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This study looks the series solution for the flow of a third grade fluid in a rotating frame. The flow is induced 
by non-coaxial rotations of porous oscillating disk and a fluid at infinity. It is noted that the obtained expressions 
for velocity components are valid for all values of the frequencies. 

 
1. Introduction  
 
 Exact solutions for the flow due to a single disk in a variety of situations have been obtained by a 
number of researchers. Berker (1963) has considered the flow due to non-coaxial rotations of a disk and a 
fluid at infinity and implied the possibility of an exact solution to the Navier-Stokes equations. Thornley 
(1968) has studied the flow due to non-torsional oscillations of a single disk in a semi-infinite expanse of 
fluid in a rotating frame of reference. Murthy and Ram (1978) have considered the magnetohydrodynamic 
flow and heat transfer due to eccentric rotations of a porous disk and a fluid at infinity. Rajagopal (1982) has 
considered the flow of a simple fluid in an orthogonal rheometer. The flows of Newtonian and 
non-Newtonian fluids between parallel disks rotating about a common axis have been reviewed by Rajagopal 
(1992). MHD flow of non-Newtonian fluids was probably first considered by Sarpkaya (1961). The unsteady 
flow due to non-coaxial rotations of a disk, and a fluid at infinity has been investigated by Kasiviswanathan 
and Rao (1987), Pop (1979) and Erdogan (1995; 1997).  
 In the present paper, an analytical solution to the time-dependent equations is given for the third 
grade flow due to non-coaxial rotations of a porous disk, executing oscillations in its own plane, and a fluid 
at infinity. An analytical solution is obtained by the perturbation method. The work presented in this paper is 
a generalization of the work performed by Kasiviswanathan and Rao. To our knowledge, the problem of 
Kasiviswanathan and Rao (1987) is not yet attempted even for the case of a second grade fluid. The second 
generalization is concerned to discuss the influence of externally applied magnetic fieldonthe velocity 
distribution. It is found that asymptotic resonant solution for blowing is possible. 
 
2. Problem formulation  
 
 We consider the flow due to an oscillating porous disk lying in the OXY plane rotating about the OZ 
axis perpendicular to the disk with angular velocity Ω  in the Cartesian coordinate system. The fluid at 

∞=z  rotates about an axis parallel to OZ passing through the point ( )11 yx , . The fluid is electrically 
conducting and assumed to be permeated by a magnetic field 0B  having no components in the x and y 
directions. For this motion, the velocity field V has the form (Erdogan, 1995; 1997) 
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  ( )tzfyu ,+Ω−= ,          ( )tzgxv ,+Ω= ,          0Ww −=  (2.1) 
 
where u, v and w are the velocity components in the x, y and z-directions, and 0W0 >  indicates suction at 
the disk and 0W0 <  indicates blowing.  
 The governing equations of motion and Maxwell’s equations are  
 
  0=Vdiv , (2.2) 
 

  BjSV
×+=ρ div

dt
d , (2.3) 

 

  0B =div ,          j1µ=Bcurl ,          
t∂

∂
−=

BEcurl , (2.4) 

 
  ( )BVEj ×+σ=  (2.5) 
 
where 1µ  is the magnetic permeability, E is the electric field, σ  is the electric conductivity, j is the electric 
current density, B is the total magnetic field so that bBB += 0 , 0B  and b are the imposed and induced 
magnetic fields respectively.  
 In our analysis we assume that the fluid is thermodynamically compatible; hence the stress 
constitutive relation is related in the following manner (Fosdick and Rajagopal, 1980; Dunn and Rajagopal, 
1995) 
 
  TIS +−= p ,          ( ) 1

2
13

2
12211 tr AAAAAT β+α+α+µ=  (2.6) 

 
where p is the pressure, I the identity tensor, µ  the coefficient of shear viscosity; and 1α , 2α  and 3β  are 
the material constants which satisfy  
 
