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In this work, an analytical solution of the thermal stresses for afiber embedded ina matrix is presented based
on the idea of the boundary layer and under some simplifying assumptions. These assumptions include: the
properties of both materials, fiber and matrix, remain constant; both materials remain in the elastic range so no
plastic-deformation are considered; there exists a perfect bonding between the fiber and matrix so the condition of
no-opening holds over the entire interface; and the composite is subjected to an uniform change of temperature.
The analytical solution to the problem is found for the case when the length of the embedded bar (fiber) is much
greater than itsradius, and the Y oung’ s modulus of the matrix is much less than that of the fiber. The problemis
also solved numerically by means of finite element analysis using a commercia package. Both results are
compared and it is shown that both approaches coincide very close qualitatively and quartitatively athough
significant discrepancies may appear at specific points for specific cases.
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1. Introduction

One of the classical problems in unidirectional fibrous composites is due to the change in the
temperature in the composite and the mismatch in the coefficient of thermal expansion of the fiber and
matriX. Due to these two factors, thermal stresses devel op in the composite and they are almost impossible to
avoid. Temperatureis acritical issue in composites and substantially influences all processes of deformation
and fracture of composites as well as the physical and chemical properties of composites. The effect of
temperature in the behavior of composites is a topic of mgor research. A list of publications (Parker et al.,
1961; Kerrish, 1971; 1972; Taylor, 1983; 1993; Kordb et al., 2002; Greszczuk, 1965; Schapery, 1968;
Weakashima et al., 1974; Uemura and Yamaguchi, 1976; Ishikawa and K obayashi, 1977) can be found for the
study of the coefficient of thermal expansion in fibrous composites. However, these works are devoted to the
macro-mechanics behavior of composites and the relation between the thermal expansion coefficient and the
volume fraction of material composites.

Some papers can be found tha include the temperature effect in the micromechanics andysis of
fibrous composites. In Hseuh (1990) the effects of axial and radial residual stresses during pull-out as well as
the debonding problem due to thermal residual stresses are studied. The pull-out problem of a fiber using a
fracture mechanics approach which took into account residual stresses due to therma cool-down is
considered in Hutchinson and Jensen (1990). In Yeh and Krempl (1993) the vanishing fiber diameter with
thermoviscopl asticity theory is introduced to analyze the effects of temperature rate on the residual stresses
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when the unidirectional fibrous metal-matrix composite is cooled down during manufacturing. The
transverse crack propagation in the fibers of composites due to thermd stresses is studied in Xu and
Reifsnider (1994).

The shear lag theory (Cox, 1952), which is based entirdy on dastic interactions, has aso been used
by many researchers to study the therma stresses in fibrous composites. In Chawla (1987) the hygrothermal
stresses in fibrous compasites for the case of a centra fiber surrounded by a shell of matrix are studied. This
approach is similar to the one used in the shear-lag theory for low volume fractions and the stresses for the
matrix sleeve are found. In Nairn (1997) the shear-lag theory is used to study the stress transfer in
unidirectional composites. Here the most common shear-lag parameter is replaced by a new one derived
from the gpproximate easticity analysis. The prediction of the axia stress in the fiber and the total strain
energy improved with the introduction of the new shear-lag parameter. In Landis and McMeeking (1998)
and Beyerlein and Landis (1999) the foundations of the shear-lag theory was laid which was later used in
Landis (2001) to predict the thermal stresses for the case of a periodic arrangement of unidirectional fibers.
In Okabe and Takeda (2002) the dastoplastic shear-lag analysis is applied for a single-fiber composite. Here
the three dimensiona shear-lag analysis is used to predict the strength in unidirectional multi-fiber
composites taking into account the temperature difference during the cure. More recently in Papanicolaou et
al. (2002) and You (2003) the therma stresses taking into account a transition layer along the interface
between the fiber and matrix are studied.

Here in this work, the approach introduced in Cherepanov (1983) is used. This approach as well as
the shear-lag theory is based on the equations of equilibrium between the fiber and matrix, the theory of
easticity and some simplifying assumptions. However, the main difference with respect to the shear-lag
approach is the definition of a perturbed domain in the matrix close to the fiber interface, which determines
the boundary layer region. The size of this region was proposed in Cherepanov (1983) and later used in the
solution of other dassical problems of fibrous composites in Cherepanov and Esparragoza (1995) and
Esparragoza et al. (2003). This approach provides good results predicting the stresses and temperature
distribution when compared to numerica results using the Finite Element Analysis (FEA). This approach
works reasonably well for any stress level as wdl as for higher volume fractions in contrast to the shear lag
theory that works only for low stresses. The use of the intuitive concept of boundary layer and the definition
of the perturbed region close to the fiber makes this approach simple and unique. Thisis not only applicable
to mechanical 1oad (Cherepanov and Esparragoza, 1995) but also to thermal load as shown in this work.

