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A magnetohydrodynamic unsteady free convection flow in the presence of radiation is studied. The fluid is 
considered to be a gray, absorbing-emitting radiating but non-scattering medium. The differential equations 
governing the problem are solved exactly. The effects of radiation and suction parameters on the temperature and 
velocity fields are given. 

 
1. Introduction 
 
 A free convection flow past different types of bodies is studied because of its wide application in 
geophysical and cosmic sciences, industrial areas and aerodynamics. A free convection flow past a vertical 
plate at normal temperature has been studied extensively under different physical conditions by many authors 
and many of these have been referred to in Gebhart et al. (1988). In the case of high temperatures, radiation 
effects are quite significant. Studies of the interaction of thermal radiation and free convection were made by 
Ali et al. (1984), Hossain et al. (1998), Hossain et al. (1999) and Ghaly (2002) in the case of steady flow. 
 The present analysis deals with the magnetohydrodynamic unsteady free convection flow over an 
infinite vertical plate in the presence of radiation. The fluid is considered to be a gray, absorbing-emitting 
radiating but non-scattering medium. 
 
2. Analysis 
 
 Consider the unsteady two-dimensional free convection flow of an electrically conducting, viscous 
and incompressible fluid bounded by an infinite vertical porous plate. A magnetic field of constant density is 
applied perpendicular to the plate. The fluid is a gray, emitting and absorbing radiating, but non-scattering 
medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. 
All the fluid properties are assumed constant except that the influence of the density variation with 
temperature is considered only in the body force term. The x-axis is taken along the plate in the upward 
direction and the y-axis normal to the plate. The radiative heat flux in the x-direction is assumed negligible in 
comparison with that in the y-direction. 
 The governing equations for the two-dimensional MHD unsteady free convection flow for an 
incompressible fluid, in the presence of radiation, are written within the boundary layer as follows: 
continuity equation 
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energy equation 
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where u and v  are the components of the velocity parallel and perpendicular to the plate respectively, t is the 
time, ρ  is the density of the fluid, ν  is the kinematic viscosity, p  is the pressure, g is the acceleration due to 
gravity, σ  is the electrical conductivity, 0B  is the magnetic induction, T  is the temperature, pc  is the 
specific heat at constant pressure, k is the thermal conductivity and rq  is the radiative heat flux. 
 The radiative heat flux term, by using the Rosseland approximation, is given by 
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where ∗σ  is the Stefan-Boltzmann constant and ∗κ  is the mean absorption coefficient. 
 When the temperature of the fluid and the temperature away from the plate have a difference which 
is proportional to mt , the boundary conditions are 
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where m, L are constants and ∞T  is the constant temperature away from the plate.  

 For variable suction of the plate proportional to 21t − , Eq.(2.1) yields 
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where a is the suction parameter. 
 Away from the plate Eq.(2.2) becomes 
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where ∞ρ  is the density away from the plate. 
 The state equation is 
 
  ( )∞∞ −βρ=ρ−ρ TT  (2.8) 
 
where β  is the volumetric coefficient of thermal expansion. 
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 On eliminating 
x
p

∂
∂  between Eqs (2.2) and (2.7) and taking into account Eqs (2.6) and (2.8), Eq.(2.2) 

is reduced to 
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where ∞−=θ TT . 

 We assume that the temperature differences within the flow are sufficiently small such that 4T  may 
be expressed as a linear function of the temperature. This is accomplished by expanding 4T  in a Taylor 
series about ∞T  and neglecting higher-order terms, thus 
 
  434 T3TT4T ∞∞ −≅ . (2.10) 
 
 By using Eqs (2.4), (2.6) and (2.10), Eq.(2.3) becomes 
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 The boundary conditions (2.5) now become 
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 We define the velocity and temperature as 
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2
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0  (magnetic parameter). 

 For small values of M, the substitution of the expressions (2.13) and (2.14) into Eqs (2.9) and (2.11) 
and the comparison of the coefficients of like powers of M give the following differential equations 
 
  ( ) ( ) 0fmN12faN6f4N3 =−′+η+′′+ PP , (2.15) 
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differentiation with respect to η . 
 The corresponding boundary conditions (2.12) become 
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The solution of Eq.(2.15) satisfied by the boundary conditions (2.19) is 
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where 
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P , a+η=ξ  and ( )Hh  is defined by Jeffreys and Jeffreys (1972). 

 The solutions of Eqs (2.16)-(2.18) satisfied by the boundary conditions (2.20) are for 1C ≠  
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 For  1C =  
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3. Results 
 
 In order to investigate the effects of various parameters on the problem numerical calculations are 
carried out for the temperature and velocity fields, when 2.0M = .  
 In Fig.1, we have plotted the temperature profiles showing the effect of the radiation parameter N. It 
can be seen that the temperature decreases when the radiation parameter increases. 
 

 
 

Fig.1. Temperature profiles for various values of the radiation parameter N. 
 

 In Fig.2, we have plotted the temperature profiles showing the effect of the suction parameter a. It 
can be seen that the temperature decreases when the suction parameter increases. 
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Fig.2. Temperature profiles for various values of the suction parameter a. 
 

 In Fig.3, we have plotted the temperature profiles showing the effect of the parameter m. It can be 
seen that the temperature decreases when the parameter m increases. 
 

 
 

Fig.3. Temperature profiles for various values of the parameter m. 
 

 In Fig.4, we have plotted the velocity profiles showing the effect of the radiation parameter N. It can 
be seen that the velocity decreases when the radiation parameter increases. 
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Fig.4. Velocity profiles for various values of the radiation parameter N. 
 In Fig.5, we have plotted the velocity profiles showing the effect of the suction parameter a. It can be 
seen that the velocity decreases when the suction parameter increases. 
 

 
 

Fig.5. Velocity profiles for various values of the suction parameter a. 
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 In Fig.6, we have plotted the velocity profiles showing the effect of the parameter m. It can be seen 
that the velocity decreases when the parameter m increases. 
 

 
Fig.6. Velocity profiles for various values of the parameter m. 
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