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A layer of a compressible, electrically conducting Walters’ B' elastico-viscous fluid permeated with 
suspended particles heated from below in the presence of a magnetic field is considered. For the case of stationary 
convection, the Walters’(model B') elastico-viscous fluid behaves like a Newtonian fluid and the compressibility, 
magnetic field are found to have stabilizing effects, whereas the suspended particles have a destabilizing effect on 
the thermal convection. The presence of each – viscoelasticity, magnetic field and suspended particles introduces 
oscillatory modes in the system which were non-existent in their absence. 
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1. Introduction  
 
 A detailed account of thermal convection in a Newtonian fluid layer in the presence of a magnetic 
field has been given by Chandrasekhar (1981). Chandra (1938) observed a contradiction between the theory 
for the onset of convection in fluids heated from below and his experiment. He performed the experiment in 
an air layer and found that the instability depended on the depth of the layer. A Bénard-type cellular 
convection with the fluid descending at the cell centre was observed when the predicted gradients were 
imposed for layers deeper than 10 mm. A convection which was different in character from that in deeper 
layers occurred at much lower gradients than predicted, if the layer depth was less than 7 mm it was called 
columnar instability. An aerosol to mark the flow pattern was added. Motivated by interest in fluid-particle 
mixtures and columnar instability, Scanlon and Segel (1973) studied the effect of suspended particles on the 
onset of Bénard convection and found that the critical Rayleigh number was reduced, solely because the heat 
capacity of the pure gas was supplemented by that of the particles. Sharma et al. (1976) considered the effect 
of suspended particles on the onset of Bénard convection in hydromagnetics. Bhatia and Steiner (1972) have 
studied the problem of thermal instability of a Maxwellian viscoelastic fluid in the presence of rotation and 
have found that the rotation has a destabilizing effect, in contrast to the stabilizing effect on an ordinary 
(Newtonian) viscous fluid. Bhatia and Steiner (1973) have also studied the thermal instability of a 
Maxwellian viscoelastic fluid in the presence of a magnetic field, while the thermal convection in an 
Oldroydian viscoelastic fluid in hydromagnetics has been considered by Sharma et al. (1976). 
 The fluids have been considered to be Newtonian or viscoelastic (Maxwellian or Oldroydian) in all 
the above studies. There are many elastico-viscous fluids that cannot be characterized by Maxwell’s or 
Oldroyd’s constitutive relations. One such fluid is Walters’ (model B') elastico-viscous fluid having 
relevance and importance in chemical technology and industry. Walters (1962) reported that the mixture of 
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polymethyl methacrylate and pyridine at C25o  containing 30.5g of polymer per litre with density 0.98g per 
litre behaves very nearly as the Walters’ (model B') elastico-viscous fluid. Polymers are used in the 
manufacture of spacecrafts, aeroplanes, tyres, belt conveyers, ropes, cushions, seats, foams, plastic 
engineering equipments, contact lens etc. Walters’ (model B') elastico-viscous fluid forms the basis for the 
manufacture of many such important and useful products. Sharma et al. (1999) have considered the 
thermosolutal instability of Walters’ (model B') rotating fluid in porous medium whereas the Rayleigh-
Taylor instability of Walters’ B' elastico-viscous fluid through porous medium has been studied by Sharma et 
al. (2002). In thermal and thermosolutal convection problems, the Boussinesq approximation has been used, 
which is well justified in the case of incompressible fluids. 
 When the fluids are compressible, the equations governing the system become more complicated. 
Spiegel and Veronis (1960) have simplified the set of equations governing the flow of compressible fluids 
under the assumption that the depth of the fluid layer is much smaller than the scale height as defined by 
them, if only motions of infinitesimal amplitude are considered. Sharma (1977) has studied the thermal 
instability in compressible fluids in the presence of rotation and a magnetic field. 
 Keeping in mind the importance of non-Newtonian fluids, compressibility and suspended particles in 
chemical technology, industry and geophysical fluid dynamics, the present paper attempts to study the 
thermal convection in an electrically conducting, compressible, Walters’ (moldel B') elastico-viscous fluid 
permeated with suspended particles in the presence of a uniform magnetic field. 
 
