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The present paper describes a new approach to anaytical solution of two-dimensional stress problems of
orthotropic composite materials. In this approach, the elastic problem is formulated in terms of a single potential
function, defined in terms of the displacement components, which satisfies a single differential equation of
equilibrium. The new mathematical model, namely, the displacement potential formulation is especially suitable
for the solution of mixed-boundary-value elastic problems of orthotropic composite materials. This paper presents
the solution to stresses and displacements at different sections of short stiffened flat composite bars under axial
loading, where a number of bar aspect ratios are considered together with different materials of interest. The
solutions are obtained in the form of infinite series and the results are presented mainly in the form of graphs. The
results appear to be quite reasonable and accurate, and thus establish the soundness as well as reliability of the
present displacement potential approach.

Keywords: analytical solution, stress analysis, stiffened flat-bar, displacement potertial, orthotropic composite
material.

1. Introduction

The use of stiffeners in the construction of engineering structures is quite extensive. In the sol ution
of stiffened structures, the physical conditions of stiffeners are mathematically modeled usualy in terms of a
mixed mode of boundary conditions, that is, the known normal stress and tangential displacement. However,
the earlier mathematical models of easticity were very deficient in handling the practical stress problems, as
most of them are of the mixed-boundary-value type. The mixed-boundary-value problems are those in which
the boundary conditions are specified as a mixture of boundary restraints and boundary loading, where the
combination of the boundary conditions may also change from segment to segment of the boundary. Since
the exact analytical solution of mixed-boundary-value problems, specially with non-isotropic materials is
beyond the scope of the existing mathematical models of easticity, the use of a new mathematical
formulation is investigated here in an attempt to analyze the state of stresses as well as deformations in short
stiffened flat-bars of composite material under axial loading.

Stress and ysis has now become a classical subject inthefidd of dasticity. But somehow these stress
analysis problems are still suffering from a lot of shortcomings and thus are being constantly looked into
(Murty, 1984; Suzuki, 1986; Hardy and Pipelzadeh, 1991). Although dasticity problems were formulated
long before, exact solutions to practical problems are hardly available because of the inability of managing
the associated physicd conditions in a justifiable manner. Actualy management of boundary conditions is
one of the major obstac es to the rdiabl e sol ution to practical problems. The famous Saint Venant’s principle
is still applied and its merit is evaluated in solving problems of solid mechanics (Horgan and Knowds,
1983), in which full boundary effects could not be taken into account satisfactorily in the process of solution.
Even now, photoelastic studies are being carried out for classical problems like uniformly loaded beams on
two supports (Durdlli and Ranganayakamma, 1987; 1989) mainly because the boundary effects could not be
taken into account fully in their analytical method of solutions.
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Elasticity problems are usually formulated either in terms of deformation parameters or stress
parameters. Among the existing mathematical models of plane boundary-value stress problems, the stress
function approach (Timoshenko and Goodier, 1979) and the displacement formulation (Uddin, 1966) are
noticeable. The shortcoming of the stress function approach is that it accepts boundary conditions only in
terms of loadings. Boundary restraints specified in terms of the displacement components cannot be
satisfactorily imposed on the stress function. As most of the practical problems of easticity are of mixed
boundary conditions, the approach fails to provide any explicit understanding of the state of stresses at the
critical regions of supports and loadings. The displacement formulation, on the other hand, involves finding
two displacement functions simultaneously from the two second-order eliptic partial differential equations
of equilibrium, which is extremely difficult, and this problem becomes more serious when the boundary
conditions are mixed (Uddin, 1966). The difficulties involved in trying to solve practical stress problems
using the existing models are clearly pointed out by Durelli and Ranganayakamma (1989) and also by usin
our previous reports (Ahmed, 1993; Idris, 1993; Ahmed et al. 19963a; Idris et al., 1996).