  0≥µ ,          01 ≥α ,          03 ≥β ,          3213 2424 µβ≤α+α≤µβ− , (2.7) 
 
and the specific Helmholtz free energy Ψ  has the form  
 

  ( ) ( )2T1
4

ˆ LLL +
ρ

α
+θΨ=Ψ , ,          VL grad= . (2.8) 

 
 The Rivlin-Ericksen tensors ( )nA  are defined bythe recursion relation 
 

  ( ) ( ) 1n
T

1n
1n

n dt
d

−−
− ++= AVVAAA gradgrad ,          1n > , 

   (2.9) 
  ( ) ( )T1 VVA gradgrad += . 
 
 Making use of Eq.(2.1) the equation of continuity (2.2) is satisfied identically and substituting Eqs 
(2.1), and (2.6) into Eq.(2.3) we obtain  
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 (2.10) 

 
where  
 
  igfF += ,          igfF −= , (2.11) 
 
and ν  is the kinematic viscosity. For the problem under consideration the boundary conditions are 
(Kasiviswanathan and Rao, 1987)  
 
  ( )titi

0 beaeUF ω−ω +=           at          0z = , (2.12) 
 
  ( )110 iyxUF +=                     at         ∞=z  (2.13) 
 
where a, b are complex constants, 0U  is the constant velocity and ω is the frequency of the imposed 
oscillations.  
 It is possible to obtain an explicit solution for the system of Eqs (2.10) to (2.13). In what follows, we 
find such an explicit solution. While the results given may seem cumbersome and unwieldy, it is important to 
bear in mind that the solutions are exact. Of course, it would be possible to solve the partial differential 
equations numerically, but we would then have to ensure that such a procedure is stable, convergent, etc. In 
any event, an exact solution is useful to have and can serve as a check of numerical schemes. The solution of 
the problem consisting of Eqs (2.10) to (2.13) has been obtained employing the procedure used by the 
authors in reference (Hayat et al., 2001). After lengthy calculations, the velocity field for 1Ω>δ  are given 
by  
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ν

=η 0zW ,          
ν

=τ
tW 2

0 ,          2
0W

ων
=δ ,          2

2
01W

ρν

α
=α ,     

 

  2
0

1 W
νΩ

=Ω ,          2
0

2
0

W
Bn

ρ

νσ
= ,          3

2
0

2
0WUM
ρν

= , 

 
and the expressions for the constants 0a , 1a  etc. can be routinely determined. 
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 Similarly, the asymptotic solution for 1Ω<δ , and 1Ω=δ  exist but is not given explicitly in order 
to avoid the large size of calculations. Further, the asymptotic solutions for blowing can be obtained in the 
three cases by replacing 0W  with 0W− .  
 
3. Conclusions  
 
 We have solved the canonical problem for a time dependent magnetohydrodynamic flow due to 
non-coaxial rotations of a porous oscillating disk and a fluid at infinity. The velocity field is governed by a 
fourth order non-linear partial differential equation. The solution to the governing equation for 
suction/blowing consists of two parts. The first part is the solution for a second grade fluid and second part 
arises due to a third grade fluid. The most important feature in the case of blowing solution is that the 
magnetohydrodynamic solution for the resonant case, satisfy the boundary condition at infinity for all values 
of frequency including the resonant frequency. Consequently, the associated boundary layers remain 
bounded for the resonant case. In contrast to the hydrodynamic solution for the case of blowing and 
resonance where the blowing promotes the spreading of the oscillations far away from the disk, the 
oscillatory boundary layer flows are confined to the ultimate boundary layers for all frequencies including the 
resonant frequencies. The physical implication of this conclusion is that for the case of resonance, the 
unbounded spreading of the oscillations away from the disk is controlled by the external magnetic field. The 
asymptotic analysis in the resonant case further indicates the existence of diffusive hydromagnetic waves. 
Eventually, these waves are found to decay within the boundary layers. It is of interest to note that the 
external magnetic field expedites the decay process of these waves.  
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