2. Perturbation equations  
 
 Consider an infinite, horizontal, electrically conducting, compressible, Walters’ (moldel B') elastico-
viscous fluid layer of thickness d, permeated with suspended particles, bounded by the planes 0z =  and 

dz = . This fluid particle layer is heated from below so that a uniform temperature gradient ( )dzdT=β  is 
maintained and the layer is acted on by the gravity field ( )g00 −,,g  and a uniform vertical magnetic field 

( )H00 ,,H . 
 Spiegel and Veronis (1960) defined f  as any of the state variables (pressure ( )p , density ( )ρ  or 
temperature ( )T ) and expressed these in the form  
 
  ( ) ( ) ( )tzyxfzfftzyxf 0m ,,,,,, ′++=  (2.1) 
 
where mf  is the constant space average of 0ff ,  is the variation in the absence of motion and f ′  is the 
fluctuation resulting from the motion.  
The initial state is, therefore, a state in which the density, pressure, temperature and velocity in the fluid are given by    
 
  ( ) ( ) ( ) 0zTTzppz ===ρ=ρ v,,, , (2.2) 
 
respectively, where 
 
  ( ) zTzT 0 β−= , 
 

  ( ) ( )dzgpzp
d

0 0mm ∫ ρ+ρ−= , 

   (2.3) 
  ( ) ( ) ( )[ ]mmmmm ppKTT1z −+−α−ρ=ρ ,  
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 The linearized hydromagnetic perturbation equations for thermal convection in a compressible, 
Walters’ B' elastico-viscous fluid permeated with suspended particles (Chandrasekhar, 1981; Walters, 1962; 
Spiegel and Veronis, 1960 and Sharma, 1977) are 
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 Here ( )wvu ,,v , ( )srld ,,v , N, ( )zyx hhh ,,h , δρ , pδ  and θ  denote, respectively, the perturbations 
in fluid velocity ( )000 ,,  suspended particle velocities ( )000 ,,  suspended particles number density 0N , 
magnetic field ( )H00 ,,H  density ρ , pressure p  and temperature T . eµκν′ν ,,,  and η  stand for the 
kinematic viscosity, kinematic viscoelasticity, thermal diffusivity, magnetic permeability and electrical 
resistivity respectively. Here ( )txd ,v , ( )txN ,  denote velocity, number density of suspended particles. 

ε′µπ= 6K , where ε′  is the particle radius, K is Stokes’ drag coefficient and ( )zyxx ,,= . 
0N

NM =  and 

vm

pt0

c
cmN

h
ρ

= . pc  and vc  are the specific heat of the fluid at constant pressure and volume, respectively. ptc  

is the specific heat of the particles. The distances between particles are assumed to be so large compared with 
their diameter that interparticle reactions need not be accounted for. The effects of pressure, gravity and the 
magnetic field on the suspended particles, assuming large distances apart, are negligibly small and therefore 
ignored. Under the above assumptions, Eqs (2.6) and (2.7) represent the equations of motion and continuity 
for the particles, mN being the mass of particles per unit volume. The equation of state is 
 
  ( )[ ]0m TT1 −α−ρ=ρ  (2.11) 
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where α  is the coefficient of thermal expansion, as density variations arise mainly due to temperature 
variations. Therefore the change in density δρ  caused by the perturbation θ  in temperature is given by  
 
  αθρ−=δρ m .  (2.12) 
 
 Writing the scalar components of Eq.(2.4), after elimination of dv  with the help of Eq.(2.6), 
eliminating phhvu yx δ,,,,  between them by using Eqs (2.5), (2.8) and (2.12), we obtain  
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 The z -component of Eq.(2.9) yields 
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 Equation (2.10), on substituting for s  in terms of w  with the help of Eq.(2.6), yields 
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 Equations (2.13)-(2.15) yield three perturbation equations in w, θ  and zh . 
 
