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A finite element method for the buckling loads on a longitudinally square stiffened plate with square cutouts 
is investigated under various combinations of biaxial loading at the plate boundary. The forces are assumed to act 
in the plane of the undeformed middle surface of the plate. The characteristic equations for the natural 
frequencies, buckling loads and their corresponding mode shapes are obtained from the equation of motion. The 
buckling load parameter for various modes of the stiffened plate with square cutouts subjected to in-plane biaxial 
loads, has been determined for various edge conditions. Numerical results are presented for a range of hole to 
plate size from 0 to 0.8. In the structural modeling, the plate and the stiffeners are treated as separate elements 
where the compatibility between these two types of elements is maintained. The present approach is more flexible 
than any other finite element modeling in that the mesh division is independent of the location of the stiffeners.  

 
 Key words: finite element method, buckling, vibration, cutout, buckling load parameter. 
 
1. Introduction 
 
 In aerospace structures, cutouts are commonly found as access ports for mechanical and electrical 
systems, or simply to reduce weight. Cutouts in aerospace, civil, mechanical and marine structures are 
inevitable mainly for practical considerations. In addition, the designers often need to incorporate cutouts or 
openings in a structure to serve as doors and windows. The buckling and vibration analysis of structures with 
cutouts poses a tremendous challenge and must be properly understood in the structural design. The 
instability effects are improved with the provision of stiffeners.  
 An eight noded isoparametric stiffened plate-bending element for the free vibration analysis of a 
stiffened plate has been presented by Mukherjee and Mukhopadhyay (1988). Here the stiffener can be 
positioned anywhere within the plate element and need not necessarily be placed on the nodal lines.  
 Olson and Hazell (1977) have presented a critical study on a clamped integrally stiffened plate by the 
finite element method. The mode shapes and frequencies have been determined experimentally using the real 
time holographic technique. Buckling and vibration characteristics of a stiffened plate subjected to in-plane 
partial edge loading have been studied by Srivastava et al. (2002). In the formulation, the stiffener can be 
positioned anywhere within the plate element and follow the plate beam idealization approach.   
 The numerical method for computing the natural frequencies of rectangular plates with cutouts can 
be broadly classified into three categories, namely finite element and finite difference methods, a series type 
analytical method and the semi analytical approach based on the Rayleigh-Ritz method.  
 Numerical results obtained by the finite element method have been reported by Ali and Atwal 
(1987), Shastry and Rao (1977), Reddy (1982) and Laura et al. (1986). Paramsivam (1973a) used a finite 
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difference approach in analyzing the effects of openings on the fundamental frequencies of plates with 
simply supported and clamped boundary conditions. A finite element analysis of clamped thin plates with 
different cutout sizes, along with experiments was carried out by Monahan et al. (1970). Mundkur et al. 
(1994) studied the vibration of square plates with square cutouts by using boundary characteristics 
orthogonal polynomials satisfying the boundary conditions. Chang and Chiang (1988) studied the vibration 
of the rectangular plate with an interior cutout by using the finite element method. Lee et al. (1990) predicted 
the natural frequencies of rectangular plates with an arbitrarily located rectangular cutout.  
 Studies on vibration characteristics of stiffened plates with cutouts are scanty in the literature. The 
free vibration characteristics of unstiffened and longitudinally stiffened square panels with symmetrically 
square cutouts are investigated by Sivasubramonian et al. (1999) using the finite element method. Lam and 
Hung (1990) studied the vibrations of plates with stiffened openings using orthogonal polynomials and the 
partitioning method. Natural frequencies of simply supported and fully clamped plates with stiffened 
openings were presented. Paramsivam and Sridhar Rao (1973b) modified the grid framework model suitably 
to obtain the natural frequencies of a square plate with stiffened square openings. Recently, dynamic 
instability of stiffened plates subjected to harmonic in-plane uniform edge loading has been studied by 
Srivastava et al. (2003) considering and neglecting in-plane displacements. The element matrices of the 
stiffened plate element consist of the contribution of the plate and that of the stiffener. The contribution of 
the beam element is reflected in all nodes of the plate element, which contains the stiffener. Further 
Srivastava et al. (2003) extended their work to study the principal dynamic instability behaviour of stiffened 
plates subjected to non-uniform harmonic in-plane edge loading. The plate skin and the stiffeners are 
modelled as separate elements but the compatibility between them is maintained. The present paper deals 
with the effects of various parameters such as the size and location of cutouts, aspect ratios of the plate and 
cutout, different boundary conditions and stiffener parameters on buckling and vibration characteristics of 
rectangular stiffened plates with cutouts. The finite element method is applied to analyze the vibration and 
the buckling behaviour of stiffened plates with cutouts subjected to in-plane uniform biaxial edge loading at 
the plate boundary. A nine-nodded isoparametric quadratic element with its ability to accommodate curved 
boundaries is selected for the modelling of the stiffened plate element with cutouts. The main elegance of the 
formulation lies in the treatment of stiffeners in which the stiffener can be placed anywhere within the plate 
element which helps to increase considerably the amount of flexibility in the mesh generation.  
 
