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The present paper deals with the analysis of a steady and unsteady boundary layer flow and heat transfer past
a vertical stretching sheet in a viscous fluid-saturated porous medium by using the Darcy-Brinkman equation
model. It is assumed that unsteadiness is caused by the impulsive stretching of the sheet and by a sudden increase
in the surface temperature. The problem is reduced to parabolic partia differential equations, which are solved
numerically using the Keller-box method. The small time (initial unsteady flow) as well as the large time (final
steady-state flow) solutions are also included in the analysis. It is shown that there is a smooth transition from the
small time solution to large time solution, respectively.
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1. Introduction

The production of sheeting material, which indudes both metal and polymer sheets arises in a
number of industrial manufacturing processes. The fluid dynamics due to a stretching surface is important in
many extrusion processes. For many practical applications, the stretching surfaces undergo cooling or
heating that cause surface velocity and temperature variations. Since the pioneering study by Crane (1970)
who presented an exact analytical solution for the steady two-dimensiona stretching of a surface in a
quiescent fluid, many authors have considered various aspects of this problem and obtained similarity
solutions. The recent papers by Magyari and Keler (1999; 2000), Liao and Pop (2004) and Nazar et al.
(2004) contain a good amount of references on this problem. On the other hand, the boundary layer flow due
to a dretching surface in the vertical direction in a steady, viscous and incompressible fluid when the
buoyancy forces are taken into account has only been considered in the papers by Daskalakis (1993), Ali and
Al-Yousef (1998), Chen (1998, 2000), Lin and Chen (1998) and Chamkha (1999). However, to the best of
our knowledge, only Kumari et al. (1996) and Ishak et al. (2005) have studied the unsteady free and mixed
convection flow, respectively, over a stretching vertica surface in an ambient fluid. Both constant surface
temperature and constant surface heat flux conditions have been considered.

Recently, Liu and Wang (2005) have studied the steady flow and heat transfer of a viscous fluid-
saturated porous medium past a permeable and non-isothermal sheet with internal heat generation or
absorption using the Darcy-Brinkman equations model. The unsteady case has been studied by Sharidan et
al. (2005). It iswell known that Darcy’s law is an empirical formula reating the pressure gradient, the bulk
viscous resistance and the gravitational force for a convective flow in a porous medium. Deviations from
Darcy’s law occur when the Reynol ds number based on the pore diameter it within the range of 1 to 10. For
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a flow through a porous medium with high permeability, Brinkman (1947) as well as Chen et al. (1992),
argue that the momentum equation must reduce to the viscous flow limit and advocate that classical
frictional terms be added in Darcy's law. Vafai and Tien (1981), and Kaviany (1987) used the Darcy-
Brinkman model to study the effects of boundary and inertia forces on forced convection over a fixed
impermeabl e heated plate embedded in a porous medium. They defined a momentum boundary layer as the
layer adjacent to the surface where the viscous effect on the surface and the bulk viscous force are equally
important. The existence of the momentum boundary layer near the heated surface was shown to retard the
streamwise velocity closeto the wall, resulting in a decrease of the surface heat flux.

The aim of this paper is to study the steady and unsteady flow and heat transfer past a stretching
sheet in a vertical direction placed in a fluid-saturated porous medium using the Darcy-Brinkman equation
model. In view of industrial applications, it is interesting to examine the flow and therma characteristics of
viscous fluids over a stretching sheet in a porous medium. In the physical process of drawing a sheet from a
dlit of a container, it is tacitly assumed that only the fluid adhered to the sheet is moving but the porous
matrix remains fixed to cope the usual assumption of flow motion in a porous medium. For a fluid through
an isotropic and homogeneous porous medium, we apply the general equations modded by Vafai and Tien
(1981), and Hsu and Cheng (1990), with neglecting the quadratic terms from the momentum equations. It is
assumed that both the stretching velocity and surface temperature vary linearly with the distance dong its
surface. It is aso assumed that the unsteadiness is caused by the impulsive stretching of the sheet and by
sudden increase in the surface temperature. The governing partia differentiad equations are transformed into
a non-dimensiona form using similarity and semi-similarity variables, and the transformed equations are
then solved numerically using the Kdler-box method, which is an implicit finite-difference scheme.