3. Dispersion relation 
 
 Analyze the perturbations into normal modes by seeking solutions in the form 
 
  [ ] ( ) ( ) ( )[ ] ( )ntyikxikzKzzWhw yxz ++Θ=θ exp,,,,  (3.1) 
 

where n  is, in general, a complex constant and ( )2
1

2
y

2
x kkk +=  is the resultant wave number of the 

disturbance. 
 Equations (2.13)-(2.15) in a dimensionless form, using expression (3.1), become 
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 Eliminating Θ  and K  between Eqs (3.2)-(3.4), we obtain 
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 Consider the case in which both the boundaries are free, the medium adjoining the fluid is perfectly 
conducting and temperatures at the boundaries are kept fixed. The boundary conditions, appropriate for the 
problem, are 
 
  0WDW 2 == ,     0K = ,     0=Θ      and     1. (3.6) 
 
 The solution of Eq.(3.5) characterizing the lowest mode is 
 
  zWW 0 π= sin  (3.7) 
 
where 0W  is constant. Substituting Eq.(3.7) in Eq.(3.5), we get  
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4. The stationary convection 
 
 For stationary convection, Eq.(3.8) reduces to 
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 For stationary convection, Eq.(4.1) implies that the compressible Walters’ elastico-viscous fluid 
(model B') behaves like an ordinary Newtonian viscous fluid. Equation (4.1) yields 
 

  ( )[ ] 






 +
++








−
−= 21

21

xH
x1Qx1

1G
G

dH
dR , (4.2) 

 

  





 +









−
=

xH
x1

1G
G

dQ
dR

1

1 . (4.3) 

 
 It follows from Eqs (4.2) and (4.3) that the suspended particles have a destabilizing effect, whereas 
the magnetic field has a stabilizing effect on the thermal convection in a compressible Walters’ B' elastico-
viscous fluid permeated with suspended particles, for the stationary convection. 
 For fixed 1Q  and H , let G  (accounting for the compressibility effects) be also kept fixed in 
Eq.(4.1). Then we find that 
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where cR  and cR  denote, respectively, the critical Rayleigh numbers in the presence and absence of 
compressibility. The effect of compressibility is thus to postpone the onset of thermal convection in 
compressible Walters’ B' elastico-viscous fluid, for the stationary convection. 1G >  is relevant here as 

1G <  and 1G =  correspond to the negative and infinite Rayleigh numbers which are not appropriate in the 
present problem. The compressibility, therefore, has a stabilizing effect on the thermal convection. 
 
5. Stability of the system and oscillatory modes  
 
 Multiplying Eq.(3.2) by ∗W , the complex conjugate of W , integrating over the range of values of 
z , and making use of Eqs (3.3) and (3.4) together with the boundary conditions (3.6), we obtain 
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 The integrals 61 II −  are all positive definite. Putting ir iσ+σ=σ  and then equating real and 
imaginary parts of Eq.(5.1), we obtain  
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 It may be inferred from Eq.(5.3) that rσ  is positive or negative which means that the system may be 
stable or unstable. It is clear from Eq.(5.4) that iσ  may be zero or non-zero, meaning that the modes may be 
non-oscillatory or oscillatory. The oscillatory modes are introduced due to the presence of viscoelasticity, 
magnetic field and suspended particles, which were non-existent in their absence. 
 
Nomenclature 
 
 pc  – specific heat of fluid at constant pressure 
 ptc  – specific heat of  suspended particles 
 vc  – specific heat of fluid at constant volume 
 F  – dimensionless kinematic viscoelasticity 
 G  – dimensionless compressibility 
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 ( )g00 −,,g  – gravity field 
 ( )H00 ,,H  – magnetic field 

( )zyx hhh ,,h  – perturbation in magnetic field 
 K  – Stokes’ drag coefficient  
 k  – wave number 
 yx kk ,  – wave numbers in x- and y- directions 
 m  – mass of suspended particles 
 N  – number density of suspended particles 
 n  – stability parameter 
 p  – pressure 
 1p  – Prandtl number 
 2p  – magnetic Prandtl number 
 R  – Rayleigh number 
 cR  – critical Rayleigh number in the absence of compressibility 
 T  – temperature 
 t  – time coordinate 
 Q  – Chandrasekhar number 
 ( )wvu ,,v  – velocity of fluid 
 ( )srld ,,v  – velocity of suspended particles 
 ( )zyxx ,,  – space coordinate 
 α  – coefficient of thermal expansion 
 β  – temperature gradient 
 pδ  – perturbation in pressure 
 δρ  – perturbation in density 
 ε′  – radius of suspended particles 
 η  – electrical resistivity 
 θ  – perturbation in temperature 
 κ  – thermal diffusivity 
 µ  – fluid viscosity 
 eµ  – magnetic permeability 
 ν  – kinematic viscosity 
 ν′  – kinematic viscoelasticity 
 ρ  – fluid density 
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