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It is well recognized that the contact stiffness, true contact area, and the contact force are among the key
features in the study of friction system behavior. This paper presents the development of formulae for the
mechanical component of dry-friction at the interface of two microscopic rough surfaces. Elastic deformation
under the influence of the contact forces is considered. The elastic contact model formulation between i nteracting
asperitiesis not assumed to occur only at asperity peaks, thus allowing the possibility of oblique contacts wherein
the local contact surfaces are no longer paralel to the mean planes of the mating surfaces. It is shown that the
approach enables the separation of the contact areainto its normal and tangential projections and the contact force
into its normal and tangential components. The mathematical mode of contact is utilized to develop formulae for
normal and tangential contact stiffness. The analytical method is used to estimate contact stiff ness components.
Contact parameter values for the sample are derived from the surface profile data taken from a 1.0 mm by 10 mm
test area. The profile is measured using a Mahr profilometer. A computer program is written and used to analyze
the profile data. The analysis yields the asperity density, average asperity radius, and the standard deviation for
each test area.
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1. Introduction

Performance of mechanical systems with friction is greatly influenced by contact characteristics. An
accurate estimation of the contact force and contact area in the interaction of rough surfaces is undoubtedly
one of the most chall enging problems. Harnessing contact problems will have wide-reaching benefits to the
design of mechanical seals, surfaces for manufactured parts, as wel as components in dutch, brake and
engine systems. The formulae for contact force, stiffness and real area of contact that consider micro-contact
between the asperities in the dastic range are deve oped.

It is recognized that surfaces are rough on a microscopic scale. As aresult when two solid bodies are
brought into contact, the real contact area will only be a fraction of the apparent macroscopic contact area.
Most of the existing contact models are based on the presumption that the real contact area can be thought as
the area composed of asperities of one solid body, which are squeezed against asperities of the other body
(Greenwood et al., 1992; Greenwood and Williamson, 1966; Bush et al., 1975; Johnson, 1985). These
asperities can deform eastically or plastically depending on the material and loading conditions. Early
research efforts focused on plastic models on the premi se that the real contact areais so small that the contact
pressure exceeds the yield point. Abbot and Firestone (1933) proposed one of the earliest plastic models,
described the rea contact area as the area of geometrical intersection between a rough surface and a plane.
Bowden and Tabor (1954) suggested a model by assuming that the load is supported by the plastic contact
pressure, being equal to the flow pressure of the softer contacting material. Archard (1953) proposed a model
in which asperity is covered with micro-asperities that in turn were covered with micromicro-asperities, and
successfully produced the approximation that contact area was proportiona to applied load. The dastic
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models primarily rely on the Hertz theory of contact between two dastic bodies (Greenwood and
Williamson, 1966; Greenwood and Tripp, 1967; Greenwood and Tripp, 1971; Hisakado, 1974; Bush et al.,
1975; McCool, 1986). These models differ in their assumptions related to surface and asperity geometry and
material properties. These extensons have included, for instance the inclusion of the surface curvature
effects (Greenwood and Tripp, 1967), alowance for non-uniform curvature of asperity summits (Hisakado,
1974) and the presumption of average dliptic parabolloidal representation of asperity (Bush et al., 1975).
While other works have advanced models for anisotropic materials (McCool, 1986). Elastic formulations of
the asperities are deve oped considering the mechanical components, Bengisu and Akay (1997; 1999). The
normal and the frictional forces are related to the norma and tangential velocities of two rough surfaces
through the deformation of contact asperities.

In reality, each asperity will indeed be wholly dastic when the overall load is light, but then as the
overall load is increased some asperities will start to enter the plastic regime. Increasing the load those
asperities will ultimately become fully plastic and a locd limit state will exist, whilst simultaneously the
more heavily loaded elastic asperities will start to enter the plastic regime, Abdo and Farhang (2005) and
Abdo (2005) In this paper, an dastic portion in the contact model of Abdo (2005) is extended to account for
contact of two rough surfaces in which the effect of shoulder-to-shoulder asperity contact is addresses by
way of the contact slope. This extension allows the development of equations for both normal and tangential
contact forces, contact stiffness as wdl as the projection of normal and tangential contact areasin the dastic
interaction of rough surfaces.

