
Int. J. of Applied Mechanics and Engineering, 2006, vol.11, No.3, pp.623-637 

 
 

STEADY AND UNSTEADY BOUNDARY LAYERS DUE TO A 
STRETCHING VERTICAL SHEET IN A POROUS MEDIUM USING 

DARCY-BRINKMAN EQUATION MODEL 
 

A. ISHAK and R. NAZAR* 
School of Mathematical Sciences, National University of Malaysia 

43600 UKM Bangi, Selangor, MALAYSIA 
e-mail: rmn72my@yahoo.com 

 
I. POP 

 Faculty of Mathematics, University of Cluj 
R-3400 Cluj, CP 253, ROMANIA 

 
 

The present paper deals with the analysis of a steady and unsteady boundary layer flow and heat transfer past 
a vertical stretching sheet in a viscous fluid-saturated porous medium by using the Darcy-Brinkman equation 
model. It is assumed that unsteadiness is caused by the impulsive stretching of the sheet and by a sudden increase 
in the surface temperature. The problem is reduced to parabolic partial differential equations, which are solved 
numerically using the Keller-box method. The small time (initial unsteady flow) as well as the large time (final 
steady-state flow) solutions are also included in the analysis. It is shown that there is a smooth transition from the 
small time solution to large time solution, respectively. 
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1. Introduction 
 
 The production of sheeting material, which includes both metal and polymer sheets arises in a 
number of industrial manufacturing processes. The fluid dynamics due to a stretching surface is important in 
many extrusion processes. For many practical applications, the stretching surfaces undergo cooling or 
heating that cause surface velocity and temperature variations. Since the pioneering study by Crane (1970) 
who presented an exact analytical solution for the steady two-dimensional stretching of a surface in a 
quiescent fluid, many authors have considered various aspects of this problem and obtained similarity 
solutions. The recent papers by Magyari and Keller (1999; 2000), Liao and Pop (2004) and Nazar et al. 
(2004) contain a good amount of references on this problem. On the other hand, the boundary layer flow due 
to a stretching surface in the vertical direction in a steady, viscous and incompressible fluid when the 
buoyancy forces are taken into account has only been considered in the papers by Daskalakis (1993), Ali and 
Al-Yousef (1998), Chen (1998, 2000), Lin and Chen (1998) and Chamkha (1999). However, to the best of 
our knowledge, only Kumari et al. (1996) and Ishak et al. (2005) have studied the unsteady free and mixed 
convection flow, respectively, over a stretching vertical surface in an ambient fluid. Both constant surface 
temperature and constant surface heat flux conditions have been considered. 
 Recently, Liu and Wang (2005) have studied the steady flow and heat transfer of a viscous fluid-
saturated porous medium past a permeable and non-isothermal sheet with internal heat generation or 
absorption using the Darcy-Brinkman equations model. The unsteady case has been studied by Sharidan et 
al. (2005). It is well known that Darcy’s law is an empirical formula relating the pressure gradient, the bulk 
viscous resistance and the gravitational force for a convective flow in a porous medium. Deviations from 
Darcy’s law occur when the Reynolds number based on the pore diameter it within the range of 1 to 10. For 
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a flow through a porous medium with high permeability, Brinkman (1947) as well as Chen et al. (1992), 
argue that the momentum equation must reduce to the viscous flow limit and advocate that classical 
frictional terms be added in Darcy’s law. Vafai and Tien (1981), and Kaviany (1987) used the Darcy-
Brinkman model to study the effects of boundary and inertia forces on forced convection over a fixed 
impermeable heated plate embedded in a porous medium. They defined a momentum boundary layer as the 
layer adjacent to the surface where the viscous effect on the surface and the bulk viscous force are equally 
important. The existence of the momentum boundary layer near the heated surface was shown to retard the 
streamwise velocity close to the wall, resulting in a decrease of the surface heat flux. 
 The aim of this paper is to study the steady and unsteady flow and heat transfer past a stretching 
sheet in a vertical direction placed in a fluid-saturated porous medium using the Darcy-Brinkman equation 
model. In view of industrial applications, it is interesting to examine the flow and thermal characteristics of 
viscous fluids over a stretching sheet in a porous medium. In the physical process of drawing a sheet from a 
slit of a container, it is tacitly assumed that only the fluid adhered to the sheet is moving but the porous 
matrix remains fixed to cope the usual assumption of flow motion in a porous medium. For a fluid through 
an isotropic and homogeneous porous medium, we apply the general equations modeled by Vafai and Tien 
(1981), and Hsu and Cheng (1990), with neglecting the quadratic terms from the momentum equations. It is 
assumed that both the stretching velocity and surface temperature vary linearly with the distance along its 
surface. It is also assumed that the unsteadiness is caused by the impulsive stretching of the sheet and by 
sudden increase in the surface temperature. The governing partial differential equations are transformed into 
a non-dimensional form using similarity and semi-similarity variables, and the transformed equations are 
then solved numerically using the Keller-box method, which is an implicit finite-difference scheme.  
 
