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A layer of a compressible, electrically conducting Walters' B' elastico-viscous fluid permeated with
suspended particles heated from below in the presence of a magnetic field is considered. For the case of stationary
convection, the Walters (model B') elastico-viscous fluid behaves like a Newtonian fluid and the compressihility,
magnetic field are found to have stabilizing effects, whereas the suspended particles have a destabilizing effect on
the thermal convection. The presence of each — viscoelasticity, megnetic field and suspended particles introduces
oscillatory modes in the system which were non-existent in their absence.
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1. Introduction

A detailed account of thermal convection in a Newtonian fluid layer in the presence of a magnetic
field has been given by Chandrasekhar (1981). Chandra (1938) observed a contradiction between the theory
for the onset of convection in fluids heated from below and his experiment. He performed the experiment in
an ar layer and found that the instability depended on the depth of the layer. A Bénard-type cdlular
convection with the fluid descending at the cell centre was observed when the predicted gradients were
imposed for layers deeper than 10 mm. A convection which was different in character from that in deeper
layers occurred at much lower gradients than predicted, if the layer depth was less than 7 mm it was called
columnar instability. An aerosol to mark the flow pattern was added. Motivated by interest in fluid-particle
mixtures and columnar instability, Scanlon and Segdl (1973) studied the effect of suspended particles on the
onset of Bénard convection and found that the critical Rayle gh number was reduced, soldy because the heat
capacity of the pure gas was supplemented by that of the particles. Sharma et al. (1976) considered the effect
of suspended particles on the onset of Bénard convection in hydromagnetics. Bhatia and Steiner (1972) have
studied the problem of thermal instability of a Maxwellian viscoelastic fluid in the presence of rotation and
have found that the rotation has a destabilizing effect, in contrast to the stabilizing effect on an ordinary
(Newtonian) viscous fluid. Bhatia and Steiner (1973) have also studied the therma instability of a
Maxwdlian viscodastic fluid in the presence of a magnetic fidd, while the therma convection in an
Oldroydian viscodlastic fluid in hydromagneti cs has been considered by Sharma et al. (1976).

The fluids have been considered to be Newtonian or viscodastic (Maxwelian or Oldroydian) in al
the above studies. There are many elastico-viscous fluids that cannot be characterized by Maxwell’s or
Oldroyd's congtitutive relations. One such fluid is Walters' (modd B') éastico-viscous fluid having
relevance and importance in chemical technology and industry. Walters (1962) reported that the mixture of
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polymethyl methacrylate and pyridine at 25°C containing 30.5g of polymer per litre with density 0.98g per
litre behaves very nearly as the Walters (model B') eastico-viscous fluid. Polymers are used in the
manufacture of spacecrafts, aeroplanes, tyres, bet conveyers, ropes, cushions, seats, foams, plastic
engineering equipments, contact lens etc. Walters' (modd B') eastico-viscous fluid forms the basis for the
manufacture of many such important and useful products. Sharma et al. (1999) have considered the
thermosolutal instability of Walters (mode B') rotating fluid in porous medium whereas the Raylegh-
Taylor instability of Walters' B' e asti co-viscous fluid through porous medium has been studied by Sharma et
al. (2002). In thermal and thermosolutal convecti on problems, the Boussinesq approximation has been used,
whichiswdl justified in the case of incompressible fluids.

When the fluids are compressible, the equations governing the system become more complicated.
Spiegel and Veronis (1960) have simplified the set of equations governing the flow of compressible fluids
under the assumption that the depth of the fluid layer is much smaller than the scale height as defined by
them, if only motions of infinitesima amplitude are considered. Sharma (1977) has studied the thermal
instability in compressibl e fluids in the presence of rotation and a magnetic field.

Keeping in mind the importance of non-Newtonian fluids, compressibility and suspended particlesin
chemical technology, industry and geophysical fluid dynamics, the present paper atempts to study the
thermal convection in an dectrically conducting, compressible, Walters' (moldel B') dastico-viscous fluid
permeated with suspended particles in the presence of a uniform magnetic field.