2. Analytical approach

The problem under consideration consists of a round cylinder of finite length, the fiber, embedded in
a linearly dastic infinite space of another material, the matrix, (Fig.1). Cylindricad coordinates are used
where z isthe axis of symmetry along the fiber length and r istheradia distance. Infinite here means that
z>>| and r >>r,. The system is subjected to a constant change of temperature, DT .

The following designations will beused: r, and I, radius and length of the embedded fiber; E; and
E,,, the Young's modulus of the fiber and matrix, respectively, n; and n,, the Poisson’s ratio of the fiber
and matrix, respectively, and a; and a, the coefficient of therma expansion of the fiber and matrix,
respectively.

Thethermal stressesin afiber embedded in a matrix are studied based on the following assumptions:
1) the materia properties of both materials, fiber and matrix, remain constant; 2) both materials remain in the
elastic range so no plastic-deformation is considered; 3) a perfect bonding between the fiber and matrix

exists, therefore, a condition of no fiber-matrix separation holds over the entire interface; and 4) the
composite is subjected to an uniform change of temperature.
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Fig.1. A fiber embedded in an infinite space of another material (matrix).
The following dimensionl ess quantities are introduced
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Since it is assumed that perfect bonding exists between the fiber and the matrix, bonding
between fiber and matrix is assumed to hold over the entire interface including the lateral surface
and the ends.
Thecasewhenboth | and b aresmall is under study, i.e., when

|:r|_°<<1 and b:%<<1. 2.2)
f

It means that the radius of the fiber is much smaller than its length, and the eastic modulus of the
thin fiber is much greater than the elastic modulus of the matrix. Thisis the case of most practical relevancy
to composites.

Even though similar problems have been considered by other researchers, as mentioned before and
cited in the references, their theoretical approaches are different to the one suggested here. Generdly
speaking, they do not take full advantage of the small ratio of | and b. The use of the boundary layer

concept to the solution of this problem, taking into account the small ratios described above, provides a
means to obtain the necessary accuracy and conciseness for more difficult cases. Thisis to say, the size of
the matrix suggested by other authors and based on a periodic arrangement of fibers is replaced here by a
perturbed region on an infinite matrix. The analytical approach suggested hereis based on the i deas proposed
in Cherepanov (1983).
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The problem can be modd ed as a round cylinder of finite length embedded in alinearly eastic half-
space of another material as shown in Fig.2. Here, both fiber and matrix are analyzed in detail considering
the equilibrium and boundary conditions governing the problem.
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Fig.2. Thin fiber embedded in an infinite space of another material.

Fiber:

Inthecase | <<1 under study, the approximate analytical solution suggested in Cherepanov (1983)
is used. According to this approach the displacement and stress-strain field in the fiber is described by the
following three functions. s; =s; (z) is the mean normal stress, s,, in a cross-section of the fiber;

t; =t (z) is the mean shearing stress, t,,, onthe lateral surface of the fiber; and w; = wj; (z) is the mean

displacement of a cross-section of the fiber along the z-axis.
Using the differential control volume shown in Fig.3, the equilibrium equation states

ds ¢ (2)
224,

=0. (2.3)

From Hooke' s law, taking into account thermal strains, it follows that

e (Z) — de (Z) St (Z)

dz E;

+a DT (2.4)

where a; and E; are the coefficient of thermal expansion and Young’'s modulus of the fiber,
respectively.
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Fig.3. The cylindrical domain of a non zero perturbed field. Inside this domain the temperature in the matrix
isafunction of r and z; outside this domain, the temperature of the matrix is a function of z only.

Matrix:

Following the same approach, the perturbed field of stresses, strains and displacements in the matrix
exist only inside the perturbed region close to the fiber. Thisregion is determined by the cylindrical domain
of perturbation D, defined by radius r. (Cherepanov and Esparragoza, 1995) (Fig.3). Generdly, ., is a
function of z, but is taken constant in this study (Cherepanov and Esparragoza, 1995). This assumption is
satisfactorily confirmed by the numerical experiments.