2. Problem formulation and basic equations

We assume that two equal and opposite forces are impulsively applied along the x-axis of a vertica
stretching sheet, keeping the origin fixed, the sheet being placed in a fluid-saturated porous medium of
ambient temperature Ty . It is also assumed that the temperature T,, (x) of the sheet is suddenly increased or

decressed to the value Ty . The stationary coordinate system has its origin located at the center of the sheet

with the positive x-axis extending along the sheet, while the y-axis is measured normal to the surface of the
sheet, respectively (seeFig.1).
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(a) Assisting flow (b) Opposing flow
Fig.1. Physica mode and coordinate system.

The continuous dretching surfece is assumed to have the v odity of the form uW(x) =cXx and temperature
Tw(x) =Ty +ax wheae a and c are condtarts with ¢ >0 . Under these assumptions along with the Darcy-Brinkman
eguation modd and boundary layer gppraximetions, the basic boundary layer equietions are (Nakayama, 1995)
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subject to theinitia and boundary conditions

t<0: u=0, T=Ty, forany x,y,
t30: u:uw(x):cx, n=0, T:TW(X):T¥+ax a y=0, (2.4)
u® 0, T® Ty, a y® ¥

where t is timeg u and v are the velocity components along the x- and y- axes, respectivdy, T is the
temperature, r ;, T, m, f and K; are the fluid density, effective dynamic viscosity, dynamic viscosity,

porosity and permeability, respectivey. As we have already mentioned, the resistance quadratic inertid term
or inertialoss termin Eq.(2.2) have been neglected.

(i) Steady-state case
Inthiscase, /1t =0 and welook for asimilarity solution of the steedy-state Eqs (2.1)-(2.3) of the form

y :(C”Yf f )]/ZXf(h)’ ah)=(T- Ty )/(Tu-T), N :(Crf/m)j/zy (2.5)

where y is the free stream defined in the usua way as u=1y /Ty and n=- fy /T x. Substituting (2.5)
into Egs (2.2) and (2.3) we get the following ordinary differential equations

Lfd+ ff@ f&€- Kf¢rlg=0, (2.6)
1
—q+ fq¢ f&=0, (2.7)
Pr

subject to the boundary conditions
f(0)=0, fq0)=1, q(0)=1, fq(¥)=0, q¥)=0 (2.8)

where primes dencte differentiation with respect to h. The constant parameter L is the viscous ratio
parameter, K isthe porous medium parameter and | isthe buoyancy force parameter which are defined as
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respectively, where Gr, = gb(T,, - Ty )x3/n? is the local Grashof number and Re, =u,x/n is the local
Reynolds number, respectively. It isworth mentioning that both assisting (I > 0) and opposing (I < 0) flow
cases are considered.

(ii) Unsteady-state flow case

Following Seshadri et al. (2002) or Nazar et al. (2004), we introduce now the following non-
dimensional variables

y =lemr ¢ 2oc2i(ch),  alxh)=(T- T /(T T,

(2.10)
h:(crf/m)l/zx'my, x=1-€', t=ct,
for 0 £ x £1. With the use of Eq.(2.10), Egs (2.2) and (2.3) become
L&+ (1- x)%f«t»x(fm f&- Kfcr q):x(l- x)%, (2.12)
1 h _ fiq
=@+ (1- X)— b+ xf gt =x(1- x) =2 2.12
Prq (1 x)2q xf q¢ xf @ x(l X)‘nx’ (2.12)
subject to
f(x,0)=0, fx,0)=1, q(x,0)=1,
(2.13)

f(x,h)® 0, q(x,h)®0, a h® ¥,

for 0 £ x £ 1, where primes denote partial differentiation with respect to h.
For the unsteady-early flow case, where x » 0, Egs (2.11) and (2.12) are approximately reduced to
the following form

h 1 h
Lf@+—f¢=0, —q¥+—q¢=0, 214
2 Prq 2q 214

subject to the boundary conditions (2.8). The solution to this problemis given by

f¢h)= erfc%e\?_o f(h herfcgz\/_—+2\/7 -apé-_—u

q(h)= erfc(\/ﬁ h/2)

where erfc (.) is the complimentary error function.