2. Problem formulation and basic equations 
 
 We assume that two equal and opposite forces are impulsively applied along the x-axis of a vertical 
stretching sheet, keeping the origin fixed, the sheet being placed in a fluid-saturated porous medium of 
ambient temperature ∞T . It is also assumed that the temperature ( )xTw  of the sheet is suddenly increased or 
decreased to the value .T∞  The stationary coordinate system has its origin located at the center of the sheet 
with the positive x-axis extending along the sheet, while the y-axis is measured normal to the surface of the 
sheet, respectively (see Fig.1).  
 

                              
  (a) Assisting flow                                                           (b) Opposing flow 

 
Fig.1. Physical model and coordinate system. 

 
 The continuous stretching surface is assumed to have the velocity of the form ( ) xcxuw =  and temperature 

( ) xaTxTw += ∞  where a  and c are constants with 0c > . Under these assumptions along with the Darcy-Brinkman 
equation model and boundary layer approximations, the basic boundary layer equations are (Nakayama, 1995) 
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subject to the initial and boundary conditions 
 
  0t < :     0u = ,                    ∞= TT ,     for any     yx, , 
 
  0t ≥ :     ( ) cxxuu w == ,     0=ν ,       ( ) axTxTT w +== ∞      at     0y = , (2.4) 
 
                 0u → ,                 ∞→ TT      as      ∞→y  
 
where t is time, u and v are the velocity components along the x- and y- axes, respectively, T  is the 
temperature, fρ , µ~ , µ , φ  and 1K  are the fluid density, effective dynamic viscosity, dynamic viscosity, 
porosity and permeability, respectively. As we have already mentioned, the resistance quadratic inertial term 
or inertia loss term in Eq.(2.2) have been neglected. 
 
(i) Steady-state case  
 In this case, 0t =∂∂  and we look for a similarity solution of the steady-state Eqs (2.1)-(2.3) of the form 
 
  ( ) ( )ηρµ=ψ fxc 21

f ,     ( ) ( ) ( )∞∞ −−=ηθ TTTT w ,     ( ) yc 21
f µρ=η  (2.5) 

 
where ψ  is the free stream defined in the usual way as yu ∂ψ∂=  and x∂ψ∂−=ν . Substituting (2.5) 
into Eqs (2.2) and (2.3) we get the following ordinary differential equations 
 

  0fKffff 2 =λθ+′−′−′′+′′′Λ , (2.6) 
 

  0ff1
=θ′−θ′+θ ′′

Pr
, (2.7) 

 
subject to the boundary conditions 
 
  ( ) 00f = ,     ( ) 10f =′ ,     ( ) 10 =θ ,     ( ) 0f =∞′ ,     ( ) 0=∞θ  (2.8) 
 
where primes denote differentiation with respect to η . The constant parameter Λ  is the viscous ratio 
parameter, K  is the porous medium parameter and λ  is the buoyancy force parameter which are defined as 
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respectively, where ( ) 23
wx xTTg ν−β= ∞Gr  is the local Grashof number and ν= xuwxRe  is the local 

Reynolds number, respectively. It is worth mentioning that both assisting ( )0>λ  and opposing ( )0<λ  flow 
cases are considered. 
 
(ii) Unsteady-state flow case 
 Following Seshadri et al. (2002) or Nazar et al. (2004), we introduce now the following non-
dimensional variables 
 
  ( ) ( )ηξξρµ=ψ ,fxc 2121

f ,     ( ) ( ) ( )∞∞ −−=ηξθ TTTT w, ,      
   (2.10) 
  ( ) yc 2121

f
−ξµρ=η ,       τ−−=ξ e1 ,       tc=τ ,  

 
for 10 ≤ξ≤ . With the use of Eq.(2.10), Eqs (2.2) and (2.3) become 
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subject to 
 