2. Finite element formulation 
 
 The formulation is based on Mindlin’s plate theory, which will allow for the incorporation of shear 
deformation. The element matrices of the stiffened plate element consist of the contribution of the plate and 
that of the stiffeners. The effect of in-plane deformations is taken into account in addition to the 
deformations due to bending. A nine-noded isoparametric quadratic element with five degrees of freedom (u, 
v, w, xθ , and yθ ) per node is employed in the present analysis. The element matrices of the stiffened plate 
element consist of the contribution of the plate and that of the stiffener. It reveals that the contribution of the 
beam element is reflected in all 9 nodes of the plate element, which contains the stiffener. The contribution 
of the stiffener to a particular node depends on the proximity of the stiffener to that node. For a given edge 
loading and boundary conditions, the static equation, i.e., [ ]K  { } { }F=δ  is solved to get the stresses. The 
geometric stiffness matrix is now constructed with the known stresses. The overall elastic stiffness matrix, 
geometric stiffness matrix and mass matrix are generated from the assembly of those element matrices and 
stored in a single array where the variable bandwidth profile storage scheme is used. The solution of 
eigenvalues is performed by the simultaneous iteration technique proposed by Corr and Jenning (1976). 
 The elastic stiffness matrix [ ]pK , geometric stiffness matrix [ ]GpK and mass matrix [ ]pM  of the 
plate element may be expressed as follows 
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 The elastic stiffness matrix [ ]SK , geometric stiffness matrix [ ]GSK  and mass matrix [ ]SM  of a 
stiffener element placed anywhere within a plate element and oriented in the direction of x may be expressed, 
in a manner similar to that of the plate element as follows 
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  [ ] [ ] [ ] [ ] [ ][ ]9PrP2P1PP BBBBB KK= ,                                    (2.7) 
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 The different matrices in the above equations may be written as follows 
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 The equation of equilibrium for the stiffened plate subjected to in-plane loads can be written as 
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  [ ] { } [ ] [ ][ ] { } 0qKPKqM Gb =−+&& .                                                              (2.12) 
 
 Equation (2.12) can be reduced to the governing equations for buckling and vibration problems. 
 
3. Results and discussion 
 

We have considered here a rectangular plate ( )ba ×  with stiffeners having a rectangular cutout of 
size ( )dg ×  at the center as shown in Fig.1. The plate with the stiffener subjected to in-plane uniform edge 
loading at the plate boundary and stiffener cross-section are shown in Fig.2. The loading applied is 
compressive in nature. The length (a) of the stiffened plate considered above is varied keeping its other 
parameters unchanged. 
 

 
 

Fig.1. Stiffened plates with cutout under in plane uniform edge loading at plate boundary. 
 

 
 

Fig.2. Stiffened plate cross-section. 
 

