat flux in the energy equation.
All the fluid properties are assumed constant except that the influence of the density variation with
temperature is considered only in the body force term. The x-axis is taken along the plate in the upward
direction and the y-axis normal to the plate. The radiative heat flux in the x-direction is assumed negligiblein
comparison with that in the y-direction.

The governing equations for the two-dimensional MHD unsteady free convection flow for an
incompressible fluid, in the presence of radiation, are written within the boundary layer as follows:
continuity equation
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energy equation
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whereu and v are the components of the ve ocity parallel and perpendicular to the plate respectively, tisthe
time, r isthe density of thefluid, n isthe kinematic viscosity, p isthe pressure, g isthe acceleration dueto

gravity, s is the eectrica conductivity, By, is the magnetic induction, T is the temperature, c,, is the
specific heat at constant pressure, k is the thermal conductivity and g, is the radiative heat flux.
The radiative heat flux term, by using the Rossel and approxi mation, is given by
* 4
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where s” isthe Stefan-Boltzmann constant and ks the mean absorption coefficient.
When the temperature of the fluid and the temperature away from the plate have a difference which

is proportional to t™, the boundary conditions are

u(0,t)=0, uf¥,t)® 0 :J
; 2.5)
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wherem, L are constantsand Ty is the constant temperature away from the plate.
For variabl e suction of the plate proportional to t” ¥z, Eq.(2.1) yidds
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where a is the suction parameter.
Away from the plate Eq.(2.2) becomes

%:-ug (2.7)

where r y isthe density away from the plate.
The state equation is

ry-r=br(T-T,) 28)

where b isthe volumetric coefficient of thermal expansion.
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On eiminating % between Eqgs (2.2) and (2.7) and taking into account Egs (2.6) and (2.8), Eq.(2.2)
X
isreduced to
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where q=T- Ty .
We assume that the temperature differences within the flow are sufficiently small such that T4 may

be expressed as a linear function of the temperature. This is accomplished by expanding T in a Taylor
series about Ty, and neglecting higher-order terms, thus

T4 @17 - 314 (2.10)
By using Egs (2.4), (2.6) and (2.10), Eq.(2.3) becomes
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The boundary conditions (2.5) now become
u(0,t) =0, uf¥,t)® o U
y. 2.12)
qo.t)=Lt™, ql¥.t)® Ty
We define the velocity and temperature as
u(h, t) = Lbgt™uq (h) + Muy (h) + M 2u,(h) + ., 2.13)
q=Ltmf (h) (2.14)
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where h = % y(nt)' Y2 and M = (magnetic parameter).

For small values of M, the substitution of the expressions (2.13) and (2.14) into Egs (2.9) and (2.11)
and the comparison of the coefficients of like powers of M give the following differential equations

(3N +4)f c+6NP(h +a)f - 12NPmf =0, (2.15)
ug +2(h +ajug - 4(m+2)u, =-4f, (2.16)
ug+2(h +a)uf - 4(m+2)u, =4u,, (2.17)

ug +2(h +a)us - 4(m+3)u, =4u, (2.18)
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differentiation with respect to h .
The corresponding boundary conditions (2.12) become

where N = is the Prandtl number and a dash denotes

f(0)=1, f(¥)® o, (2.19)
u,(0,t)=0, u(¥,t)® 0, r=0,12,... (2.20)
The solution of EQ.(2.15) satisfied by the boundary conditions (2.19) is

f(h): Hh2m \/E X

s (2.21)
where C = 3?\|N+P4 , x=h+a and Hh( ) isdefined by Jeffreys and Jeffreys (1972).
The solutions of Eqs (2.16)-(2.18) setisfied by the boundary conditions (2.20) arefor C* 1
() =2 Hlemeo ((x/f)a) Hh2m+2((‘/§)x) ) thm((m)x)ﬂ (2.22)
€ by (V2C)a) Ermeo(2)a)  Hromeol2C)a) §
y () == Hhames (V2CJa) € Hamea (V2)x)  Hinmea (/2C )ﬂ+
(c- 2 Hth((\/E)a) th2m+4((\/§)a) Hh2m+4((@) ) d (2.23)
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uz(h) — 8 Hh2m+5 ((\/E)a)g Hh2m+6 ((\/E)X) _ Hh2m+6 ((\/E)X) E.,_
(- 1 Hiy(V2CJa) §HNams (V2)2)  Hioms ((V2C o) 4
+ 4 Hhyg ((\/f ) ) HNomie ((\/E)X) _ Hhomeg ((*/E)X) E+ (2.24)
(c-2? Hth((\/f)a) eHh2m+6(( )a) Hh2m+4(( ) ) d
Lo L thwz((@)a)g Hhs (2 )X) Hihe (V26 ) Hhe (2 ﬂ
(C- 1) Hth((\/E)a) th2m+6 (( )a) Hh2m+4(( ) ) Hh2m+2((\/§)a) H
For c=1
uo(h) = Hth((\/E)X) ] thm+z((\/f)x) (2.25)

Hin(\2C)a)  Higmo(V2C)a)
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1 Hhyy((V2C)x) 4 oy [2c)) . 1 Hhpmes [V2C)4) , (2.26)
2 Hiym(V2CJe)  Hhomeo(V2C o) 2 s (V2C )2

u,(h) =2 Hth((\/E)X) ] thm+z((\/f)x)

® Hhyp ((\/E )a) Hhyeo ((x/f )a

! Hhpmea(V2C)Y) 1 Hhpee (v2C ) |
2 Higs (V2CJa) 6 Higs (12C)a

Ul(h):

+

(2.27)

3. Resaults

In order to investigate the effects of various parameters on the problem numerical calculations are
carried out for the temperature and vel ocity fields, when M =0.2.

In Fig.1, we have plotted the temperature profiles showing the effect of the radiation parameter N. It
can be seen that the temperature decreases when the radiation parameter increases.
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Fig.1. Temperature profil es for various va ues of the radiation parameter N.

In Fig.2, we have plotted the temperature profiles showing the effect of the suction parameter a. It
can be seen that the temperature decreases when the suction parameter increases.
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Fig.2. Temperaure profiles for various va ues of the suction parameter a.

In Fig.3, we have plotted the temperature profiles showing the effect of the parameter m. It can be
seen that the temperature decreases when the parameter mincreases.
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Fig.3. Temperature profiles for various va ues of the parameter m.

In Fig.4, we have plotted the vel ocity profiles showing the effect of the radiation parameter N. It can
be seen that the vel ocity decreases when the radiation parameter increases.
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Fig.4. Veodity profiles for various values of the radiation parameter N.
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In Fig.5, we have plotted the vel ocity profil es showing the effect of the suction parameter a. It can be
seen that the vel ocity decreases when the suction parameter increases.
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Fig.5. Vdocity profiles for various values of the suction parameter a.
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In Fig.6, we have plotted the velocity profiles showing the effect of the parameter m. It can be seen
that the vel ocity decreases when the parameter m increases.
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Fig.6. Vdocity profiles for various values of the parameter m.
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