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In this work, an analytical solution of the thermal stresses for a fiber embedded in a matrix is presented based 

on the idea of the boundary layer and under some simplifying assumptions. These assumptions include: the 
properties of both materials, fiber and matrix, remain constant; both materials remain in the elastic range so no 
plastic-deformation are considered; there exists a perfect bonding between the fiber and matrix so the condition of 
no-opening holds over the entire interface; and the composite is subjected to an uniform change of temperature. 
The analytical solution to the problem is found for the case when the length of the embedded bar (fiber) is much 
greater than its radius, and the Young’s modulus of the matrix is much less than that of the fiber. The problem is 
also solved numerically by means of finite element analysis using a commercial package. Both results are 
compared and it is shown that both approaches coincide very close qualitatively and quantitatively although 
significant discrepancies may appear at specific points for specific cases. 
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1. Introduction 
 
 One of the classical problems in unidirectional fibrous composites is due to the change in the 
temperature in the composite and the mismatch in the coefficient of thermal expansion of the fiber and 
matrix. Due to these two factors, thermal stresses develop in the composite and they are almost impossible to 
avoid. Temperature is a critical issue in composites and substantially influences all processes of deformation 
and fracture of composites as well as the physical and chemical properties of composites. The effect of 
temperature in the behavior of composites is a topic of major research. A list of publications (Parker et al., 
1961; Kerrish, 1971; 1972; Taylor, 1983; 1993; Koráb et al., 2002; Greszczuk, 1965; Schapery, 1968; 
Wakashima et al., 1974; Uemura and Yamaguchi, 1976; Ishikawa and Kobayashi, 1977) can be found for the 
study of the coefficient of thermal expansion in fibrous composites. However, these works are devoted to the 
macro-mechanics behavior of composites and the relation between the thermal expansion coefficient and the 
volume fraction of material composites.  
 Some papers can be found that include the temperature effect in the micromechanics analysis of 
fibrous composites. In Hseuh (1990) the effects of axial and radial residual stresses during pull-out as well as 
the debonding problem due to thermal residual stresses are studied. The pull-out problem of a fiber using a 
fracture mechanics approach which took into account residual stresses due to thermal cool-down is 
considered in Hutchinson and Jensen (1990). In Yeh and Krempl (1993) the vanishing fiber diameter with 
thermoviscoplasticity theory is introduced to analyze the effects of temperature rate on the residual stresses 
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when the unidirectional fibrous metal-matrix composite is cooled down during manufacturing. The 
transverse crack propagation in the fibers of composites due to thermal stresses is studied in Xu and 
Reifsnider (1994).  
 The shear lag theory (Cox, 1952), which is based entirely on elastic interactions, has also been used 
by many researchers to study the thermal stresses in fibrous composites. In Chawla (1987) the hygrothermal 
stresses in fibrous composites for the case of a central fiber surrounded by a shell of matrix are studied. This 
approach is similar to the one used in the shear-lag theory for low volume fractions and the stresses for the 
matrix sleeve are found. In Nairn (1997) the shear-lag theory is used to study the stress transfer in 
unidirectional composites. Here the most common shear-lag parameter is replaced by a new one derived 
from the approximate elasticity analysis. The prediction of the axial stress in the fiber and the total strain 
energy improved with the introduction of the new shear-lag parameter. In Landis and McMeeking (1998) 
and Beyerlein and Landis (1999) the foundations of the shear-lag theory was laid which was later used in 
Landis (2001) to predict the thermal stresses for the case of a periodic arrangement of unidirectional fibers. 
In Okabe and Takeda (2002) the elastoplastic shear-lag analysis is applied for a single-fiber composite. Here 
the three dimensional shear-lag analysis is used to predict the strength in unidirectional multi-fiber 
composites taking into account the temperature difference during the cure. More recently in Papanicolaou et 
al. (2002) and You (2003) the thermal stresses taking into account a transition layer along the interface 
between the fiber and matrix are studied.  
 Here in this work, the approach introduced in Cherepanov (1983) is used. This approach as well as 
the shear-lag theory is based on the equations of equilibrium between the fiber and matrix, the theory of 
elasticity and some simplifying assumptions. However, the main difference with respect to the shear-lag 
approach is the definition of a perturbed domain in the matrix close to the fiber interface, which determines 
the boundary layer region. The size of this region was proposed in Cherepanov (1983) and later used in the 
solution of other classical problems of fibrous composites in Cherepanov and Esparragoza (1995) and 
Esparragoza et al. (2003). This approach provides good results predicting the stresses and temperature 
distribution when compared to numerical results using the Finite Element Analysis (FEA). This approach 
works reasonably well for any stress level as well as for higher volume fractions in contrast to the shear lag 
theory that works only for low stresses. The use of the intuitive concept of boundary layer and the definition 
of the perturbed region close to the fiber makes this approach simple and unique. This is not only applicable 
to mechanical load (Cherepanov and Esparragoza, 1995) but also to thermal load as shown in this work.  
 