2. Perturbation equations

Consider an infinite, horizontal, e ectrically conducting, compressible, Walters' (moldd B') éastico-
viscous fluid layer of thickness d, permeated with suspended particles, bounded by the planes z=0 and

z=d. This fluid partide layer is heated from bdow so that a uniform temperature gradient b = (|dT/dz|) is
maintained and the layer is acted on by the gravity fied g(O, 0, - g) and a uniform verticd magnetic fidd
H(0,0,H).

Spiegel and Veronis (1960) defined f as any of the state variables (pressure (p) density (r) or
temperature (T)) and expressed these in the form

f(x, Y, Z, t) =fnt T (z)+ f((x, Y, Z, t) (2.1)

where f,, is the constant space average of f, f; isthe variation in the absence of motion and f C is the

fluctuati on resulting from the motion.
Theinitid dateis, therefore, a gatein which the density, pressure, temperature and velocity in thefluid are given by

r:r(z), p= p(z), T:T(z), v=0, (2.2)
respectively, where

T(z):T0 -bz,

p(2)= P~ 9Q) (rm+10)cz,

(2.3)
I’(Z):I’m[l- am(T' Tm)+Km(p' pm)]’



Effect of compressibility and suspended particles on thermal convection ... 393

aﬂ‘nro

aﬂ‘ﬂro
gr ﬂTqﬂ

(=a, say) Km=g =10 L

am=-

The linearized hydromagnetic perturbation equations for thermal convection in a compressible,
Walters' B' dastico-viscous fluid permeated with suspended particles (Chandrasekhar, 1981; Walters, 1962;
Spiegel and Veronis, 1960 and Sharma, 1977) are

‘nt g - Ndp + g - gv th apr (N h) - (vd v), (2.4)
Nv =0, (2.5)
MmN, %L:: KN, (v- vy ), (2.6)
M
ﬂT +Rvg =0, 2.7)
Nh=0, (2.8)
H]T (HR)v +hK2h, (2.9)
(1419 -85 . 9 Jw+ns)+ k%, (2.10)
it Cp g

Here v(u,v,w), Vy (I, r, s) N, h(hx, hy, h ) dr , dp and g denote, respectively, the perturbations

in fluid veocity (0, 0, 0) suspended particle velocities (0,0,0) suspended particles number density Ng,
magnetic field H(0,0,H) density r, pressure p and temperature T. n,n¢ k, m, and h stand for the
kinematic viscosity, kinematic viscoeasticity, thermal diffusivity, magnetic permeability and eectrical
resistivity respectively. Here vy ()‘(t) N(X, t) denote velocity, number density of suspended particles.

K =6pme(, where el is the particle radius, K is Stokes' drag coefficient and X :(x, Y, z). M :Nﬁ and
0
_ MNgCy - . ;
h= ? . ¢, and ¢, arethespecific heat of thefluid at constant pressure and volume, respectively. ¢y
m

is the specific heat of the particles. The distances between particles are assumed to be so large compared with
their diameter that interparticle reactions need not be accounted for. The effects of pressure, gravity and the
magnetic field on the suspended partid es, assuming large distances apart, are negligibly small and therefore
ignored. Under the above assumptions, Egs (2.6) and (2.7) represent the equations of motion and continuity
for the particles, mN being the mass of particles per unit volume. The equation of stateis

r=r1-a(m-To) (2.11)
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where a is the coefficient of therma expansion, as density variations arise mainly due to temperature
variations. Therefore the changein density dr caused by the perturbation q intemperatureis given by

da =-raq. (2.12)

Writing the scalar components of Eq.(2.4), after dimination of vy with the help of Eq.(2.6),
eiminating u, v, h,, hy, dp between them by using Egs (2.5), (2.8) and (2.12), we obtain

g%nlt+10§ﬂtN w- gaé q i qS— :L"H ﬂ hzg+
KAt ol w5 4P a (2.13)
+ XN M T g2y, = gnl 1 +1—gv v¢—9l\|4

rm KAt eKTt e

The z-component of Eq.(2.9) yidds

o hiedh, =01 (2.14)
eft 2} |4

Equation (2.10), on substituting for s interms of w with the help of Eq.(2.6), yieds

am o0 af5- 16aam
+12 1+h—- ki2Ug =10y 0, 215
KT §( 78 Kkt o @15

Equations (2.13)-(2.15) yield three perturbation equationsinw, g and h, .