As stated above, neither of the formulations is suitable for solving problems of mixed-boundary
conditions, and hence a new mathematical mode is used to solve the present problem of composite structure.
In this approach, the plane dastic problem is formulated in terms of a potential function of space variables,
defined in terms of the two displacement components. It should be mentioned that the present modeing
approach enables us to manage the mixed mode of the boundary conditions as well as their zones of
transition very efficiently. The present paper demonstrates the application of the mode for the anal ytical
solution of short flat-bars of orthotropic composite material, subjected to axia loading. The supporting edge
of the bar is assumed to berigidly fixed and the two opposing edges are stiffened. The sol utions are obtained
in the form of infinite series and the corresponding distributions of different stress and displacement
components are presented mainly in the form of graphs. Solutions of different parameters of interest are
obtained for a different aspect ratio of the bar and aso for different materials of interest. In an attempt to
demonstrate the effect of material orthotropy, solutions of different composite materials are compared with
that for a corresponding isotropic material. It is worth mentioning that the recent research and devel opments
in using the displacement potential approach have generated much renewed interest in the fidd of both
analytical and numerical solutions of practical stress problems (Idris et al., 1996; Ahmed et al., 1996a;
1996b; 1998; 1999; 2005; Akanda et al., 2000; 2002). The present paper is an attempt to extend the
capability of our displacement potential formulation to include the problems of orthotropic composite
materials.

2. Displacement potential formulation for orthotropic materials

The stress at a point in a two-dimensional body, developed due to its interaction with the external
forces and restraints on its boundaries, is represented by three dependent variables, namely, s, s W and

S, , a shown in Fig.1. With reference to a rectangular coordinate system, in the absence of body forces,

Xy H
these three variables are governed by the following two equilibrium and one compatibility equations
(Timoshenko and Goodier, 1979)

ﬂs_xx+_ﬂsxy =0, (2.19)
x Ty
Sy B g (2.1b)
fy 1
2 2 5
ol +ﬂ—2(sxx+syy):0. (2.1¢0)
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Fig.1. Stress components on a plane of an orthotropic composite material.

Instead of solving for three parameters simultaneously from the above three differential equations,
the practical approach is to transform the three equations into two, containing two displacement parameters,
u, and uy, as the unknowns. In that case, only the first two equilibrium conditions of Egs (2.1) are relevant

in obtaining the two displacement parameters, as the remaining Eq.(2.1c) establishes only ther continuity in
the case of stress formulation and thus isirrelevant here.

To express the equilibrium equations in terms of displacement components, we need to express the
three stress components in terms of displacement parameters. The corresponding three stress-displacement
relations for general orthotropic materias are obtained from Hooke' s law as follows (Jones, 1975)

Eiy  ©fuy + fluy b

STl gty DY (2.29)
S CRTIPRTPIRS iy

Ep €My Tlu, U
Sy T—2 g Y4y, Mg (2.20)
Yol-mp g Ty > g

éu, Tuyu
S, =Gpa—2+—21. (2.20)
UTRElY Txg

Substituting the above stress-displacement reations into Eqs (2.1a) and (2.1b), and using the
reciprocal relation, Ejopui, = Eqq 1y, We obtain the two equilibrium equations for two-dimensional

problems of orthotropic materials in terms of the two displacement components as follows (Timoshenko and
Goodier, 1979; Jones, 1975)

..ﬂzu 1]2u

& 2 092 & o
g El; iﬂ uzx + gtz BuBe +Gp T + Gy — =0, (2.39)
SEll - npEg g X SEu - M,y 2Ty y
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. g2 Hea2 2
& EnEy, 07Uy 2u,EnEy o 9T, LY =0. (2.30)
™
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Although the above two differentia equations are theoretically sufficient to solve the mixed-
boundary-value elasti ¢ problems of orthotropic composite materials, but, in relity, it is extremely difficult to
solve for two functions simultaneously satisfying the two second-order dliptic partial differential equations.
In order to overcome this difficulty, the existence of a new potentiad function of space variables is
investigated in an attempt to reduce the problem to the determination of a single variable from a single
differential equation of equilibrium. In the present formulation, a new potential function y(x, y) is thus
defined in terms of the two displacement components following the procedure of Ahmed et al. (1998) as
follows

2
u, = Tv , (2.48)
ix Ty
U. =- 1 é 2 ﬂ2W+G (E nﬁ E )ﬂz\llg (24b)
=-o—émn—— TOpl\En - MpEy — .
Y Z1 8 %2 Ty? 9]
where, Z1y =By Ep +Gyp (Ell - m%z Ezz)-