  ( ) 00f =ξ, ,         ( ) 10f =ξ′ , ,     ( ) 10 =ξθ , , 
   (2.13) 
  ( ) 0f →ηξ′ , ,      ( ) 0→ηξθ , ,     as     ∞→η ,    
 
for 10 ≤ξ≤ , where primes denote partial differentiation with respect to η . 
 For the unsteady-early flow case, where 0≈ξ , Eqs (2.11) and (2.12) are approximately reduced to 
the following form 
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subject to the boundary conditions (2.8). The solution to this problem is given by 
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   (2.15) 
  ( ) ( )2η=ηθ Prerfc  
 
where erfc (.) is the complimentary error function.  
 On the other hand, for the final steady-state flow case, where 1=ξ , Eqs (2.11) and (2.12) reduce to 
Eqs (2.6) and (2.7), respectively. 
 The physical quantity of interest in this problem includes the skin friction coefficient, fC , and the 

local Nusselt number, xNu , which are defined as 
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 Using variables (2.10), it is easily shown that fC  and xNu  can be expressed as 
 

  ( )0fC 2121
xf ,Re ξ′′ξΛ= − ,          ( )02121

xx ,ReNu ξθ′ξ−= − , (2.18) 
 
for  10 ≤ξ≤ . 
 
3. Results and discussion 
 
 The two sets of Eqs (2.6)-(2.7) and (2.11)-(2.12) subject to the boundary conditions (2.8) and (2.13), 
respectively, were solved numerically using the Keller-box finite-difference method described by Cebeci and 
Bradshaw (1988). Results were obtained for 1=Λ  and some values of the parameters, i.e., the Prandtl 
number, Pr, buoyancy force parameter, λ , and porous material parameter, K, with values of ξ  in the range 

10 ≤ξ≤ . Both assisting ( )0>λ  and opposing ( )0<λ  flow cases are considered. Numerical results for skin 

friction coefficient 21
xfC Re , local Nusselt number 21

xx ReNu , velocity profiles ( )η′f , as well as the 
temperature profiles ( )ηθ  are obtained.  
 

 
 

Fig.2. Skin friction coefficient 21
xfC Re  vs. λ  for various values of Pr when 1K ==Λ , for the steady-state case. 
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Fig.3. Local Nusselt number 21
xx ReNu  vs. λ  for various values of Pr when 1K ==Λ , for the steady-

state case. 
 

 The results for the skin friction coefficient 21
xfC Re  and local Nusselt number 21

xx ReNu  for the 
steady-state case as a function of λ  for various Pr are presented in Figs 2 and 3, respectively. As can be seen 
from Fig.2, all curves intersect at a point where 0=λ ; that is when the buoyancy force is zero. This is 
because Eqs (2.6) and (2.7) are uncoupled when 0=λ , in other words, the solutions to the flow field are not 
affected by the thermal field in which the buoyancy force is lacking. Also, the value of 21

xfC Re  remains 
constant, that is -1.4142, for all Pr, which agreed with the result obtained by Sharidan et al. (2005), who 
showed that ( )K1C 21

xf +Λ−=Re . It is observed from Fig.2 that a positive buoyancy force ( )0>λ  
produces an increase in the skin friction coefficient, while a negative buoyancy force ( )0<λ  gives rise to a 
decrease in the skin friction coefficient. This is because the fluid velocity increases when buoyancy force 
increases and hence increases the skin friction. The opposite trend occurs when buoyancy force decreases. 
Also, effects of λ  on the skin friction coefficient are found to be more significant for fluids having smaller 
Pr since the viscosity is less than that of the fluids with larger Pr. Thus, fluids with a smaller Pr are more 
sensitive to the buoyancy force than fluids with a larger Pr. From Tab.1 and Fig.6, it can be seen that the skin 
friction coefficient decreases when the porous material parameter K increases. This is clear from the fact that 
the porosity φ  increases when K increases, which causes the increasing of the void space in the 
medium. Thus, the wall shear stress decreases which then causes the decreasing of the skin friction coefficient.  
 The variations of the local Nusselt number as a function of the buoyancy force parameter λ  for the 
steady-state case is shown in Fig.3. It is observed from this figure that for a particular value of Pr, the local 
Nusselt number is slightly increased as the buoyancy force parameter is increased. Also, Fig.3 shows that for 
a particular value of Pr, the local Nusselt number is slightly increased as the buoyancy parameter λ  is 
increased, since in this problem the fluid is always converted from colder to warmer wall portions (in Fig.1 
both arrows point in the direction of increasing values of the wall coordinate x). However, in the opposing 
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flow case, the volume flux of the colder fluid transported is smaller than in the assisting flow case (since in 
the former case the buoyancy forces work against the sheer forces induced by the stretching wall). 
Accordingly, for all values of Pr, the amount of heat that can be transferred per second from the unit surface 
of the wall to the moving fluid is necessarily smaller in the opposing case than in the assisting case. In 
addition, the effects of Pr can be examined, that is, for a fixed value of λ  the local Nusselt number increases 
with Pr, because the higher Prandtl number a fluid has the lower thermal conductivity (or the higher 
viscosity) is, which results in a thinner thermal boundary layer and hence, a higher heat transfer rate at the 
surface. From Tab.2, it is observed that for a fixed Prandtl number, the increasing of a porous material 
parameter K causes the local Nusselt number to decrease. This is clear from the fact that the increasing of 
porous material parameter causes the porosity φ  to increase, which enhances the void space in the medium, 
and in turn reduces the surface heat transfer rate. 
 