3. Digpersion relation

Analyze the perturbations into norma modes by seeking solutions in the form

[W, a, hz] = [W(z), Q(z), K(z)] e(p(ikxx+ikyy+ nt) (3.1

1
where n is, in genera, a complex constant and k:(kf + k; 2 is the resultant wave number of the

disturbance.
Equations (2.13)-(2.15) in adimensionless form, using expression (3.1), become

(1+ plst)(Dz— az)l(l Fs (DZ— a ) sJ\N fs(D2 )\N
gad? 220, (3.2)

+(1+ plst):;Hdn (b2 - a2)oK = (1+ pyst)
m

(02 -a?- pZS)K =- HTdDW (3.3)
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bd? &6 - 16
(1"‘ plst)(Dz - a’- les)Q =- T?%E(H + plSt)W (3.4)

(
where p; :E is the Prandtl number, p, :% is the magnetic Prandtl number, F =12 is the dimensionless

d
. . . . Cpb . . . L nd2
kinematic viscodasticity, G=—— is the dimensonless compressibility , s =——, a=kd, H =1+h,
g n
mN,C x x x
h= o%pt ’ f:mNO, t = mkz.Herewehaveput X :5, y :l, z =Z and D:—.Stars()
I mCy Mm Kd d d d dz

have not been written hereafter, for convenience.
Eliminating Q and K between Egs (3.2)-(3.4), we obtain

(1+ plst)(D2 - az)(D2 - a?- pzs)(D2 -a%- les)[(l— Fs)(D2 - az)— s] W+
- fs(D2 -a?- pzs)(Dz— a2- les)(Dz- az)\N+

-Q(a+ plst)(D2 -a?- les)(Dz - aZ)DZW = (3.5)
=- RaZ(D2 -a?- pzs)gﬁ—_lg(H + plst)W
e G g
242 4
where Q :T?H—% is the Chandrasekhar number and R = 2229
Prm
Consider the case in which both the boundaries are free, the medium adjoining the fluid is perfectly
conducting and temperatures at the boundaries are kept fixed. The boundary conditions, appropriate for the
problem, are

is the Rayleigh number.

W=D?W=0, K=0, Q=0 ad L (3.6)
The solution of Eq.(3.5) characterizing the lowest modeis
W =W, sinpz (3.7)

where W, is constant. Substituting Eq.(3.7) in Eq.(3.5), we get

Ry :Gi-l((“ X)(1+x+ip,s, )(1+ X+ilesl)[(l+iplp2tsl)'
! {(1 iszsl)(1+ x)+isl}+ip2fsl]+Ql(l+ x)(1+iplp2tsl)’ (3.8)

" (1+x+ipyHs l)[X(H +iplp2tsl)(1+ x+ipzsl)]-lg

P =iz (where s can be complex).
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4. The gtationary convection

For stationary convection, Eq.(3.8) reducesto

2 G @E+x0
R, = 8@ 1£W (1+x)? +Ql]. (4.1)

For stationary convection, Eq.(4.1) implies that the compressible Walters e astico-viscous fluid
(modd B") behaves like an ordinary Newtonian viscous fluid. Equation (4.1) yields

dR, _ &G
H  &G-1

al+x0
tzra

A1+x)2 + Ql] 4.2)

de %G ﬁ-"'xo
dQ, &G- 1 xH o

(4.3)

It follows from Egs (4.2) and (4.3) that the suspended particles have a destabilizing effect, whereas
the magnetic fid d has a stabilizing effect on the thermal convection in a compressible Walters' B' eastico-
viscous fluid permeated with suspended partid es, for the stationary convection.