With the above definition of y(x, y), the first equilibrium Eq.(2.38) is automatically satisfied.
Therefore, y has to satisfy the second equilibrium EQ.(2.3b) only. Expressing Eq.(2.3b) in terms of the
potential function y , the condition that y has to satisfy becomes

7 7 7
E;1Gro ‘I]TZ +Eyp(Eyy - 2m,Gpy) 0 %lyz +Ex»Gpp ‘I]y_)‘: =0. (2.5)

Therefore, the problem is thus reduced to the evaluation of a single variable y (x, y) from asingle

fourth-order partial differential equation of equilibrium Eq.(2.5). The corresponding governing differential
equation for the isotropic eastic solids can readily be obtained when the dastic constants in the two
directions are assumed to be identical (E;; = E, = E;my, =My =m Gy, =G = E/[2(1+1)]), which is as
follows

4 4 4
1y +2 1y + 1y

=0. (2.6)

It is noted that the above bi-harmonic partial differential equation has been used extensively in our
displacement potential formulation for the solution of mixed-boundary-value dastic problems of isotropic
solids. The reliability as well as the suitability of the formulation has been verified repeatedly in our previous
research (Ahmed et al., 1996a; 1996b; 1998; 1999; Idris et al., 1996; Akanda et al., 2000; 2002).

3. Boundary conditionsin terms of the displacement potential

The physical conditions that exist on the boundaries of an eastic body are usually visualized in two
different ways, namely, (@) the boundary restraints and (b) boundary loading, that is, known displacements
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and stresses on the boundary, respectively. Both the displacements and stresses are usually defined by their
normal and tangential components.

The solution of the governing differentiad equation (5) requires specification of two independent
conditions at each boundary segment of the dastic body. Four components, taken two at atime, will create
six different boundary conditions. Out of these six boundary conditions, the possible four boundary
conditions that may occur in practice are: (d) norma displacement and tangentia displacement, (b) normal
displacement and tangential stress, (c) tangentia displacement and normal stress, and (d) normal stress and
tangential stress

Since our objective is to solve the problem in terms of the displacement potential, al the components
of interest are required to be expressed in terms of the function, y . With reference to a rectangular

coordinate system, the explicit expressions for the displacement components, u, and u,, in terms of the

function, y(x, y) are asfollows

2

uy (% )=1?X1\]'; , (3.1a)
_1é, Ty Ty

Uy(X, y)=- Z_llé leJrGlz(Eu - mszzz)ﬂy—zg- (3.1b)

Combining Egs (2.2) and (2.4), the explicit expressions of the three stress components in terms of the
potential function, y are obtained as follows

E11Gio é '"3\I/ '"3\|/l‘J
S X, y)= eE - LoEr —21, (3.29)
XX( ) le é 11 ﬂXZﬂy 1222 1.ly3 g
EyiEyp € 1y Tyl
s (% y) =22 &u;,Gy, - Epy)—5—- GG (3.2b)
» VAT Ty v g
E11Gio é '"3\I/ '"3\I/ u
S(Xy)=- eE - WpEp ——=0. (3.20)
xy( ) le é 11 TIX3 1222 ﬂxﬂyzg

The corresponding expressions for the displacement and stress boundary conditions for the isotropic
materials can be obtained when the respective conditions are substituted in the above expressions Egs (3.1)-
(3.2), which areasfollows

12y
uglx, y)=——, 3.3a
«(x,y) vy (3.39)
i y)=- LTV L. Tyl (3.30)
T 1emg gl e

2 0
S (X y)=( g o M2, (3.30)
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E ¢ Ty 1y U
,Y)=- 2+ [ri +—0, 3.3d
Swl) (1+m? g( ™y 1y 5 (39

E e’y TPy u
s (% y)=- -m .
o) L+m? e 2 g

(3.3¢)

From the above expressions of boundary conditions, it is revealed that thereis no technical difficulty
in satisfying all the modes of boundary conditions appropriatdy. Moreover, when compared to the approach
of solving the problem in terms of displacement components, it has the advantage that only one function is
required to be evaluated instead of solving for two variables simultaneously.

4. Solution of the stiffened composite bar problem

The problem of arectangular flat-bar of orthotropic composite material is consdered here, where the
two opposing edges of the bar are stiffened, while the boundary conditions at the other two edges are kept
unspecified at the moment. The flat bar is considered to be of unit thickness and its configuration with
respect to co-ordinate axesisillustrated in Fig.2.

