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High frequency vibration was observed in operation of a soot-blower. To clarify its mechanism, an analysis 
and experiment were carried aut on a system consisting of a flexible shaft rotating slowly, on which friction acts 
tangentially at an intermediate position. Analytical results show that the real part of an eigenvalue does not 
always decrease monotonically with the order of mode. Therefore, some higher modes may appear more 
prominently. Large vibration is observed in experiments where real part of an eigenvalue is large. 
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1. Introduction 
 
 A soot-blower shown in Fig.1 is used to blow off soot on tubes in a tubular heat exchanger, or a gas 
heater. High frequency vibrations and noises occurred in operation. A soot-blower has a long slender pipe 
called a lance, 8 m long and 76 mm in diameter, which is put slowly into a gas heater. Steam flows through 
the lance and is discharged at the free end to blow off soot. In operation the lance rotates about its axis at 12 
rpm. At an intermediate position the lance is supported by a support bearing, called a lance bearing (shown 
in Fig.1). Sato (2001) studied the mechanism of vibration. 
 

 
 

Fig.1. Schematic of a soot-blower. 
 

 From frequency analysis the observed frequencies are the eighth to the eleventh natural frequencies. 
Figure 2 shows the relation between the observed dominant frequencies and inserted length S from the 
support bearing to the free end of the lance. As the inserted length becomes longer, the dominant frequency 
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decreases and then increases abruptly. Since a lance bearing can rotate about the x-axis (Fig.1) and not about 
the z-axis, and the lance rotates about its axis parallel to the z-axis, the vibrations were considered to be 
induced by the tangential friction force between the lance and the lance bearing. 
 

 
 

Fig.2. Observed vibration frequencies. 
 

 So far the friction induced vibration has been studied by many researches; Adams (1996) 
investigated self-excited oscillations in sliding, and found that the mechanism responsible for the instability 
is a result of the interaction of certain complex modes of vibration with the friction force of the moving 
springs. Rise (1983) investigated the stability of steady frictional slipping.  
 
2. Analysis 
 
 To clarify the phenomena mentioned above we use an analytical model shown in Fig.3. Further we 
assume that gravitational force has little effect on the phenomena. Since a lance is very long and flexible, it is 
treated as a uniform circular shaft. The equations of motion are given as 
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where ju  and jw  are displacements in the y-and z-direction, respectively, ρ  shaft density, A cross section, 
and EI flexural rigidity (for example, Den Hartog (1985), Ray et al. (1975), Thomson (1981)). A shaft 
rotates at constant angular velocity ω , and is supported by a lance bearing, hereinafter called an intermediate 
bearing, whose stiffness is k. 1u  and 1w  are displacements for ax0 1 ≤≤ ; 2u  and 2w  for 0xb 2 ≤≤− . 
There is a relation between the coordinates 1x  and 2x  
 
  21 xLx =+ . (2.2) 
 
 A shaft is fixed at 0x =  and free at ( )0xLx 2 == . At the intermediate bearing ( ax =  or bx2 −= ), 
restoring and frictional forces act on the shaft. Coulomb friction is assumed between the shaft and the 
bearing. Therefore, the frictional force is given by a product of the restoring force and the friction coefficient 
µ . The restoring force is proportional to the radial displacement and the frictional force acts tangentially. 
Therefore, at ax =  (or bx2 −= ) 
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and the slope and moment of the shaft are continuous. 
 

 
 

Fig.3. Analytical model. 
 

 Assuming the solutions of Eq.(2.1) as 
 
  ( ) tŝi
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we get 
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where  1i −= ,          ( )AEIc2

a ρ= .                                                    (2.7) 
 
 Solutions of Eqs (2.6) are expressed as 
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where   Lxx = ,          2

a
42 cLŝ4 −=λ .                                               (2.9)  

  
 Applying the boundary conditions, we get a characteristic equation for λ  as 
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where   EIkL3=κ ,          La=α ,          Lb=β .                                         (2.11)  
 
 Equation (2.10) is solved numerically for λ . 
 

 
 

Fig.4. Restoring and frictional forces acting on a shaft at an intermediate bearing. 
 

 The dimensionless eigenvalue a
2 cLŝi=σ  is expressed as 

 
  2i λ±=σ . (2.12)  
 
 Generally, since σ  is a complex number, we set 
 
  IR iσ+σ=σ . (2.13) 
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 Figure 5 shows natural frequencies 1σ  when friction does not act on a shaft at the intermediate 
bearing, that is, 0=µ . In these cases 0R =σ . With κ , Iσ  increases gradually and then rapidly, and 
approaches asymptotically a natural frequency of a system pinned at the intermediate bearing. Figure 6 
shows the effect of α  on natural frequency Iσ  when 0=µ  and 510=κ . Iσ  fluctuates with α . 1σ  reaches 
a maximum when α  coincides with one of the nodes for each mode. 
 