On the other hand, for the fina steady-state flow case, where x =1, Egs (2.11) and (2.12) reduce to
Eqgs (2.6) and (2.7), respectively.

The physical quantity of interest in this problem includes the skin friction coefficient, C; , and the

local Nussdlt number, Nu, , which are defined as

(2.15)



Seady and unsteady boundary layers due to layers ... 627

Xq
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respectively, where

~uo TO
ty=ieM? g, = kmgﬂ_i . (2.17)
ﬂyﬂyzo le ﬂy=0
Using variables (2.10), itiseasily shown that C; and Nu, can be expressed as
C(Re¥? =Lx Y21 ¢x,0), Nu, /Re¥? = - x ¥2q¢x, 0), (2.18)

for OExXE]L.

3. Resultsand discussion

Thetwo sats of Egs (2.6)-(2.7) and (2.11)-(2.12) subject to the boundary conditions (2.8) and (2.13),
respectively, were solved numerically usi ng the Keller-box finite-difference method described by Cebed and
Bradshaw (1988). Results were obtained for L =1 and some vaues of the parameters, i.e., the Prandtl
number, Pr, buoyancy force parameter, | , and porous material parameter, K, with values of x in the range

0£x£1. Both assisting (I >0) and opposing (I <0) flow cases are considered. Numerical results for skin

friction coeffident CfRe]X/Z, loca Nussdt number NuX/Rei/Z, velocity profiles f((h), as wdl as the
temperature profiles q(h) are obtained.
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Fig.2. Skinfriction coefficient C; Rejx/ 2 vs | for variousvalues of Prwhen L = K = 1, for the steady-state case
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Fig.3. Local Nussdt number NuX/Reg(/2 vs. | for various values of Pr when L =K =1, for the steady-
state case.

The results for the skin friction coefficient CfReg(/2 and local Nusselt number NuX/Re]X/2 for the

steady-state case as afunction of | for various Pr are presented in Figs 2 and 3, respectively. As can be seen
from Fig.2, al curves intersect at a point where | =0; that is when the buoyancy force is zero. This is
because Egs (2.6) and (2.7) are uncoupled when | =0, in other words, the solutions to the flow fidd are not

affected by the thermal field in which the buoyancy force is lacking. Also, the vaue of C; Re%{2 remains
constant, that is -1.4142, for al Pr, which agreed with the result obtained by Sharidan et al. (2005), who
showed that C; Rejx/2 =-JL(1+K). It is observed from Fig.2 that a positive buoyancy force (I >0)

produces an increase in the skin friction coeffic ent, while a negative buoyancy force (I < 0) givesriseto a
decrease in the skin friction coefficient. This is because the fluid velocity increases when buoyancy force
increases and hence increases the skin friction. The opposite trend occurs when buoyancy force decreases.
Also, effects of | on the skin friction coefficient are found to be more significant for fluids having smaller
Pr since the viscosity is less than that of the fluids with larger Pr. Thus, fluids with a smaller Pr are more
sensitive to the buoyancy force than fluids with alarger Pr. From Tab.1 and Fig.6, it can be seen that the skin
friction coefficient decreases when the porous material parameter K increases. Thisis clear from the fact that
the porosity f increases when K increases, which causes the increasing of the void space in the
medium. Thus, thewad |l shear stress deareases whi ch then causes the decreasing of the skin friction coefficient.