Fiber orientation, 8=0"

i

h

1

=

-

NRANRRNN

S

Stiffened edges
Fig.2. A flat composite bar with two opposing edges stiffened, under uniform axial loading.

Inthis case, if the potential function, y is assumed to be

¥
y= é YpSinax (4.2)
m=1
where, Y,,, isafunction of y only, and a =mp/a, then Y,,, hasto satisfy the ordinary differential equation

Enve e Abafoyg oty 0. (4.2)
E G ST "
11 12 11 @
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The genera solution of the differential Eq.(4.2) can be given by

Y, =A™ +B,e™ +Ce™ +D, ™ (4.3)
where
€E,, | 4E w2
gEzz 1 Ei bg

Ky = - , and A, B,, C,, D, aearbitrary constants.

Now combining Egs (3.1)-(3.2) and (4.1), the expressions of stress and displacement components are
obtained as follows

¥

u(x y)= & aYgcosax, (4.4)
m=1
_ 14 [ 2,2 ] :
uy(x y)=- Z_ua Z,,Y$ - EZa?Y, |snax, (4.5)
m=1
E;.Gp, ¢ .
S (X y) =212 é {leEzzYﬁqt +a2EllY,$l;}S|nax], (4.6)
11 me1
E;.En & .
Syy(x’ y)=—2-2 é {Gle,Qt +0? (115G - Ell)Yrﬂ:}Sm“X]’ (4.7)
11 me1
¥
Sxy(X, y):ElZl—ilZé_ {(X‘HIZEZZY[# +(x3EllY,.ﬂ:}COS(xX] (48)
m=1

where, Z,, =Gy, (Ell - m}ZEZZ), and the (') indi cates differentiation with respect toy.
Substituting the different derivatives of Y,, in the expressions of the stress and displacement
components Eqgs (4.4)-(4.8), we get

¥ . N
U (x y)=Q EmAe ™ +m,Be"2” +mCe™” +m,D e’ %a cosa XE, (4.9)

m=1
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Hm?2z 2g e +(m2z 2g2 1B, _eM2Y +H U
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For the present problem, it is seen that the boundary conditions on the two stiffened edges
ux(x,y):sxx(x,y):o; a x=0 ad x=a,

are satisfied automatically. We are now in a position to apply any feasible boundary conditions on the left
and right lateral boundaries of the bar, i.e, a& y=0 and y=b, and thereby determine the values of the

constants A,,, B,,, C,,, and D,,. For the stiffened bar problem, where the left supporting boundary, y =0,
y =b isrigidly fixed, as shown in Fig.2, the associated boundary conditions are

ux(x, 0):uy(x, 0):0.

Now, the axial loading on the right lateral boundary of the bar, y=b can be expressed
mathematically as follows

¥
Sy (xb)=f(x)=E+Q Epsinax=P,
mel

(4.14)

sxy(x, b):
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which represents all possible normal 1oading on the boundary. In our present problem, E, =0, and

a

2. . 4P
E,, =—f (x)sinax dx=—. 4.15
m ac9() - (4.15)

Substituting the above conditions of the left and right lateral edges into the general expressions of
Egs (4.9), (4.10), (4.12), and (4.13), we get the following four simultaneous algebrai c equations in terms of
the four unknown coefficients

en, m M m UiALG 10
€ ul I 1Al
i P R RgtBel 100 (4.16)
éQl Q Qs Q4 H| Cn i iEmi
R R Rs Ry GtDmp 10 p

where

R =m’Zy - o’Ef u
1]
m.b

Q :{”\“2(”‘12612 - Ell)+m3612}e e

b ui= 1,23,4.

R = (a3Ell +om?my, Ezz)emi H
Em = EmZ11/EnEz a

Solution of the above a gebraic Eq.(4.16) yields the unknown constants in the evaluation, A,,, B,
C,, and D,,. Once the values of the unknowns are known, the explicit expressions of the different
parameters of interest are readily obtained; which are valid for the entire region of the stiffened composite
bar. The solutions of the problem are thus obtained as a function of the dastic properties of the composite
material, bar aspect ratio, space variables (x, y), and the loading parameter.