In this problem both the fiber and the domain of perturbation in the matrix are assumed to be round
cylinders. Thusthe problem is axisymmetric with z asthe axis of symmetry and r istheradia distance fromtheaxis.

Inside this cylindrical domain Dp(r0 <r<rn,0<z< I), the fidds of stresses strain and
displacement are described by the following three functions: wj,, = wm(r, z), is the z component of the
displacement vector; s, = sm(r, z) and t, =t m(r, z) are the respective components s, and t,, of the
stress tensor. All other components of the stress tensor and displacement vector are considered small enough
to be neglected.

Inside the cylindrical perturbed domain the following equations are assumed to be valid
From equilibrium:

1 TS m(r.2) _
ﬂ—r[rtm(r, z)]+r 02 =0. (2.9)

From Hook€ s law

oWy, Wy 6
t(r,2)=G,0=G,c—1 +—1= 2.6
(r.2)=Gng S . (2.6)

where, v, :vm(r, z), is the displacement in the r-direction, G, is the matrix shear modulus and ¢ is the
engineering shear stress g, .
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Since the problem under study is for | <<1, the stress fidd around the fiber has a boundary layer
like the structure of Cherepanov (1983). In this case, the gradients across the r-direction are much greater
than the gradients along the z-direction. Therefore Egs (2.5) and (2.6) might be reduced to the form

il _
_‘nr [rt m(r, z)] =0 (2.7)
and

i (1, 2)

tm(r, z):Gm "

(2.8)

Also in the matrix but outside the perturbed region (r > r*) , the axia displacement of the matrix and
the axia strain might be assumed to be a function of z only. Therefore, Hooke's law, taking into account
thermal strains, can be written as follows

dw,
en =en(z)= d_zm =a,DT (2.9

where a ,, isthe coefficient of therma expansion of the matrix.

Boundary Conditions:
The conditions of equilibrium and bonding & theinterface are

at r=r,, tf(z):tm(r,z), (2.10)

at r=ry,  w(z)=wy(r, 2). (2.11)
The condition of displacement continuity at the boundary of the perturbed domainis

at r=r, wy(rz)=w,(z). (2.12)

Since the problem has a plane of symmetry at the z axis, it can be reduced to solving a half space
problem. This leads to the condition of no-displacement at the plane z=0 outside the perturbed domain to be

for r>r. a z=0, wy(z)=0. (2.13)

The system of Egs (2.3) to (2.13) totally describes the approach undertaken to find the approximate
analytical solution to the problem under consideration. A detailed analytical approach can be found in
(Esparragoza and Caudill (2003). Thefinal solution for the normal thermal stress along the fiber is given by

é ak 0 U
‘§°°Sh8ng ¥
s (2=Efa; - am)DTgW- 13 (2.14)
e u
e u

and the soluti on for the shearing stressis given by
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where
k=B (2.16)
12(1+n,)In™

rO
Here, the perturbed domain radius, r., can be determined by
oa
LR (217)
Mo lo 9

where a is afitting parameter suggested in Cherepanov (1983), where details about this parameter can be
found, and used in Cherepanov and Esparragoza and Esparragoza et al. (2003). Additionally, the numerical
experiments confirm well the analytical solutionif thevalue of a istaken equal to Cherepanov (1983)

a=0.738. (2.18)

3. Numerical analyss

The computational numerical analysis is performed by means of the Finite Element Analysis using
ANSYS version 5.7. Taking advantage of the axisymmetric condition of the problem, as well as its
symmetry dong z=0, the ANSYS modd is reduced from its full geometry, Fig.4, to a one quarter size of
its origina geometry as shown in Fig.5, without compromising the results.
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Fig.4. Geometric description of the fiber of length 2| embedded in an infinite matrix (21 >>r,).
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Fig.5. Geometry of the axisymmetric problem modeled in ANSY S.

The creation of areas A2, A3, and A4 as shown in Fig.5 was not necessary, since there were only two
materials; however they allowed creating a mapped mesh with full control of elements’ size and quantity
providing a better transition of € ements between the interface of the fiber and matrix, where the stresses are
of greater importance. With the completion of the geometry creation phase, now the material properties were
assigned to the areas. Area Al was attributed with the properties of material 1, the fiber, while areas A2, A3,
A4 and A5 got the properties of materia 2, the matrix. The different cases considered here were the result of
varying the material properties, ratio b= Em/Ef , and the radial dimensions of the fiber, ratio | =r,/I .