2. Analytical approach 
 
 The problem under consideration consists of a round cylinder of finite length, the fiber, embedded in 
a linearly elastic infinite space of another material, the matrix, (Fig.1). Cylindrical coordinates are used 
where z  is the axis of symmetry along the fiber length and r  is the radial distance. Infinite here means that 

lz >>  and orr >> . The system is subjected to a constant change of temperature, T∆ .  
 The following designations will be used: or  and l , radius and length of the embedded fiber; fE  and 

mE , the Young’s modulus of the fiber and matrix, respectively; fν  and mν  the Poisson’s ratio of the fiber 

and matrix, respectively, and fα  and mα  the coefficient of thermal expansion of the fiber and matrix, 
respectively. 
 The thermal stresses in a fiber embedded in a matrix are studied based on the following assumptions: 
1) the material properties of both materials, fiber and matrix, remain constant; 2) both materials remain in the 
elastic range so no plastic-deformation is considered; 3) a perfect bonding between the fiber and matrix 
exists, therefore, a condition of no fiber-matrix separation holds over the entire interface; and 4) the 
composite is subjected to an uniform change of temperature. 
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Fig.1. A fiber embedded in an infinite space of another material (matrix). 
   
 The following dimensionless quantities are introduced 
 

  
l
ro=λ      and     

f

m
E
E

=β .                 (2.1) 

 
 Since it is assumed that perfect bonding exists between the fiber and the matrix, bonding 
between fiber and matrix is assumed to hold over the entire interface including the lateral surface 
and the ends.  
 The case when both λ  and β  are small is under study, i.e., when 
 

  1
l
ro <<=λ      and     1

E
E

f

m <<=β .                 (2.2) 

 
 It means that the radius of the fiber is much smaller than its length, and the elastic modulus of the 
thin fiber is much greater than the elastic modulus of the matrix. This is the case of most practical relevancy 
to composites. 
 Even though similar problems have been considered by other researchers, as mentioned before and 
cited in the references, their theoretical approaches are different to the one suggested here. Generally 
speaking, they do not take full advantage of the small ratio of λ  and β . The use of the boundary layer 
concept to the solution of this problem, taking into account the small ratios described above, provides a 
means to obtain the necessary accuracy and conciseness for more difficult cases. This is to say, the size of 
the matrix suggested by other authors and based on a periodic arrangement of fibers is replaced here by a 
perturbed region on an infinite matrix. The analytical approach suggested here is based on the ideas proposed 
in Cherepanov (1983). 
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 The problem can be modeled as a round cylinder of finite length embedded in a linearly elastic half-
space of another material as shown in Fig.2. Here, both fiber and matrix are analyzed in detail considering 
the equilibrium and boundary conditions governing the problem. 
 

 
 

Fig.2. Thin fiber embedded in an infinite space of another material. 
 
Fiber: 
 In the case 1<<λ  under study, the approximate analytical solution suggested in Cherepanov (1983) 
is used. According to this approach the displacement and stress-strain field in the fiber is described by the 
following three functions: ( )zff σ=σ  is the mean normal stress, zσ , in a cross-section of the fiber; 

( )zff τ=τ  is the mean shearing stress, rzτ , on the lateral surface of the fiber; and ( )zww ff =  is the mean 
displacement of a cross-section of the fiber along the z-axis. 
 Using the differential control volume shown in Fig.3, the equilibrium equation states 
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 From Hooke’s law, taking into account thermal strains, it follows that 
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where fα  and fE  are the coefficient of thermal expansion and Young’s modulus of the fiber, 
respectively. 
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Fig.3. The cylindrical domain of a non zero perturbed field. Inside this domain the temperature in the matrix 
is a function of r and z; outside this domain, the temperature of the matrix is a function of z only. 