5. Resultsand discussions

The solution of the gtiffened composite bar problem as obtained by the present anal ytical method of
solution is presented in this section. In order to present the solutions graphically, the analytical solutions
obtained are evauated numericaly. In order to make the results non-dimensional, the displacements are
expressed as the raio of actual displacement to the actual dimension of the bar (a), and the stresses are
expressed as the ratio of the actual stress to the applied loading parameter, P. The vaue of the loading
parameter is taken to be 6000 psi and it is kept constant for the whole andysis. The different dastic
properties of different composite materias used in the present analysis arelisted in Tab.1.

Both the distribution of the normalized lateral and axial displacement components are observed to be
in good agreement with the physical modd of the problem, as seen in Figs 3a and b, respectivey. At the
mid-section of the bar (x/a: 0.5), the lateral displacement is adways zero and it is maximum &t the two
opposite stiffened edges, which makes the distribution antisymmetric about the mid-section (Fig.3a). For
sections, 0.9£ y/b £ 1.0, the lateral displacement is found to be negative for the upper half but positive for
the lower haf of the bar, and its magnitude decreases with decreasing the value of y. However, for section,
y/b<0.9, the displacement is positive for the upper and negative for the lower half, completely reverse to
that found for a small region just immediately | ft to the loaded boundary. Tensile loading in axial direction
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should have normally led to contraction in the x-direction due to the effect of Poisson’s ratio. This
expectation is found to be true over the range 0 < y/b <0.9. But, for the small region, y/b3 0.9, the bar is

observed to be expanding in the x-direction, which is in contrast to our general intuition and may be
attributed to the physical conditions of the stiffened boundary under tension. As appears from Fig.3b, the
axial displacements at the upper and lower stiffened boundaries are compl etdy zero, which reflects the effect
of stiffeners appropriately in the solution. Although the uniformly distributed axial loading is applied on the
right lateral edge, the stiffeners at the two opposing boundaries make the distribution parabolic having
maximum magnitude at the middie and zero at the two ends. The solutions for both the displacement
components are found to be zero at the fixed support, which is aso in conformity with the physical
characteristic of the problem.

Table 1. Properties of composites used to obtain numerical results.

. Composite
Material Property Glass-Epoxy Boron-Epoxy | Graphite-Epoxy
E. [10° psi 12.4 60.0 140.0
Fiber ¢ 10° ps)
g 0.22 0.20 0.20
6 i 0.50 0.50 0.50
Matrix Em(lo pSl)
My, 0.35 0.35 0.35
E11(106 psi) 8.6 41.0 94.0
E,, (106 psi) 3.2 3.5 3.6
Composite | E, (106 psi) 1.3 15 16
m, 0.26 0.27 0.25
mpy 0.047 0.023 0.010
= == 10
= —— (.90 -
T
= : e
= 0}

(.0 0.2 4 0.6 % {)
Normalized position (x

(a) Lateral displacement component.
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(b) Axia displacement component.

Fig.3. Digribution of normalized displacement components at different sections of the Boron-Epoxy
composite bar, b/a=1.

Figure 4 illustrates the distribution of different stress components with respect to x, for the Boron-
Epoxy composite bar, b/a=1. The overal distribution of the norma stress component, s ,,, as shown in
Fig.4a, reveals that the major portion of the composite bar is under compression, as the stress component is
negative for sections O£ y/b£0.7. However, for the remaining portion of the bar, that is, in the
neighborhood of the loaded boundary, 0.7 <y/b£ 1, the bar is found to be in tension, within which the
stress level changes significantly with the change of y vaues. The magnitude of the tensile stress is however
found to be much higher than that of compression. The boundary under loading, y/b =1, isidentified hereto
be the most critical section of the stiffened bar in terms of the stress component, where the magnitude of the

stress in the lateral direction is more than three times of the applied loading. The magnitude of the stressis
however found to decrease as we move towards the supporting zone.