Table 1.  Skin friction coefficient, 21

xfC Re , for various values of K and Pr at 1=ξ  when 1=λ=Λ . 
 

K  
Pr 0.1 0.5 1 2 3 4 5 

0.01 -0.1645 -0.4258 -0.7028 -1.1429 -1.4894 -1.7801 -2.0341 

0.72 -0.5631 -0.7530 -0.9625 -1.3176 -1.6163 -1.8775 -2.1118 

1 -0.6110 -0.7960 -1.0000 -1.3467 -1.6397 -1.8968 -2.1281 

6.8 -0.8423 -1.0183 -1.2089 -1.5301 -1.8017 -2.0414 -2.2584 

10 -0.8743 -1.0503 -1.2404 -1.5603 -1.8307 -2.0691 -2.2848 

100 -0.9887 -1.1646 -1.3541 -1.6721 -1.9403 -2.1766 -2.3902 
 
Table 2.  Local Nusselt number, 21

xx ReNu , for various values of K and Pr at 1=ξ  when 1=λ=Λ . 
 

K K 
Pr 0.1 0.5 1 2 3 4 5 

0.01 0.0980 0.0900 0.0813 0.0684 0.0596 0.0534 0.0488 

0.72 0.9006 0.8659 0.8278 0.7643 0.7140 0.6724 0.6374 

1 1.0773 1.0405 1.0000 0.9323 0.8772 0.8311 0.7917 

6.8 3.0467 3.0040 2.9573 2.8775 2.8099 2.7498 2.6953 

10 3.7373 3.6944 3.6478 3.5686 3.5010 3.4405 3.3859 

100 12.3165 12.2732 12.2265 12.1479 12.0814 12.0226 11.9694 
  
 Figures 4-7 show the variations of the skin friction coefficient 21

xfC Re  and the local Nusselt 

number 21
xx ReNu  with ξ  (unsteady-state case) for some values of λ  and K by solving Eqs (2.11) and 

(2.12) numerically. The steady-state solution ( )1=ξ  obtained by solving Eqs (2.6) and (2.7) are also 
included in these figures. The effect of λ  and K on the skin friction coefficient and the local Nusselt number 
are consistent with the steady-state case mentioned in the previous paragraph. It is noticed that there is a very 
good agreement between the results when the full unsteady state equations and the steady state 
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equations are solved. It is also noticed that the transition from unsteady to steady flows takes place 
smoothly. 
 

 
 

Fig.4. Skin friction coefficient, 21
xfC Re , at selected values of λ  for 1=Pr , 1=Λ , 1K = . 

 

 
 

Fig.5. Local Nusselt number, 21
xx ReNu , at selected values of λ  for 1=Pr , 1=Λ , 1K = . 
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Fig.6. Skin friction coefficient, 21
xfC Re , at selected values of K  for 1=Pr , 1=Λ , 1=λ . 

 

 
 

Fig.7. Local Nusselt number, 21
xx ReNu , at selected values of K  for 1=Pr , 1=Λ , 1=λ . 

 
 The evolution of the dimensionless velocity profiles ( )η′f  and dimensionless temperature profiles 

( )ηθ  are shown for various values of λ , K and Pr in Figs 8-13, respectively. For the dimensionless velocity 
profiles, the effects of K or Pr is such that the velocity boundary layer thickness decreases slightly with an 
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increase in K or Pr. The effect of Pr on the dimensionless temperature profiles is such that the thermal 
boundary layer thickness decreases sharply with an increase in Pr, and hence induces an increase in the 
surface temperature gradient. The opposite trend occurs for the porous material parameter, K; that is the 
thermal boundary layer thickness increases with an increase in K . It is also noticed that for a fixed Pr and K, 
an increase in λ  will result in decreasing temperature. 
 

 
 

Fig.8. Velocity profiles, ( )η′f , at selected values of λ  for 1=Pr , 1=Λ , 1K = . 
 

 
 

Fig.9. Temperature profiles, ( )ηθ , at selected values of λ  for 1=Pr , 1=Λ , 1K = . 
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Fig.10. Velocity profiles, ( )η′f , at selected values of K  for 1=Pr , 1=Λ , 1=λ . 
 