2. Consideration of contact between two rough surfaces

In the present formulation contact between interacting asperities is not assumed to occur only at
asperity peaks, thus alowing the possibility of oblique contacts wherein the local contact surfaces are no
longer paralld to the mean planes of the mating surfaces. Hence, the physica phenomenon is more
realistically represented. The asperities experience dastic deformation and the nature of the load is such that
adjacent contacting asperities do not influence each other on a surface during deformation. This assumption
is valid for low to moderate values of contact pressure, which happens to dso be the case when dastic
interaction dominates. The statistical values of asperity height distribution and the average asperity summit
radius are two important parameters in the representation of arough surface. The statistical representation of
an asperity is a quadratic asperity shape and may be represented by the following equation

y=f(r)=r?/2b 2.1)

where, b istheradius of curvature of the peak.

Two asperities of heights z; and z, ontwo mating surfaces are considered. The horizontal distance
between the two vertical central lines of the two asperities is defined as the radia distance r and d denotes
the separation of the mean planes of the asperity peaks of the two surfaces. The conditions of no
contact, touch and interference may be represented by the following mathematical inequalities shown
alsoin Fig.1.

2, +2,- 21(r/2)<d (no contact),
2, +12,-2f(r/2)=d (touch), (2.2)
2, +12,-21(r/2)>d (interference).

In view of atwo-dimensiond representation of interfering asperities the geometrical intersections of
the asperities are used to define the interference slope. Therefore, as depicted in Fig.2, the slope of the line
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defined by the two points of interactions with respect to the mean plane is the interference slope. Let the
points of intersections be given by points A and B in Fig.2 with coordinates (rA,yA) and (r B,yB),
respectively.

N
N
N

N
N

N

7N
N

i

TN

No contact Touch Interference

Fig.1. Representation of possible asperity interaction scenarios.
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Fig.2. The contact dope of two asperities.

Therefore the slope may be written as

_Ya-¥s _ T
S, = = 2.3

where, a is the angle between the line BA and the reference plane of surface S; as shown in Fig.2. The
radial distance at which the two asperities touch (are tangent) may be cal culated by equating

f(r/2)=r?/8b, (2.4)
whereas a comparison with Eq.(2.2) yidds

r :iZ,/ble +2, - d). (2.5)
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It is noted here that a positive sign for r corresponds to the paositive slope (a > 0) and a negative sign
to the negative slope (a <0) . The Hertzian theory of contact employs the equivalent radius of curvature at

the point of contact of the two bodies. For two bodies of radii of curvatures r, and r,, the composite radius
of curvatureis given by

Yre =Yri+Yr,. (2.6)

Utilizing Eq.(2.1), the radius of curvature for two asperities of identicd shape of the function in
terms of the radial distance between an asperity mating surfaces and assuming identical statistics (r =2r ) for
the two surfaces may be given by

3
AL 2.7)
é 4b2‘ ' '

If we assume that r changes from zero, where the two asperities are digned, to approximately 2b,
where the asperities just touch, the average radius of curvature can be approximated r., =b.

Correct application of Hertzian contact equations requires the use of the interference along the
normal to the contact area. Greenwood and Tripp (1971) define the interference w;, as shown in

Fig.3, normal to the mean planes. However, for the case under study involving oblique asperity
contact, the interference is along the normal to the contact area, illustrated in Fig.3 to be
approximately normal to the line joining asperity intersections. Denoting the interference by w and
that due to GT as w,;, an approximate relation may be established between the interferences by
utilizing the interference slope.
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(b)

Parallel to mean plane S,

Fig.3. Projection of contact area onto its normal and tangential components.

W= W;C0sa ,
w, =z-d- 2f(r/2), z2=27+2,,
S, =tana,

then
cosa = 1 !

\/1+tan2(a) i \/1+ s? .