The distribution of the axial stress component (s W / P) is dso found to be in good agreement with
the physical characteristic of the stiffened bar, that is, maximum at the right lateral end and minimum at the
left supporting edge (see Fig.4b). The stress at the stiffened edges is completely zero but it is maximum at
the mid-section, x/a=0.5, which make the distribution nearly parabolic with respect to x-axis. From the
distribution of shearing stress component, as shown in Fig.4c, it is seen that its value is zero a the axis of
symmetry, x/a=0.5 and maximum at the two opposing stiffened boundaries, which makes the distribution
antisymmetric about the axis of symmetry. The shearing stress a the right loaded boundary is found to be

completely zero and that at the left supporting end is insignificant, which verifies the solution to be in good
conformity with the physical model of the problem.



568 S.K.Deb Nath, SReaz Ahmed and A.M.Afsar

4 I i I T T
'I.._‘
= f —*— ¥/b=10 —-—n.??||
E“ —o— )90 — (.0
.Eaﬂ: ? L —— [} 92
2 0
g I
2 I
J -
0r
-l | |
(.0 0.2 0.4 0.6 0.8 [.0
Normalized position (x / a)
(a) Lateral stress component.
l.4 T T
s [ —*ylb=11 v 077
T 092 —a— (134
a il a. I
£ r s
L 08| I

Axial stress, ic
—_
A
T

0.0 F p —o—- {10
—— {bi]

L .
(.0 0.2 0.4 0.6 8 1.0

Normalized position (x / a)

(b) Axial stress component.
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(c) Shear stress component.

Fig.4. Didgribution of normalized stress components at different sections of Boron-Epoxy composite bar,
b/a=1.

5.1. Effect of bar aspect ratio on the solution

Figure 5 describes the effect of aspect ratio (b/a) of the stiffened composite bar on the
solutions of stress components. For the sake of convenience, solutions are presented only for the mid-
longitudinal section of the Boron-Epoxy composite bars. For al the bars considered, the mid-sections
are found to be under compression as far as the lateral stress is concerned (Fig.5a). However, the
magnitude of the stress is maximum for the smallest bar (b/a:0.5) and minimum for the largest one
(b/a: 3.0). As shown in Fig.5b, asimilar trend is observed for the axial stress component when the
corresponding solutions are analyzed in the perspective of the bar aspect ratio. That is, as the length
of the bar is increased, the mid-sections of the bars experience less tensile stress in the axial direction.
The antisymmetric variation of the shearing stress component at section, y/b=0.5, is presented as a
function of the bar aspect ratio in Fig.5¢c. The shearing stresses are also found to be dependent on the
aspect ratio of the composite bars, as the maximum and minimum stresses occurred around the
stiffened region of the smallest and largest bars, receptively. Both the lateral and axial displacements
are also found to decrease when the length of the bar is increased. Therefore, the state of al the
displacement and stress components are influenced substantially by the aspect ratio of the stiffened
bars, especidly, in terms of their magnitude.
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Fig.5. Distribution of normalized stress components at section, y/b =0.5, as afunction of the aspect ratio of
Boron-Epoxy composite bar.

5.2. Effect of material orthotropy on the solution

In an attempt to investigate the effect of material orthotropy, solutions of different displacement and
stress components are obtained for different composite materials of interest together with that of the
corresponding isotropic material. Following the procedure of Nan et al. (1993), the corresponding isotropic
material properties for a compaosite composition of 40% Boron and 60% Epoxy resin are obtained as:

n=0.269 and E=224" 10° psi . The supporting mathematical trestments required to solve the isotropic

stiffened bar problem are given in Appendix-A.

Figure 6 describes the comparison of displacements at the loaded boundary, y/b =1, of the stiffened
bars, b/a=1, made of different materials of interest. The general trends of the distributions show that the
maximum displacement occurs in Glass-Epoxy and minimum in the Graphite-Epoxy composite bar, when
subjected to the same axid tensile loading at the boundary y/b =1. The corresponding displacement level in
the Boron-Epoxy bar is found to be inbetween the above two composite materials. Moreover, the
displacement levd of the isotropic bar is observed to be quite higher than that of the corresponding Boron-
Epoxy orthotropic composite bar. Generdly, it is expected that the displacement components depend on the
stiffness of the composite material in the respective directions. As appears from Tab. 1, the eastic modulus is
maximum for Graphite-Epoxy and minimum for Glass-Epoxy composites for both the directions of the fiber
and matrix. Therefore, the present solution for both the displacement components conforms to the general
relation between the strain and stiffness of the composite materials. Further, a quantitative analysis shows
that the axia displacement for the isotropic bar increases amost double than that of the corresponding
Boron-Epoxy composite bar, while the corresponding increase in laterd displacement is about four times.
This may be attributed to the fact that the respective difference in the stiffness along the fiber direction is
much higher than that in the transverse direction.
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Fig.6. Digtribution of normalized displacement components along the right vertical end (y/ b= 1) of different
composite bars (b/a=1).