 
 

Fig.5. Effect of intermediate bearing stiffness κ  or eigenvalue Iσ  for various values of ( )0=µα . 
 

 
 

Fig.6. Effect of α  on Iσ ( 0=µ , 510=κ ). 
 

 Figure 7 shows dimensionless eigenvalues IR iσ+σ=σ  of the first mode when 5.0=α  and 
2000=κ  for three values of friction coefficient µ . For 0>µ , eigenvalues σ  are complex numbers. 

Further, the frictional force destabilizes the system since there are always two eigenvalues with positive Rσ  
for each mode. The absolute value of real part of Rσ , that is Rσ , increases with µ . The system is more 
unstable for larger values of µ . The shaft whirls in the opposite direction to the shaft rotation since the 
unstable vibration is due to frictional force acting at an intermediate bearing. 
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Fig.7. Eigenvalues σ  ( 5.0=α , 2000=κ , • 0=µ , ■ 3.0=µ , ♦ 5.0=µ =0.5). 
 

 Figure 8 shows that Rσ  does not always decrease with the order of mode. This may imply the 
occurrence of vibrations of higher modes in the soot-blower described in the introduction. 
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    a) 40.=α                                             b) 60.=α                                          c) 80.=α  
 

Fig.8. ■: Iσ , □: Rσ ( 2000=κ ,  5.0=µ ). 
 
 Figure 9 shows the vibration of Rσ  on α  and κ . We only show lager values of Rσ  by circles 
whose diameter represent the magnitude of Rσ . We note that generelly Rσ  is lager for a higher mode. Rσ  
increases with κ . Lager values of Rσ  appear around higher values of Iσ  for each mode. A large value of 

Rσ  means that the corresponding mode is more unstable for that condition, i.e., α . In calculation, an eigen 
value does not depend on the shaft speed explicitly. 
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    (a) 2000=κ  (○: 00610R .=σ )        (b) 8000=κ  (○: 001860R .=σ ) (c)    10000=κ  (○: 001280R .=σ ) 
 
Fig.9. Effect of κ  to Iσ  and Rσ  ( ⋅ ⋅ ⋅ ⋅ ⋅ : Iσ ; ○: Rσ , whose diameter is proportional to magnitude of Rσ ). 

 
3. Experimental results and discussion 
 
 Figure 10 shows the experimental apparatus. The flexible shaft of 3 mm in diameter is held by four 
ball bearings and a intermediate bearing, which is located at a distance α−L  from the free and. The distance 
between fourth ball bearing and free end is 1720 mm. 
 

 
 

Fig.10. Experimental apparatus. 
 

 Figure 11a shows the observed frequencies Iσ  for intermediate bearing position α . The diameter of 
a circle plotted in the figure represents the amplitude of vibration. Dotted curves in the figure are calculated 
damped natural frequencies, with which observed frequencies agree well. We note that large vibrations occur 
in a range where natural frequency increases. Figure 11b shows the calculated natural frequency Iσ  versus 
α . A diameter of a circle in the figure represents the magnitude of Rσ . Rσ  is a measure of instability. 
Comparing Figs 11 we note that large vibration occurs for ranges of α  where Rσ  is large. 
 



S.Kornyeyev, Y.Sato and T.Nagamine 498 

        

0

50

100

150

200

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ Ι

Position        [-]α

000 15=κ

000 2=κ

000 10=κ

000 8=κ

 
 

                                (a) Experimental results                                    (b) Calculated results (○: 0000440R .=σ ) 

 
Fig.11. Observed vibrations, experimental and calculation results. 

 
 Figure 12 shows the relation between the applied force and the displacement of a rubber ring. We 
note that rubber stiffness increases with the displacement. Non-dimensional stiffness coefficient κ  are in the 
range from 20 000 to 60 000. 
 

 
 

Fig.12. Measured relation between the force and the displacement of a rubber ring. 
 

 We assume that for higher speeds the displacement of a rubber ring is larger, that is, the rubber 
stiffness is larger. Therefore, we use different values of κ  in calculation. 
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4. Summary 
 
 From experimental and analytical investigations, we obtain the following conclusions: 
1. Analytical results show that the real part of an eigenvalue does not always increase or decrease 

monotonically with the order of mode. Therefore, some modes appear more prominently. 
2. Since large vibration is observed in a condition where real part of an eigenvalue is large, the observed 

vibration is considered to be a self-excited vibration due to friction acting at an intermediate bearing. 
 
Nomenclature 
 
 a  – intermediate bearing position  
 ac  – see Eq.(2.7) 
 k  – bearing stiffness 
 L  – shaft length 
 ŝ  – see Eq.(2.5) 
 La=α  

a
2

IR cLŝii =σ+σ=σ  – dimensionless eigenvalue 
 Iσ  – dimensionless eigen frequency 

 ( )EIkL3=κ  – dimensionless stiffness 
 µ  – friction coefficient 
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