 
Matrix: 
 Following the same approach, the perturbed field of stresses, strains and displacements in the matrix 
exist only inside the perturbed region close to the fiber. This region is determined by the cylindrical domain 
of perturbation pD  defined by radius *r  (Cherepanov and Esparragoza, 1995) (Fig.3). Generally, *r , is a 
function of z, but is taken constant in this study (Cherepanov and Esparragoza, 1995). This assumption is 
satisfactorily confirmed by the numerical experiments. 
 In this problem both the fiber and the domain of perturbation in the matrix are assumed to be round 
cylinders. Thus the problem is axisymmetric with z as the axis of symmetry and r is the radial distance from the axis. 
 Inside this cylindrical domain ( )lz0rrrD op <<<<   ,* , the fields of stresses strain and 
displacement are described by the following three functions: ( )zrww mm ,= , is the z component of the 
displacement vector; ( )zrmm ,σ=σ  and ( )zrmm ,τ=τ  are the respective components zσ  and rzτ  of the 
stress tensor. All other components of the stress tensor and displacement vector are considered small enough 
to be neglected. 
 Inside the cylindrical perturbed domain the following equations are assumed to be valid 
From equilibrium: 
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From Hooke’s law 
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where, ( )zrvv mm ,= , is the displacement in the r-direction, mG  is the matrix shear modulus and γ  is the 
engineering shear stress rzγ . 
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 Since the problem under study is for 1<<λ , the stress field around the fiber has a boundary layer 
like the structure of Cherepanov (1983). In this case, the gradients across the r-direction are much greater 
than the gradients along the z-direction. Therefore, Eqs (2.5) and (2.6) might be reduced to the form 
 

  ( )[ ] 0zrr
r m =τ

∂
∂ ,                (2.7) 

 
and 
 

  ( ) ( )
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, .               (2.8) 

 
 Also in the matrix but outside the perturbed region ( )*rr > , the axial displacement of the matrix and 
the axial strain might be assumed to be a function of z only. Therefore, Hooke’s law, taking into account 
thermal strains, can be written as follows 
 

  ( ) T
dz

dw
z m

m
mm ∆α==ε=ε                (2.9) 

 
where mα  is the coefficient of thermal expansion of the matrix. 
 
Boundary Conditions: 
 The conditions of equilibrium and bonding at the interface are 
 
at  orr = ,     ( ) ( )zrz mf ,τ=τ ,               (2.10) 
 
at  orr = ,     ( ) ( )zrwzw mf ,= .               (2.11) 
 
 The condition of displacement continuity at the boundary of the perturbed domain is 
 
at  *rr = ,     ( ) ( )zwzrw mm =, .               (2.12) 
 
 Since the problem has a plane of symmetry at the z axis, it can be reduced to solving a half space 
problem. This leads to the condition of no-displacement at the plane 0z =  outside the perturbed domain to be 
 
for       *rr >      at     0z = ,     ( ) 0zwm = .               (2.13) 
 
 The system of Eqs (2.3) to (2.13) totally describes the approach undertaken to find the approximate 
analytical solution to the problem under consideration. A detailed analytical approach can be found in 
(Esparragoza and Caudill (2003). The final solution for the normal thermal stress along the fiber is given by 
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and the solution for the shearing stress is given by 
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 Here, the perturbed domain radius, *r , can be determined by 
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where α  is a fitting parameter suggested in Cherepanov (1983), where details about this parameter can be 
found, and used in Cherepanov and Esparragoza and Esparragoza et al. (2003). Additionally, the numerical 
experiments confirm well the analytical solution if the value of α  is taken equal to Cherepanov (1983) 
 
  7380.=α .                 (2.18) 
 
3. Numerical analysis 
 
 The computational numerical analysis is performed by means of the Finite Element Analysis using 
ANSYS version 5.7. Taking advantage of the axisymmetric condition of the problem, as well as its 
symmetry along 0z = , the ANSYS model is reduced from its full geometry, Fig.4, to a one quarter size of 
its original geometry as shown in Fig.5, without compromising the results.  
 

 
 

Fig.4. Geometric description of the fiber of length 2 l  embedded in an infinite matrix (2 l >> or ). 
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Fig.5. Geometry of the axisymmetric problem modeled in ANSYS. 
 