 
 

Fig.11. Temperature profiles, ( )ηθ , at selected values of K  for 1=Pr , 1=Λ , 1=λ . 
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Fig.12. Velocity profiles, ( )η′f , at selected values of Pr for 1=Pr , 1=Λ , 1=λ . 
 

 
 

Fig.13. Temperature profiles, ( )ηθ , at selected values of Pr for 1=Pr , 1=Λ , 1=λ . 
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 The resulting profiles of dimensionless velocity ( )η′f  for various values of λ , K and Pr are 
illustrated in Figs 8, 10 and 12, respectively. From Fig.8, it can be noted that for large values of λ , the 
velocity increases at the beginning until it achieves a certain value, then decreases until the value becomes 
zero at the outside of the boundary layer. This is because a large value of λ  produces a large buoyancy 
force, which produces large kinetic energy. Then the energy is used to overcome resistance along the flow, 
which becomes zero far away from the surface. Sauch a trend does not occur for a small value of λ , as can 
be seen from Figs 10 and 12, which is for 1=λ . The velocity decreases monotonically for all values of K 
and Pr when the distance from the surface increases. Figure 12 presents the effect of Pr on the velocity 
distribution. As shown, the velocity decreases as Pr increases since a higher Pr fluid has higher viscosity. 
Also, for a fixed value of λ  and K, the boundary layer thickness decreases with an increase in Pr.  
 Figures 9, 11 and 13 present the temperature distribution for various values of λ , K and Pr, 
respectively. It is evident from these figures that the temperature of the fluid decreases monotonically as the 
distance from the surface increases, for all values of λ , K and Pr until it achieves a constant value, namely 
zero. This implies that the temperature gradually decreases with η . As shown in Figs 9, 11 and 13, an 
increase in λ  and Pr results in a decrease in the thermal boundary layer thickness, respectively, whereas the 
opposite trend occurs for K, i.e., increasing value of K implies the increasing of the thermal boundary layer 
thickness. It is evident from Fig.9 that an increase in λ  results in a decrease in the thermal boundary layer 
thickness, associated with an increase in the wall temperature gradient, and hence produces an increase in the 
surface heat transfer rate. It can be seen from Fig.13 that the temperature decreases as Pr increases. Also, for 
a fixed value of λ  and K, the thermal boundary layer thickness increases with a decrease in Pr. 
 
4. Conclusions 
 
 The present study provides both analytical and numerical solutions for the unsteady boundary layer 
flow and heat transfer of a viscous fluid-saturated porous medium past an impermeable and isothermal 
stretching sheet with internal heat generation or absorption using the Darcy-Brinkman equation model. The 
results show that the transition from the initial unsteady flow to the final steady-state flow takes place 
smoothly. The obtained results also show that the reduced skin friction increases, but the reduced heat 
transfer continuously decreases with time ξ . It was found, as expected, that the higher Prandtl number a 
fluid has, the thinner the thermal boundary is, which increases the gradient of temperature. Consequently, the 
surface heat transfer is increased as Pr increases. On the other hand, the skin friction decreases as Pr 
increases. 
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Nomenclature 
 
 a, c – constants 
 fC   – local skin friction coefficient 
 pc  – specific heat at constant pressure 
 f – reduced stream function 
 g – acceleration due to gravity 

 xGr  – local Grashof number  
 mk  – thermal conductivity 
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 K  – porous medium parameter 
 1K  – permeability of the porous medium 
 xNu  – local Nusselt number 
 Pr – Prandtl number  
 wq  – heat transfer from the stretching surface  
 xRe  – local Reynolds number 
 t – time 
 T – fluid temperature 
 ( )xTw  – temperature of the stretching surface 
 ∞T  – ambient temperature 
 u, v – velocity components along x and y directions, respectively 
 ( )xuw  – velocity of the stretching surface 
 x, y – Cartesian coordinates along the surface and normal to it, respectively 
 β  – thermal expansion coefficient 
  φ  – porosity 
 η  – pseudo-similarity variable 
 λ  – buoyancy force parameter  
 Λ  – viscous ratio parameter 
 θ  – dimensionless temperature 
 ν  – kinematic viscosity 
 µ  – dynamic viscosity 
 µ~  – effective dynamic viscosity 
 fρ  – fluid density 
 τ  – dimensionless time 
 wτ  – skin friction from the surface of the sheet  

 ξ  – dimensionless transformed variable 
 ψ  – stream function 
 
Superscript  
 
 '  – differentiation with respect to η  
 
Subscripts 
 
 w – condition at the wall 
 ∞  – ambient condition 
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