 Numerical results are presented for isotropic stiffened plates with cutouts for simply supported and 
boundary conditions clamped boundary conditions. In the discussion that followed, S, C denote simply 
supported, clamped respectively. The non-dimensionalisation of different parameters like vibration, buckling 
for stability analysis is taken as given below.  
 Frequency parameter ( ) Dtb2 ρϖ=ω  and buckling parameter ( ) DbN 22

X π=λ  where D is the 

plate flexural rigidity, ( )23 112tED ν−= , ρ  is the density of the plate material and t is the plate thickness. 
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Assuming a general case of several longitudinal ribs and denoting by SEI  the flexural rigidity of a stiffener 
at a distance ( )xD  from the edge 0y = , the stiffener parameter terms δ  and γ  are defined as: 

tbAS=δ - ratio of cross-sectional area of the stiffener to the plate, where SA  is the area of the stiffener. 
bDIE S=γ - ratio of bending stiffness rigidity of the stiffener to the plate, where SI  is the moment of 

inertia of the stiffener cross-section about the reference axis. ag - ratio of cutout to the plate width. 
 The presence of the cutout in the plate produces stress concentrations and high stress gradients in the 
neighbourhood of the cutout, which calls for an extra fineness of the mesh in this zone in the finite element 
discretization. The buckling load parameter for various modes of a rectangular stiffened plate subjected to 
biaxial edge loading have been determined for various edge conditions.  
 
3.1. Comparison with previous studies 
 
 In order to validate the results, linear fundamental frequencies of a simply supported isotropic square 
plate with various sizes of a rectangular cutout ( )ag  are computed and compared with Mundkur et al. 
(1994) in Tab.1. The predicted changes in frequencies for different cutout sizes agree well with the results of 
Mundkur et al. (1994) given in brackets.  
 
Table 1. Comparison of natural frequency parameter. 
 

Natural frequency parameter ( )ω  
 SSSS  CCCC 

ag  Mundkur et al. (1994) Present 
 

Mundkur et al. (1994) Present 

 
0.167 

 
0.33 

 
0.5 

 

 
20.070 

 
20.9633 

 
24.2434 

 

 
19.87 

 
20.12 

 
24.24 

 

 

 
37.425 

 
43.867 

 
65.715 

 

 
36.06 

 
43.02 

 
65.27 

 
 
3.2. Buckling studies of stiffened plates with a cutout 
 
 Numerical results for non-dimensional buckling load parameters are presented for a stiffened plate 
with central square cutouts having various boundary conditions. The stiffened plates are subjected to uni 
axial compressive force xN  for the first case, and biaxial loading with yx NN =  for the second case study. 

The corresponding values of xN  and yN  are the buckling loads for the mode shape under consideration. 
 The stiffened plate with a central square cutout is studied by taking different cutout size ratio ag . 
The plate is simply supported at its four edges and the data used for its geometry are mm100a = , 

mm100b = , mm1t = . The stiffener parameter to be used are as follows: 1.0=δ  and 10=γ . The other data 

are as: 30.0=ν , 27 mmN100.3E ×= , 36 mmKg108.7 −×=ρ .  
 As a first case, numerical results for buckling load parameter for a stiffened square plate having one 
central stiffener with a square central cutout of different sizes subjected to uniaxial compressive force for 
various boundary conditions in various modes are presented in Figs 3-6. Figure 3 shows the variation of the 
buckling load parameter ( )λ  for a stiffened plate with one central stiffener subjected to uniaxial load for 
various boundary conditions, (SSSS, CCCC, CCSS, SSCC). It is observed from Fig.3 that buckling load 
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decreases with the increase of cutout sizes for edge conditions SSSS and SSCC. On the other hand, for edge 
conditions CCCC and CCSS, it tends to increase for 4.0ag > . 
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Fig.3. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for uniaxially loaded stiffened plate with one 
central stiffener ( 1.0=δ  and 10=γ ).  
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Fig.4. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for uniaxially loaded simply supported 
stiffened plate with one central stiffener ( 1.0=δ  and 10=γ ) in various modes. 
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Fig.5. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for uniaxially loaded stiffened plate with one 
central stiffener ( 1.0=δ  and 10=γ ) in various modes. The edges are CCSS. 
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Fig.6. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for uniaxially loaded stiffened plate with one 
central stiffener ( 1.0=δ  and 10=γ ) in various modes. The edges are SSCC. 