 The creation of areas A2, A3, and A4 as shown in Fig.5 was not necessary, since there were only two 
materials; however they allowed creating a mapped mesh with full control of elements’ size and quantity 
providing a better transition of elements between the interface of the fiber and matrix, where the stresses are 
of greater importance. With the completion of the geometry creation phase, now the material properties were 
assigned to the areas. Area A1 was attributed with the properties of material 1, the fiber, while areas A2, A3, 
A4 and A5 got the properties of material 2, the matrix. The different cases considered here were the result of 
varying the material properties, ratio fm EE=β , and the radial dimensions of the fiber, ratio lro=λ . 
Eight nodded quadrilateral elements were used that could serve for plane stress or strain, or for axisymmetric 
conditions. The respective options were set to Axisymmetric, Nodal stress and No extra output. The unit for 
temperature was set to Celsius degrees for all the cases studied.  
 In this work, the only necessary load is the change in temperature, T∆ . This was achieved by setting 
the uniform temperature, and reference temperature. The appropriate displacement constraints were applied 
next. The problem was solved numerically and the results are based on the average normal stresses at a 
cross-section along the fiber and the shear stresses at the interface.   
 The solution to any FEA problem could not be considered as an accurate representation of a physical 
or engineering problem without knowing that the mesh forming the elements of the model is small enough to 
capture the effect of its constraints and boundary conditions. This is known as convergence. In this work, 
checking convergence of the mesh in the model was performed by running the ANSYS model with a 
predetermined number of elements, monitoring the final displacement at one point in the fiber and at one 
point in the matrix, then running the same model again with a smaller mesh size, and comparing the 
displacement of both points. This process was repeated until convergence, no significant change in the 
displacement, was attained. Convergence was check for all the ANSYS models solved in this work to ensure 
accurate results.  
 
4. Comparison of analytical and numerical results 
 
 The comparison is based on the normal and shearing stress distribution along the fiber. The 
analytical results come directly from Eqs (2.14) and (2.15). The numerical results were obtained using the 
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finite element analysis results from ANSYS. Different cases were considered as a result of varying the 
material properties, ratio fm EE=β , and the radial dimensions of the fiber, ratio lro=λ . Figures 6 to 11 
compared the numerical and analytical results of the normalized residual axial and interfacial shear stresses.  
 It is observed that the numerical results showed the same qualitative behavior of the analytical 
solution, serving as a validation tool against lack of experimental results.  There was a large discrepancy in 
the results as the ratio lz  approached one. This is attributed to two reasons. The first one is that the 
analytical solution considered the axial stress at 1lz =  small enough to be assumed zero; however, in the 
numerical analysis is observed that the axial stress at 1lz =  is very small but not necessary zero. Therefore, 
there exists a small discrepancy in the stresses between the numerical and analytical solution mainly when 

lz  approaches one. This fact is especially seen in the case of short fiber aspect ratio. The second reason for 
the discrepancy in the results at the end is due to a singularity. Singularities occur at locations where a drastic 
transition in geometry or a difference in the properties of the materials is present. The best way to deal with 
this is by increasing the number of elements particularly in the affected region or by using singular 
elements in the finite element model. The latter approach has been used in fracture mechanics to 
determine the stress intensity factor at the crack tip. The approach used in this work was to increase the 
mesh size in the fiber and in the matrix, especially at the area close to the interface, so the discretization was 
maximized not only at the tip but along the whole interface. Then the results at the tip were simply discarded, 
knowing that the erratic behavior was already expected. This erratic behavior was observed around the last 
three percent of the fiber’s length, close to 1lz = , and was particularly noticed in the shear stress numerical 
results rather than in the axial stress. This was also expected since the shear stress was obtained 
from a single nodal value at the interface, while the axial stress was the result of the average across 
the fiber radius.    
 The percentage of error decreased as β  decreased typically for longer fibers. This was especially 
observed for the interfacial shear stress error. As β  decreased from 0.01 and 0.001 the maximum error 
decreased from fifty to the low twenty percent for the case when 0050.=λ  (see Figs 6 to 9). This agreed 
with the initial assumption of using ε  much less than unity. Figures 10, and 11, are for the case when 

010.=λ  and 0010.=β .  
 One of the difficulties in establishing the equations for the behavior of the residual stresses 
due to the difference in the coefficient of thermal expansion in a fiber embedded in an infinite matrix 
is that the radius of the perturbed region is not actually known. For the case when multiple fibers are 
present, the ratio of the perturbed radius to the fiber’s radius could be related to the fiber volume 
fraction. Still the optimum value for the distance between fibers is unknown. Equations (2.17) and (2.18) 
have proven satisfactory in approximating the perturbed region in this work and in similar type of 
problems (Cherepanov and Esparragoza and Esparragoza et al., 2003). They provided a good qualitative 
solution to the residual embedded in a soft material. This stresses when compared to the numerical 
solution from ANSYS. This applied to all conditions; short or long fiber embedded in a soft matrix, and 
short or long fiber embedded in a stiff matrix. However, the best agreement between the analytical and 
numerical solutions occurred for the case modeling a long fiber validated the original assumption of 
taking 1<<λ  and 1<<β . The error for the problem when 0050.=λ  and 0010.=β  started at around two 
percent in the axial stress at 0lz = , stayed within five percent through 60lz .= , then increased to ten 
percent at 750lz .= , twenty percent at 850lz .=  and continued increasing to the end of the fiber. The 
shear stress started around twenty percent at 0lz = , continued decreasing to less than one percent at 

90lz .= , then increased again to the end. The reason for the discrepancies in the stresses as the end of the 
fiber is reached was discussed earlier. 
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Fig.6. Comparison of normalized axial stress for 0050.=λ , 010.=β , C1e100 6
mf

o−−=α−α , 

C600T o=∆ . 
 