The solutions for the lateral and shear stresses for different composite bars are compared in Fig.7.
Figure 7a presents the solution for the stress component, s ,, along the loaded boundary of the stiffened bars

(b/ a:1) with different materials of interest. The comparative analysis shows that the maximum stress

occurred in the Graphite-Epoxy and minimum stress in the Glass-Epoxy bar. The maximum lateral stressin
the Graphite-Epoxy bar is found to be amost five times higher than that of the applied loading. In contrast
with that observed with deformation, the lateral stress along the loaded boundary of the Boron-Epoxy
composite bar is found to be higher than the corresponding stress in the isotropic bar. Finally, the distribution
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of the shearing stress along the two stiffened edges of different composite bars (b/ a= 1) are presented in

Fig.7b. It is interesting to note that, although both the normal stress components vanish aong the stiffened
boundaries, the shearing stress has got a sharp distribution, which has the maximum value at section very
close to the loaded boundary. As appears from the figure, the shearing stress is almost independent of the
material used, athough the stress level in the Boron-Epoxy composite bar is slightly higher than in the
corresponding isotropic bar. It can be noted here that an exact ana ytical solution of shearing stress along the
stiffened boundaries of the composite bar is beyond the capability of the existing mathematica modes of
dadidty. Thislimitaion has however been successfully removed by the use of the present displacement potentid gpproach.
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Fig.7. Distribution of normalized stress components along (a) the right vertica end and (b) the stiffened
edges of different composite bars (b/ a= 1) .



574 S.K.Deb Nath, SReaz Ahmed and A.M.Afsar

6. Conclusions

A new displacement potential approach has been used to analyze the state of stresses and
deformations in short flat composite bars with mixed boundary conditions. No appropriate analytical
approach was availablein the literature which could satisfactorily provide the explicit information about the
actual stresses at the critical regions of supports and loadings. Both the qualitative and quantitative results of
the present stiffened bar problem of orthotropic composite materials establish the soundness as well as
appropriateness of they -formulation. The distinguishing feature of the present single function approach over
the existing approaches is that, here, all modes of boundary conditions can be satisfied exactly, whether they
are specified in terms of loading or physical restraints or any combination of them; and thus the solutions
obtai ned are promising and satisfactory for the entire regions of interest.

Nomenclature

a, b —dimensions of the bar in x- and y-directions, respectively
E - elastic modulus of isotropic material
E; —elastic modulus of fiber material

En —elastic modulus of matrix material
E,;; —elastic modulus of the material in 1-direction
E,, —€lastic modulus of the material in 2-direction

G — shear modulus of isotropic material
Gy, —in-plane shear modulusin the 1-2 plane

P —uniformly distributed axial |oading on the bar
uy,uy —displacement componentsin the x- and y-direction

nm — Poisson’s ratio of isotropic material
m; — Poisson’sratio of fiber material
m, — Poisson’sratio of matrix material
my, —major Poisson’sratio
my; —minor Poisson’sratio

q —fiber orientation
— shearing stress component in the xy plane

—normal stress componentsin the x- and y-direction
y —displacement potential function
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Appendix — A: Solution of the isotropic stiffened bar

The mathematical background for the solution of isotropic stiffened flat bar using the present vy -
formulation is briefly summarized here for ready reference.

Combining Egs (4.1) and (2.6), the governing ordinary differential equation for the isotropic bar
problem is obtained, whichis

Y$ 202Y$+a’Y,, =0. (A1)

The general solution of EQ.(A1) is as follows

Yy = Apcoshay+ Bjaysinhay+C,sinhay + D,ay coshay. (A2)

The corresponding expressions for the displacement and stress components in terms of the four
arbitrary constants are obtained by combining Egs (3.3), (4.1), and (A2). Findly, substituting the four
boundary conditions, the values of the constants are evaluated following the same procedure used in the
solution of the composite bar.
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