 
 This variations of the buckling load parameter ( )λ  with the cutout size for various boundary 
conditions, (SSSS, CCSS, SSCC) in various modes are shown in Figs 4-6. 
 As a second case, the effect of bi-axial force on the buckling load parameter for stiffened square 
plates of the same dimensions as described above with various cutout sizes for various boundary conditions 
in different modes is analyzed here and the results are presented in Figs 7-8 for unstiffened plates and Figs 9-
13 for stiffened plates.   
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Fig.7. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded unstiffened plate for 
different boundary conditions. 
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Fig.8. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded simply supported and 

clamped unstiffened plate. 
 

 It is observed that the variation of the fundamental frequencies with increased in-plane forces is the 
same as that of uniaxial force in various modes. The curves for the uniaxial and biaxial loadings are identical 
for normalized compressive forces. 
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 Figure 9 shows the variation of the buckling load parameter ( )λ  for a stiffened plate with one central 
stiffener subjected to biaxial load for various boundary conditions, (SSSS, CCCC, CCSS, SSCC). It is 
observed here that the buckling load decreases with the increase of cutout sizes for SSSS, SSCC and CCSS, 
but for edge condition CCCC, it increases for the cutout size ag  greater than 0.4. 
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Fig.9. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded stiffened plate with one 
central stiffener ( 1.0=δ  and 10=γ ). 

 
 This variations of the buckling load parameter ( )λ  with the cutout size for various boundary 
conditions, (SSSS, CCCC, CCSS, SSCC) in various modes are shown in Figs 10-13.  
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Fig.10. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded simply supported 

stiffened plate with one central stiffener ( 1.0=δ  and 10=γ ) in various modes. 
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Fig.11. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded clamped stiffened plate 
with one central stiffener ( 1.0=δ  and 10=γ ) in various modes. 
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Fig.12. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded stiffened plate with one 
central stiffener ( 1.0=δ  and 10=γ ) in various modes. The edges are CCSS. 
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Fig.13. Buckling load parameter ( )λ  vs. hole/plate ratio ( )ag  for biaxially loaded stiffened plate with one 
central stiffener ( 1.0=δ  and 10=γ ) in various modes. The edges are SSCC. 

 
4. Conclusion 
 
 The cutouts have considerable influence on the buckling loads, vibration frequencies and mode 
shapes. The effect is larger in higher modes than in the fundamental mode. The vibration frequencies 
increase for higher modes due to increased complexity in the mode shapes. The variation of the fundamental 
frequencies with increased in-plane forces is the same as that of uniaxial force in various modes. The curves 
for the uniaxial and biaxial loadings are identical for normalized compressive forces. 
 The buckling load decreases with the increase of cutout sizes for SSSS, SSCC and CCSS, but for 
edge condition CCCC, it increases for the cutout size ag  greater than 0.4. 
 The effect of shear deformation is more pronounced in the case of clamped plates than in simply 
supported plates. Vibration frequencies increase with the increase of restraint at the edges.  
 
Nomenclature 
 
 a – plate dimension in longitudinal direction 
 SA  – cross sectional area of the stiffener 
 b – plate dimension in the transverse direction 
 ss d,b  – web thickness and depth of a x-stiffener 
 d – cutout width 
 [ ]PD  – rigidity matrix of plate 
 [ ]SD  – rigidity matrix of stiffener 
 E, G – Young’s and shear moduli for the plate material 
 g – cutout length 
 dg  – cutout width ratio  

 SI  – moment of inertia of the stiffener cross-section about reference axis 
 [ ]eK  – elastic stiffness matrix of plate 
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 [ ]GK  – geometric stiffness matrix 
 [ ]SK  – elastic stiffness matrix of stiffener 
 [ ] [ ]Sp MM ,  – consistent mass matrix of plate, stiffener 
 [ ]rN  – matrix of a shape function of a node r 
 crP  – critical buckling load 
 SP  – polar moment of inertia of the stiffener element 
 t – plate thickness 
 ST  – torsional constant 
 { }rq  – vector of nodal displacement a rth node 

 υ  – Poisson’s ratio 

 ξ , η  – non-dimensional element coordinate 
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