For fixed Q; and H, let G (accounting for the compressibility effects) be aso kept fixed in

Eq.(4.1). Then we find that

e G

=S 0

Re = ¢G.1 1;& (4.4)
where R, and R, denote, respectively, the critical Rayleigh numbers in the presence and absence of
compressibility. The effect of compressibility is thus to postpone the onset of thermal convection in
compressible Walters' B' eastico-viscous fluid, for the stationary convection. G>1 is relevant here as
G <1 and G =1 correspond to the negative and infinite Rayleigh numbers which are not appropriate in the
present problem. The compressibility, therefore, has a stabilizing effect on the thermal convection.

5. Stability of the system and oscillatory modes

Multiplying Eq.(3.2) by W", the complex conjugate of W , integrating over the range of values of
2, and making use of Egs (3.3) and (3.4) together with the boundary conditions (3.6), we obtain

(1+ p,ts)(1- Fs)l +s(1+F +p ts)i,+

%hn(1+p1t5)(|3+p25*|4)+
" (5.1)
gaka &G o(1+plts Xl+plts)

nb &gG- 1,5 (H+plts )

(I5+H pls*|6):o
where

1 2 2 20
1:Q§D2w| +2a’pw* +a‘W|* 2oz,
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= oW +a

1 2 2 20
3:Q§D2K| +2a|DK(* + a[K[* 2z,
(5.2)
= §[ow a2z,

1

s c‘a(|DQ|2+a2|Q|2)dz,

1

lg = Q(|Q|2)dz.

The integrals I, - 15 are &l positive definite. Putting s =s, +is; and then equating real and
imaginary parts of Eq.(5.1), we obtain

{1+ p;ts, - Fs, - Fplts,2+Fsi2plt}Il+{s,(l+ f+ plts,)- pltsiz} I, +

+4S}hn[(1+ plts,)|3+{pzs,(1+ pits, )+ plpztsiz}l4]+
_gaka’e G oT (1+ pits, )? + p2t3s2 {i 63
nb €G- Lof (H + pyts, ) + pit’s, fg
’ [(H +pits, )(Ig +Hpys, 1)+ pt Hsizls]:o
and
is;({1- pit Fs, - F(1+ pyts, }I4 +{1+ f+pits, Ho +{pitlz- pala}+
2 )
g T L

It may beinferred from Eq.(5.3) that s, ispositive or negative which means that the system may be
stable or unstable. It is clear from Eq.(5.4) that s; may be zero or non-zero, meaning that the modes may be

non-oscillatory or oscillatory. The oscillatory modes are introduced due to the presence of viscod asticity,
magnetic field and suspended particles, which were non-existent in their absence.

Nomenclature

c, —9gpecificheat of fluid at constant pressure
ot —Specific heat of suspended particles
¢, —specific heat of fluid at constant volume

F — dimensionless kinemeatic viscoel asticity
G —dimensionless compressibility

p
Cc
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) —oravity field
H(, 0, H) —magneticfield
) = perturbation in magnetic field
K —Stokes drag coefficient
k —wave number
—wave numbers in x- and y- directions
m — mass of suspended particles
N —number density of suspended particles
n —stability parameter
p —pressure
p; — Prandtl number
p, — magnetic Prandtl number

R —Rayleigh number
R, —critica Rayleigh number in the absence of compressibility
T —temperature
— time coordinate
— Chandrasekhar number
v(u, Vv, W

— velocity of suspended particles
— gpace coordinate
a —coefficient of thermal expansion
b —temperature gradient
dp —perturbation in pressure
dr —perturbation in density
et —radius of suspended particles
h —electrical resistivity
g —perturbaion in temperature
k —thermal diffusivity
n
me
n

vd(l, r,

t
Q
) —velocity of fluid
s)
R(x, Y, z)

=

— fluid viscosity

— magnetic permeability

— kinematic viscosity
n¢ —kinematic viscoelasticity
r —fluid density
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