Eight nodded quadrilateral € ements were used that could serve for plane stress or strain, or for axisymmetric
conditions. The respective options were set to Axisymmetric, Noda stress and No extra output. The unit for
temperature was set to Celsius degrees for al the cases studied.

In thiswork, the only necessary load is the changein temperature, DT . This was achieved by setting
the uniform temperature, and reference temperature. The appropriate displacement constraints were applied
next. The problem was solved numericaly and the results are based on the average normal stresses at a
cross-section aong the fiber and the shear stresses at the interface.

The solution to any FEA problem could not be considered as an accurate representation of a physical
or engi neering problem without knowing that the mesh forming the elements of the model is small enough to
capture the effect of its constraints and boundary conditions. This is known as convergence. In this work,
checking convergence of the mesh in the mode was performed by running the ANSYS modd with a
predetermined number of e ements, monitoring the fina displacement at one point in the fiber and at one
point in the matrix, then running the same model again with a smaller mesh size, and comparing the
displacement of both points. This process was repeated until convergence, no significant change in the
displacement, was attained. Convergence was check for all the ANSY S models solved in this work to ensure
accurate results.

4. Comparison of analytical and numerical results

The comparison is based on the norma and shearing stress distribution along the fiber. The
analytical results come directly from Egs (2.14) and (2.15). The numerical results were obtained using the
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finite ement analysis results from ANSYS. Different cases were considered as a result of varying the
material properties, ratio b = Em/Ef , and the radial dimensions of the fiber, ratio | = ro/l . Figures6to 11

compared the numerical and anal ytical results of the normalized residual axial and interfacial shear stresses.
It is observed that the numerical results showed the same qualitative behavior of the analytica

solution, serving as a validation tool against lack of experimental results. There was a large discrepancy in

the results as the ratio z/I approached one. This is attributed to two reasons. The first one is that the

analytical solution considered the axia stress at z/I =1 smal enough to be assumed zero; however, in the
numerical analysisis observed that the axia stressat z/I =1 isvery small but not necessary zero. Therefore,

there exists a small discrepancy in the stresses between the numerical and analytical solution mainly when
z/| approaches one. This fact is especially seen in the case of short fiber aspect ratio. The second reason for

the discrepancy in the results at the end is due to a singularity. Singularities occur at locations where adrastic
transition in geometry or a difference in the properties of the materialsis present. The best way to deal with
this is by increasing the number of elements particularly in the affected region or by using singular
elements in the finite element model. The latter approach has been used in fracture mechanics to
determine the stress intensity factor at the crack tip. The approach used in this work was to increase the
mesh size in the fiber and in the matrix, especialy at the area close to the interface, so the discretization was
maximized not only at thetip but along the whole interface. Then the results at the tip were simply discarded,
knowing that the erratic behavior was already expected. This erratic behavior was observed around the last
three percent of the fiber's length, closeto z/I =1, and was particularly noticed in the shear stress numerical

results rather than in the axial stress. This was also expected since the shear stress was obtained
from a single nodal value at the interface, while the axial stress was the result of the average across
the fiber radius.

The percentage of error decreased as b decreased typicaly for longer fibers. This was especialy

observed for the interfacial shear stress error. As b decreased from 0.01 and 0.001 the maximum error

decreased from fifty to the low twenty percent for the case when | =0.005 (see Figs 6 to 9). This agreed
with the initial assumption of using € much less than unity. Figures 10, and 11, are for the case when
| =0.01 and b =0.001.

One of the difficulties in establishing the equations for the behavior of the residual stresses
due to the difference in the coefficient of thermal expansion in a fiber embedded in an infinite matrix
is that the radius of the perturbed region is not actually known. For the case when multiple fibers are
present, the ratio of the perturbed radius to the fiber's radius could be related to the fiber volume
fraction. Still the optimum value for the distance between fibers is unknown. Equations (2.17) and (2.18)
have proven satisfactory in approximating the perturbed region in this work and in similar type of
problems (Cherepanov and Esparragoza and Esparragoza et al., 2003). They provided a good qualitative
solution to the residual embedded in a soft material. This stresses when compared to the numerical
solution from ANSY S. This applied to all conditions; short or long fiber embedded in a soft matrix, and
short or long fiber embedded in a stiff matrix. However, the best agreement between the analytical and
numerical solutions occurred for the case modeling a long fiber validated the origina assumption of
taking | <<1 and b <<1. The error for the problem when | =0.005 and b =0.001 started at around two