The variations of the local Nusselt number as a function of the buoyancy force parameter | for the
steady-state case is shown in Fig.3. It is observed from this figure that for a particular value of Pr, the local
Nusselt number is slightly increased as the buoyancy force parameter is increased. Also, Fig.3 shows that for
a particular value of Pr, the loca Nusset number is slightly increased as the buoyancy parameter | is
increased, since in this problem the fluid is always converted from colder to warmer wall portions (in Fig.1
both arrows point in the direction of increasing values of the wall coordinate x). However, in the opposing



Seady and unsteady boundary layers due to layers ... 629

flow case, the volume flux of the colder fluid transported is smdler than in the assisting flow case (sincein
the former case the buoyancy forces work against the sheer forces induced by the stretching wal).
Accordingly, for al values of Pr, the amount of heat that can be transferred per second from the unit surface
of the wall to the moving fluid is necessarily smdler in the opposing case than in the assisting case. In
addition, the effects of Pr can be examined, that is, for afixed value of | theloca Nussdt number increases
with Pr, because the higher Prandtl number a fluid has the lower therma conductivity (or the higher
viscosity) is, which results in a thinner thermal boundary layer and hence, a higher heat transfer rate at the
surface. From Tab.2, it is observed that for a fixed Prandtl number, the increasing of a porous material
parameter K causes the local Nussdt number to decrease. This is dear from the fact that the increasing of
porous material parameter causes the porosity f to increase, which enhances the void space in the medium,

and in turn reduces the surface heat transfer rate.

Tablel1. Skin friction coefficient, C¢ Rejx/z, for variousvaluesof Kand Prat x=1 when L =| =1.
o | 01 05 1 2 3 4 5
0.01 -0.1645 | -0.4258 | -0.7028 | -1.1429 | -1.4894 | -1.7801 | -2.0341
0.72 -0.5631 | -0.7530 | -0.9625 | -1.3176 | -1.6163 | -1.8775 | -2.1118
1 -0.6110 | -0.7960 | -1.0000 | -1.3467 | -1.6397 | -1.8968 | -2.1281
6.8 -0.8423 | -1.0183 | -1.2089 | -1.5301 | -1.8017 | -2.0414 | -2.2584
10 -0.8743 | -1.0503 | -1.2404 | -1.5603 | -1.8307 | -2.0691 | -2.2848
100 -0.9887 | -1.1646 | -1.3541 | -1.6721 | -1.9403 | -2.1766 | -2.3902
Table2. Loca Nussdt number, NuX/Re]X/2 , for variousvaluesof Kand Prat x=1 when L =| =1.
o K01 05 1 2 3 4 5
0.01 0.0980 0.0900 0.0813 0.0684 0.0596 0.0534 0.0488
0.72 0.9006 0.8659 0.8278 0.7643 0.7140 0.6724 0.6374
1 1.0773 1.0405 1.0000 0.9323 0.8772 0.8311 0.7917
6.8 3.0467 3.0040 2.9573 2.8775 2.8099 2.7498 2.6953
10 3.7373 3.6944 3.6478 3.5686 3.5010 3.4405 3.3859
100 12.3165 | 12.2732 | 12.2265 | 12.1479 | 12.0814 | 12.0226 | 11.9694

Figures 4-7 show the variations of the skin friction coefficient CfRe]X/2 and the local Nussdt

number Nu, / Ref(/ 2 with x (unsteady-state case) for some values of | and K by solving Egs (2.11) and
(2.12) numerically. The steady-state solution (le) obtained by solving Egs (2.6) and (2.7) are dso
included in these figures. The effect of | and K on the skin friction coefficient and the local Nusselt number

are consistent with the steady-state case menti oned in the previous paragraph. It is noticed that thereis avery
good agreement between the results when the full unsteady state equations and the steady state
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equations are solved. It is also noticed that the transition from unsteady to steady flows takes place
smoothly.
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The evolution of the dimensionless veocity profiles f ((h) and dimensionless temperature profiles

q(h) are shown for various values of | , K and Pr in Figs 8-13, respectivey. For the dimensionless velocity
profiles, the effects of K or Pr is such that the velocity boundary layer thickness decreases dightly with an
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increase in K or Pr. The effect of Pr on the dimensionless temperature profiles is such that the thermal
boundary layer thickness decreases sharply with an increase in Pr, and hence induces an increase in the
surface temperature gradient. The opposite trend occurs for the porous material parameter, K; that is the
thermal boundary layer thickness increases with anincreasein K . It isalso noticed that for afixed Pr and K,
anincreasein | will result in decreasing temperature.
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Fig.9. Temperature profiles, q(h),atselededvaluesof | for Pr=1,L =1, K=1.
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The resulting profiles of dimensionless veocity f((h) for various values of | , K and Pr are