Substituting Egs (2.9) and (2.11) in Eq.(2.10)

(- d 2f(/2))ge/ a8
w=(z-d- r + .
J Vw0

The normal and tangential projections of the contact area A may also be written using the above

definition of slope

P <] 2 0
An:Acosa:Aéﬁ/w/1+S§9:A9 14
g < 4p° 7

J[fiesz & r2 9
= Asi :A?i 1+S5 = Ax— 1+— .
A na S"z ga 4b2;+a

Similarly, as illustrated in Fig.4, the contact force aso consists of its norma and tangential

components. The components may be related to the contact force and contact slope as follows
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P, = Pcosa = Pgﬁ/,/1+ s2 g,
P, =Psina = P?a/,/u 529

where P is obtained by the Hertzian contact theory.

(2.14)

Fig.4. Contact force and its normal and tangential components.

Equations (2.12) to (2.14) are the required rdations to derive macroscopic expectations of the
contact area and its projections and contact force components. In the following sections the statistical
estimations of total tangential and norma areas as well as tangential and normal forces between two rough
surfaces are presented using the above rd ations.

3. Expected total normal and tangential contact areasand contact forces

The expected total normal contact area is the sum of the projections of local norma contact areas on
the mean plane of the surfaces. The form proposed by GT is used to describe the normal projection of areaas
follows

¥
A =hA Ay (z- d)f (2)dz, (3.1)
d

¥
A =2ph O%(W r)rdr (3.2
d

where, A isthe normal area, h the areal asperity density, assumed to be identical for both surfaces and f(z)
represents the probability density function of the sum of asperity heights (Greenwood and Tripp, 1971).
Similarly, the expected total tangential contact area is the sum of the projections of local tangential contact
aress.
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¥
A =hAJo(z- d)f (z)dz (3.3)
d

where A is defined by the following integral form

¥

Ao =2ph A (w, r)rdr . (3.4)
d

The integration of the normal component of the contact force over al possible loca contact areas
gives thetotal normal force (normal load) at the interface. Likewise, the integration of tangential component
over al thelocal contact areas yiel ds the tangential force.

¥
Po=h 4 (Poolz- d)f (2)dz,
d

(3.5)
¥

P, =h 4 Polz- d)f (2)dz

where

¥
Pro = 2ph ¢, (w,r)rar,

¥° (3.6)

Ro = 2ph ¢ (w,r)rdr.
0

In calculating the tangential and normal contact forces, the contact force between two asperities is
considered and statistically summed over all possible asperity interactions to obtain each component. In
considering the dastic contact between asperities, the Hertz equation is used to relate the interference
through asperity geometry and material property to force.

4. Elagtic defor mation

According to the Hertzian equations the contact area and contact 10ad between two asperities having
interference w are given by

Ay = pbw, (4.2)
13

P, = % Eb2w2 (4.2)
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where, b is the average equiva ent composite radius of curvature and w is the interference along the normal
of the contact area. Substituting Eq.(4.1) in Eq.(2.13)

A, = pbwlcosza , (4.3)
A =pbwcosa sina, (4.9

and substituting Eq.(4.2) in Eq.(2.14) yields

1
P, = % Eb2 (wycosa)¥2cosa , (4.5)

1
P = % Eb2 (w,cosa)¥2sina . (4.6)

Substituting Eq (4.3) in Eq (3.2) and after appropriate substitutions, | eads to the following

2yb(z-d)
A =2p%hb () é d-—— él = rdr (4.7)
0

80 5%

Similarly, substitute Eq.(4.4) in Eq.(4.8) to obtain

bzd
2
Ag=2p hb 0 éz d%ﬂgJ/é 4b2_2b dr. (4.8)

Similaly, substitute Egs (4.5) and (4.6), respectivey, in Eq.(3.6) and after gppropriate subgtituti ons we get

2, b‘Z d) 2 02 2 m4
== E¢1 z-d- —_ ¢ , 4.9
Po = p 0 é ab = 8 4b2_ (4.9)
“b z- di 2 02
:— E¢l d- —_ rdr. 4.10
tO p O é 8h= S/é 4b2_ 2b r ( )

Theintegration of Egs (4.7) and (4.8) gives

Ao =4p?hb3((d- b- Z)in(b)+ b+ z- d)inf(b+z- d)- (z- d))), (4.21)

(4.22)

Ao :8p2hb2§3(d -b- z)arctang“ blz- :_+\/b(2 d5%+ ( )