percent in the axial stress at z/I =0, stayed within five percent through z/I =0.6, then increased to ten
percent at z/l =0.75, twenty percent at z/l =0.85 and continued increasing to the end of the fiber. The
shear stress started around twenty percent at z/I =0, continued decreasing to less than one percent at

z/l =0.9, then increased again to the end. The reason for the discrepancies in the stresses as the end of the
fiber is reached was discussed earlier.
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Fig.6. Comparison of normalized axial stress for | =0.005, b=0.01, a; —am:—100e'6]/°C,
DT =600°C.
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Fig.7. Comparison of normalized shear stress for | =0.005, b=001, a;-a;=- 100e'6]/°C,
DT =600°C.
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Fig.8. Comparison of normalized axial stress for | =0.005, b=0.001, a;-a,=- 100e'6]/°C,
DT =600°C.
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Fig.9. Comparison of normalized shear stress for | =0.005, b=0.001, a;-a,=- 100e'6]/°C,
DT =600°C.
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Fig.10. Comparison of normalized axial stress for | =0.01, b=0.001, a;-a,=- 100e'6]/°C,
DT =600°C.
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Fig.11. Comparison of normalized shear stress for | =0.01, b=0.001, a;-a,=- 100e'6]/°C,
DT =600°C.
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5. Conclusions

The numerical analysis confirmed the approximate anayticad solution to the thermal stress along a
fiber embedded in a matrix as presented in this paper. It is observed that the accuracy of coincidence of both

results depends on the dimensionless ratios | =r,/I and b=E,/E; . However, both approaches coincide

guaitatively and quantitatively, even though substantia discrepancies might appear at particular points
mainly due to the strong singularity present on this type of problem. Additionally, some of the discrepancies
are due to the assumptions in the analyticad mode and the approximations involved in the numerical
approach. It is recommended that experimental results be obtained to establish the real error and the limits of
applicability of the approaches studied.

Thiswork provides a simple method to determine the thermal stresses along the fiber embedded in a
matrix based on some simplifying assumptions, setting the foundation for a better understanding of the
interaction between the fiber and matrix in the case of the classicad problem of therma stresses.
Furthermore, it also provides a new means to solve other related problems such as the residual thermal stress
problem, the effect of temperature expansion during the debonding process, and the most complex problem
of mechanical and thermal stressesin afiber reinforced composite.

It is also of interest to determine the actual perturbed region in the matrix during the stress transfer.
Users of the shear-lag theory have modified the shear lag parameter in order to mode some specific
problems. Here, the perturbed domain proposed in Cherepanov (1983) has been used obtaining very good
results. However, more analysis of this perturbed region is necessary since it is evident that its size is not
only a function of z but also a function of the materials properties and the dimensions of the embedded
fiber. This idea lends itsdlf to study the interaction between multiple fibers in a matrix. Once the perturbed
domain is clearly defined and understood, the next step would be to study the interaction between two or
more fibers, finding an expression for the optimal distance of the perturbed region that produces the best
representati on of the stress transfer between them. These topics will be discussed in future work.

Nomenclature

D, —cylindrical domain of perturbation in the matrix
E: —Young'smodulus of the fiber

En —Young s modulus of the matrix

G,, — matrix shear modulus

k —dimensionless parameter
I —length of the embedded fiber
r —radial distance
r, —radiusof thefiber
r. —radiusof the perturbed region in the matrix
w; —mean displacement of a cross-section of the fiber aong the z-axis.
w, —zcomponent of the displacement vector in the matrix
z —axisof symmetry along the fiber length
a —fitting parameter
a; —coefficient of thermal expansion of the fiber
a, - coefficient of thermal expansion of the matrix
b —dimensionless parameter relating the Young's modulus of the finer and matrix
¢ —engineering shear stress in the matrix
DT - change of temperature
| —dimensionless parameter relating the radius and the embedded length of the fiber
ns —Poisson sratio of the fiber
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nn, — Poisson’sratio of the matrix

v, —displacement inther-direction inthe matrix

st —mean normd stressin across-section of the fiber

sm —hormal stress component of the stress tensor in the matrix
t+ —mean shearing stress on the latera surface of the fiber

t, — shearing stress component of the stress tensor in the matrix
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