illustrated in Figs 8, 10 and 12, respectively. From Fig.8, it can be noted that for large vdues of | , the
velodity increases a the beginning until it achieves a certain value, then decreases until the value becomes
zero & the outside of the boundary layer. This is because a large value of | produces a large buoyancy
force, which produces large kinetic energy. Then the energy is used to overcome resi stance along the flow,
which becomes zero far away from the surface. Sauch a trend does not occur for a small value of | , as can
be seen from Figs 10 and 12, which is for | =1. The velocity decreases monotonically for al values of K
and Pr when the distance from the surface increases. Figure 12 presents the effect of Pr on the veocity
distribution. As shown, the velocity decreases as Pr increases since a higher Pr fluid has higher viscosity.
Also, for afixed valueof | and K, the boundary layer thickness decreases with an increasein Pr.

Figures 9, 11 and 13 present the temperature distribution for various values of | , K and Pr,
respectively. It is evident from these figures that the temperature of the fluid decreases monotonically as the
distance from the surface increases, for dl values of | , K and Pr until it achieves a constant value, namely
zero. This implies that the temperature gradually decreases with h. As shown in Figs 9, 11 and 13, an

increasein | and Pr results in a decrease in the thermal boundary layer thickness, respectively, whereas the
opposite trend occurs for K, i.e,, increasing value of K implies the increasing of the thermd boundary layer
thickness. It is evident from Fig.9 that an increasein | results in a decrease in the thermal boundary layer
thickness, associated with an increasein the wall temperature gradient, and hence produces an increase in the
surface hesat transfer rate. It can be seen from Fig.13 that the temperature decreases as Pr increases. Also, for
afixed value of | and K, the thermal boundary layer thickness increases with adecreasein Pr.

4. Conclusions

The present study provides both analytical and numerical solutions for the unsteady boundary |ayer
flow and heat transfer of a viscous fluid-saturated porous medium past an impermeable and isothermal
stretching sheet with internal heat generation or absorption using the Darcy-Brinkman equation modd. The
results show that the transition from the initial unsteady flow to the final steady-state flow takes place
smoothly. The obtained results aso show that the reduced skin friction increases, but the reduced hesat
transfer continuously decreases with time x. It was found, as expected, that the higher Prandtl number a
fluid has, the thinner the thermal boundary is, which increases the gradient of temperature. Consequently, the
surface heat transfer is increased as Pr increases. On the other hand, the skin friction decreases as Pr
increases.
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Nomenclature

a, ¢ — constants
C¢ —locd skin friction coefficient

p — Specific heat at constant pressure

f —reduced stream function
g — acceleration dueto gravity
Gr, —local Grashof number

kp, —thermal conductivity

C
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K —porous medium parameter
K, — permeability of the porous medium

Nu, —loca Nussdt number
Pr — Prandtl number
gy - hest transfer from the stretching surface
Re, —loca Reynolds number
t —time
T —fluid temperature
Tw(x) —temperature of the stretching surface

Ty —ambient temperature
u, v —velocity components along x and y directions, respectively
uw(x) —velocity of the stretching surface

X, y — Cartesian coordinates along the surface and normal to it, respectively
b —thermal expansion coefficient
f —porasity
h —pseudo-similarity variable
| —buoyancy force parameter
L -—viscousratio parameter
g —dimensionlesstemperature
n —kinematic viscosity
n —dynamic viscosity
m — effective dynamic viscosity

r ¢ —fluid density
t —dimensionlesstime

ty, — skinfriction from the surface of the sheet

x —dimensionless transformed variable
y —stream function

Super script
' —differentiation with respect to h

Subscripts

w — condition at the wall
¥ —ambient condition
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