&&-I-_I-Poz
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By substitution of Egs (4.21) and (4.22) in Egs (3.1) and (3.3), respectively, and presenting the
integral forms for the expected total normal and tangential contact areas in normalized form, we get

A, = 4pAb>hZs (gs h+gs h+—élng— Th; gf(s)ds, (4.23)
9

&/s(s- h)d 50
A =8pAb®h%s %bg s+h+— —arctan§ Z h %+,/sbis- h’?’i—) +§(S- h)2% (s)ds (4.24)
: e

2

where s isthe standard deviation of asperity height sum distribution of the first and second surfaces. h isthe
dimensionless separation (h:d/s) and s is the dimensionless height (s: z/s). h is the areal density of
asperity and f (s) is the probability density function of the asperity height sum distribution. In this case, the
Gussian probability distribution function is used.

2

f(s)=—ve 2. (4.25)

V2p
Intheabove equations E isthe compasite Y oung modul us of thetwo materiasor friction film. It isdefined as

2 2
1. 1vi 1vy (4.26)

where E; and E, are the Young moduli of the surface films (materials) in contact. The eastic normal
contact force per unit area can be written as follows

P =D_f (4.27)

where

Dpe :%L E®2,/bs*, (4.28)

1+4L+ rdr +f (s)ds. (4.29)

The e astic tangential contact force per unit area can be written as follows
P =Die fre. (4.30)

Notethat the constants D, and D, areidentical. The f,, isexpressed as
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/( ) hd hd 0
f R h r2ozaej/1+ ot :‘()d (4.31)
«=0¢ O &-h-—:2 —— 1 ——dr +f(s)ds. :

It is noteworthy to mention that the integrals in Eqgs (4.29) and (4.31) cannot be evaluated
anaytically. Instead, approximate analytical expressions are obtained using a truncated Taylor series
expansion of the integrands. Eqgs (4.23), (4.24), (4.27) and (4.30) are integrated numerically by changing the
normalized separation h from 0 to 4.

5. Contact normal and tangential stiffness

The contact of two asperitiesis shown in Fig.3. It may be represented by a spring in the norma and
tangentia directions for each asperity as shown in Fig.5. The normal contact stiffness per unit areais derived

by differentiating the normal force |5n in Eq.(4.27) with respect to the normal deformation of contacting
asperities, d = s(s— h). Thenormal contact stiffnessis

Kn:%:d_P%:_l%’ (51)
dd dhdd s dh

and may be written as follows

K =H. k, (52)
where
neD) 1 5 0
_8 2.3 ¥\8% bf-hae r202 fee 2 004 -
K, =—pE h?/bs ADS¢ QO &s-h-—2z & o ordr *f (s)ds, (5.3)
3 h é 0 g g 4b* g z
a
H, =§pE'h2JBs3A. (5.4)

Thetangentid contact load per unit areais derived by differertiating Eq.(4.30) with respect tor. Theresultis

3 0
3 3 qlaing)2
kt :B = ﬂ E@%Mgna + (chosa)i Tl(Slna)+. (55)
" 3 g i Ir =
[4]
Thetota tangentia stiffness can be expressed as
8 ¥ a8./b(s-h) 9
K, :EEQ%phZA(‘E O keradf (s)ds, (56)
hg o P

or
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Ky = Hek, . (5.7)

Notes that the constants H,, and H, areidentica and equal to H.

Fig.5. Representation of asperity interference.

6. Resultsand discussion

Figure 7 illustrates the reationship between the norma and tangentiad contact areas versus
normalized separation. As expected both areas decrease by increasing separation and they are almost equal to
zero & h=4. The tangentia contact area is sightly larger than the norma. The norma and tangentia
contact forces are shown in Fig.8. It should be noted that the results are only due to contacts corresponding to
the positive slope. As shown in Fig.9a, when in static equilibrium, without the presence of an applied
tangentia force, the contact force due to the negative contact slope will be equal to that due to the positive
dope Therefore, the net tangentid force on asurfaceis zero and the net normd forceis twice that shownin Fig.9a
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Normal & Tangential Contact Areas