 
 
Fig.7. Comparison of normalized shear stress for 0050.=λ , 010.=β , C1e100 6

mf
o−−=α−α , 

C600T o=∆ . 
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Fig.8. Comparison of normalized axial stress for 0050.=λ , 0010.=β , C1e100 6

mf
o−−=α−α , 

C600T o=∆ . 
 

 
 
Fig.9. Comparison of normalized shear stress for 0050.=λ , 0010.=β , C1e100 6

mf
o−−=α−α , 

C600T o=∆ . 
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Fig.10. Comparison of normalized axial stress for 010.=λ , 0010.=β , C1e100 6

mf
o−−=α−α , 

C600T o=∆ . 
 

 
 
Fig.11. Comparison of normalized shear stress for 010.=λ , 0010.=β , C1e100 6

mf
o−−=α−α , 

C600T o=∆ . 
 
 



Thermal stresses in a single elastic fiber embedded in an infinite matrix 589

 
5. Conclusions 
 
 The numerical analysis confirmed the approximate analytical solution to the thermal stress along a 
fiber embedded in a matrix as presented in this paper. It is observed that the accuracy of coincidence of both 
results depends on the dimensionless ratios lro=λ  and fm EE=β . However, both approaches coincide 
qualitatively and quantitatively, even though substantial discrepancies might appear at particular points 
mainly due to the strong singularity present on this type of problem. Additionally, some of the discrepancies 
are due to the assumptions in the analytical model and the approximations involved in the numerical 
approach. It is recommended that experimental results be obtained to establish the real error and the limits of 
applicability of the approaches studied.  
 This work provides a simple method to determine the thermal stresses along the fiber embedded in a 
matrix based on some simplifying assumptions, setting the foundation for a better understanding of the 
interaction between the fiber and matrix in the case of the classical problem of thermal stresses.  
Furthermore, it also provides a new means to solve other related problems such as the residual thermal stress 
problem, the effect of temperature expansion during the debonding process, and the most complex problem 
of mechanical and thermal stresses in a fiber reinforced composite.   
 It is also of interest to determine the actual perturbed region in the matrix during the stress transfer. 
Users of the shear-lag theory have modified the shear lag parameter in order to model some specific 
problems. Here, the perturbed domain proposed in Cherepanov (1983) has been used obtaining very good 
results. However, more analysis of this perturbed region is necessary since it is evident that its size is not 
only a function of z  but also a function of the materials properties and the dimensions of the embedded 
fiber. This idea lends itself to study the interaction between multiple fibers in a matrix. Once the perturbed 
domain is clearly defined and understood, the next step would be to study the interaction between two or 
more fibers, finding an expression for the optimal distance of the perturbed region that produces the best 
representation of the stress transfer between them.  These topics will be discussed in future work. 
 
Nomenclature 
 
 pD  – cylindrical domain of perturbation in the matrix 
 fE  – Young’s modulus of the fiber 
 mE  – Young’s modulus of the matrix 
 mG  – matrix shear modulus 
 k  – dimensionless parameter 
 l  – length of the embedded fiber 
 r  – radial distance 
 or  – radius of the fiber 
 *r  – radius of the perturbed region in the matrix 
 fw  – mean displacement of a cross-section of the fiber along the z-axis. 
 mw  – z component of the displacement vector in the matrix 
 z  – axis of symmetry along the fiber length 
 α  – fitting parameter 
 fα  – coefficient of thermal expansion of the fiber  
 mα  – coefficient of thermal expansion of the matrix 
 β  – dimensionless parameter relating the Young’s modulus of the finer and matrix 
 γ  – engineering shear stress in the matrix 
 T∆  – change of temperature 
 λ  – dimensionless parameter relating the radius and the embedded length of the fiber 
 fν  – Poisson’s ratio of the fiber 
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 mν  – Poisson’s ratio of the matrix 
 mv  – displacement in the r-direction in the matrix 
 fσ  – mean normal stress in a cross-section of the fiber 
 mσ  – normal stress component of the stress tensor in the matrix 
 fτ  – mean shearing stress on the lateral surface of the fiber 
 mτ  – shearing stress component of the stress tensor in the matrix 
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