0.05 ¢

0.00 T T T
Normalized Separation, h

Fig.7. Normal and tangential projections of contact area vs. mean plane separation.
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Fig.8. Normal and tangential components of contact force.
(Pt )net = (Pt )a+ - (Pt )a' =U. (61)

In the presence of an applied tangentia force, the equilibrium condition dictates the net tangential
force to be the equilibrating force. Therefore
Pat = (Pt )a+ - (Pt )a' ' (62)

Thislatter caseis presented schematicall y in Fig.9b as apasitive bias in the macrascopic contact of the positive dope

F

an

Negative slope

Positive slope

No applied tangential force F5 =0 Ft(+) - Ft(') =0, Fn(+) - Fn() =Fan

Fig.9a Statigtical representation of surfaces in contact and in the absence of an applied tangentia force.
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Fig.9b. Statistical representation of surfaces in contact and in the presence of an applied tangentid force.
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Fig.10. Norma and tangential Hertzian contact stiffness as a function of normaized separation for a
1mm” 1mm sample (H =6.6" 1012).

Figure 10 depicts the normalized norma and tangential contact stiffness for a 1mm” 1mm sample

versus the normalized separation for two rough surfaces, based on the information in Tab.1. Both normal and
tangential contact stiffness decrease exponentially with separation, becoming negligible near h=4. In the
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range h=0 to h » 2.8, thetangentia contact stiffnessis greater than the normal contact stiffness. But, in the
range h» 2.8 to 4, the norma contact stiffnessis greater than the tangential contact stiffness. The amount of
interference has a greater effect on increasing tangential iffness than normal stiffness, especidly for
separations lessthan h = 2.8, where the two are nearly equal.

Table 1. Greenwood and Williamson parameters and material properties for the aluminum sample.

asperity areal density h (mm'z) 16025
Average asperity summit radius b (mm) 0.006297
Standered deviation of asperity height sum s (mm) 0.0081
Composite modulus E((N / mmz) 38700
Poisson’'s retio v 0.33
Shear modulus G(N / mm2) 14981

Figures 11 and 12 illustrate the contact normal and tangential stiffness versus normal and tangentia
contact force, respectivey. Both figures suggest that there exists near linear relationships between the
stiffness and contact force, for rdatively low to high contact forces. In thisrange

Ki=a, +a,R, =b +b,R,
(6.3)
Kn :C1+C2Pn :dl+d2Pt’

suggesting that similar near linear relationships hold between the normal and the tangential contact
forces

Ph=A+ AR,
(6.4)
b, a b
A = ot S A, = -2
QO & a
aswel as between the normal and tangential contact stiffness
K, =B, +B,K, (6.5)
where
B,=3%2 ..,  B,=2, (6.6)
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Fig.11. Norma and tangential Hertzian contact stiffness as a function of norma load for a 1mm” 1mm
sample (H =66 1012).
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Fig.12. Normal and tangential Hertzian contact stiffness as a function of tangential load for a 1mm”~ 1mm
sample (H =66 1012).

7. Conclusons

The contact theories presented in this work have two i mportant features: the interaction of two rough
surfaces instead of one rough surface with a perfectly flat one and allowing the possibility of oblique
contacts at the shoulders of the interacting surface asperities. The normal and tangential contact areas,
contact loads and contact stiffness of rough surfaces under static conditions without an externally applied
tangentia force were formulated considering el astic deformations.
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Nomenclature

A —contact area

A, —normal projection of the contact area
A, —expected total normal contact area
A, —loca normal contact areas

A —tangentia projection of the contact area

Kt — expected total normal tangentia area
Ao —loca tangentid contact areas
d — mean plane separation
E — Hertz elastic modulus
E¢ —equivdent (composite) el asticity modulus
h —separation based on surface heights
K, —norma contact stiffness
K, —tangential contact stiffness

P — contact force
. —normal projection of the contact force

1 50

P, —normal component contact force
P, —loca norma contact force
P, —tangential projection of the contact force

|5t — tangential component contact force
Po —locd tangentia contact force

r —radia distance
w —interference

z —height of asperity measured from the mean plane of asperities
b —radiusof curvature of the asperity peak

f(z) —density function
h —asperity areal density
s —standard deviation of surface heights
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