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The development of a general purpose model for thermoelastic wave propagation in a Cartesian system for
heat conducting isotropic layered plates is illustrated. The model can account for elastic and visco-elastic
isotropic materials, single or multi-layered structures, and free or leaky systems. A theoreticd treatment is
presented for calculating the displacements, temperature, thermal stresses and temperature gradient within a
multilayered plate in generalized theories of thermoelagticity, using the matrix transfer technique. A rigidly
bonded and smooth interface condition is also considered as a special case to stimulate de-bonding of two
materials layers. The model developed will be of value in material characterization and as a source of other
quartitative information on thermo-mechanical, strength related properties of advanced materials. Relevant
results of previous investigations and coupled thermoel asticity are deduced as special cases.
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1. Introduction

A layered medium consists of two or more material components connected at ther interface in some
manner. Use of ultrasonic for nondestructive inspection frequently involves the study of the interaction of
sound with multilayered plate structures. The devel opment of inspection techniques for such tasks requires
the study of complicated wave mechanics and relies strongly on the use of predictive modeing tools to
enabl e the best inspection strategies to be identified and their sensitivities to be eval uated.

Propagation of eastic waves in layered media (Ewing et al., 1957; Brekhovskikh, 1960; Achenbach,
1973) have long been of interest of researchersin the fields of geophysics, acoustics, and el ectromagnetic. In
thermoel asticity, dynamic problemsin layered mediaturn out to be even more difficult than its counterpart in
eadticty, as in thermoelasticity solutions to both the heat conduction and thermoe agticity problems for al
the layers are required. These solutions are also to satisfy the thermal and mechanical boundary and interface
conditions. As aresult, aconventional procedure for thermal stress analysis of a multilayered medium results
in having to solve a system of two simultaneous equations for a large number of unknown constants. Thus
the study of thermo-mechanical interactions and wave phenomenon in composites materials is justified and
is of great importance and practical use in engineering applications, especialy in thermoe asticity. Because
of dissimilar mechanical and therma properties between constituents, thermal effects are largely the origin
of failure for a wide class of multilayered devices as temperature changes can introduce residual stresses,
which may lead to interface de-bonding in ductile materials.

Although Fourier’s law of heat conduction is suitable in describing common engineering situations,
however, it breaks down in situations involving very short times, high heat fluxes, and a very low
temperatures. The anomaly of this classical theory of heat conduction is from the assumption that the heat
flux vector and the temperature gradient across a materia volume occur at the same instant of time. As a
consequence of this assumption, the equation is governed by a parabolic partid differential equation, which
predicts that the thermal disturbance in a body instantaneously affects al points of the body. To remove this
paradox inherent in the classical theory, atheory of generalized thermod asticity was deve oped.
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Lord and Schulman (LS) (1967), and Green and Lindsay (GL) (1972) extended the coupled theory of
thermodagticity by introducing the therma rdaxation time in the conditutive equations. These new theories
eliminating the paradox of infinite vel ocity of heat propagation are call ed the generali zed theories of thermodasticity.
They have received much attention in recent years. The literature dedicated to such theories is quite large and its
detailed review can be found in Nowacki (1962; 1975), Chadwick (1960) and Chandrasekharaiah (1986; 1998). The
LS modd introduces a single time constant to didtate the relaxation of thermal propagation, as well as the rate of
change of gtrain rate and therate of change of heat generation. In the GL modd, on the other hand, the thermal and
thermo-mechanical rd axations times are governed by two different time constants.

The works of Ignaczak (1989), Hawwa and Nayfeh (1996), Daimaruya and Naitoh (1987) Green and
Naghdi (1991) contain more detail ed discussions on this phenomenon. Several authors (Nayfeh and Nasser,
1971; Tao and Prevost, 1984; Massdlas and Kalpakidis, 1987a; b) have considered the propagation of
generalized thermod astic waves in plates of isotropic media. Padovan (1974; 1975), Tauchert (1975; 1980),
Tanigawa et al. (1989), Bufler (1971), Bahar (1972) proposed the transfer matrix method to study the
isothermal easticity problems in a multilayered medium, and later extended it to thermoelasticity by Bahar
and Hetnarski (1980). Thangjitham and Choi (1991) extended the flexibility /tiffness matrix method to the
thermoe astic problem of a multilayered anisotropic medium under the state of generalized plane deformation.

Nayfeh and Taylor (1990) studied the problem of dynamic distribution of displacement and stress
considerations in the ultrasonic immersion nondestructive evaluation of multilayered plates for a plate
composed of an arbitrary number of isotropic layers. Verma et al. (1999a) studied the dynamic distribution
of displacements and therma stresses in multilayered media in generalized thermoelasticity. Verma and
Hasebe (1999b; 2001; 2002) studied the thermoel astic problem in generalized theori es of thermoel asticity.

This paper illustrates the devel opment of a generd-purpose modd from matrix formulations, which
describe thermoelastic waves in heat conducting isotropic-layered materials, with an arbitrary number of
layers in a Cartesian system. The models developed can account for eastic and visco-elastic isotropic
materials, single or multi-layered structures, and free or leaky systems. Although the Global Matrix method
is different from the Transfer Matrix Method, which is apparently based on the transfer matrix, both of them
will yield the same dispersion results since they are deduced from the same traction-free surfaces and
interface continuity conditions. Theoretical calculations of the displacements, temperature, thermal stresses
and temperature gradient within a multilayered plate in generalized theories of thermoeasticity, using the
matrix transfer technique are also discussed as specia cases. A rigidly bonded and smooth interface
condition is aso consdered as a specia case to stimulate de-bonding of two material layers. The model
developed will be of vdue in material characterization and providing other quantitative information on
thermo-mechanical, strength related properties of advanced materials. Relevant results of previous
investigations and coupl ed thermoel asticity are deduced as specia cases.

2. Field equations of theories of generalized thermoelasticity

The generalized coupled fidd equations governing dynamic thermoe astic processes for homogeneous heat
conducting isotropic materials and in the absence of body forces and heet source can bewritten as

mNu + (1 +mRNRNu- g§l+tllg§lq:rﬁ&, (2.1)
e tg

KRI2q -+ Coll+ (t 5 +to )] = g (Nl + t oRID) 2.2)

where g:(SI +2m)at; | and m arethe Lame parameters and a, is the coefficient of therma expansion;
u isthe displacement vector; q is the temperature change above the uniform reference temperature gy ; r is
the mass density; C, is the specific heat at constant deformation; t,, t, and t, arethe thermal relaxation
times and thermal-mechanical relaxation, respectivey. In Lord and Shulman (LS) theory, t; =t, =0, with
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ty isthe therma relaxation time of heat flux and in Green and Lindsay (GL) theory, t,=0, and t; and
tz(: to) are the thermal-mechanica relaxation and thermal rel axation times, respectively.

Consider aplate consisting of an arbitrary number, N, of homogeneous thermoel astic isotropic layers
rigidly bonded at their interfaces. The problem is to study the displacements, temperature, thermal stresses
and temperature gradient induced within the plate by anincident wave at an arbitrary angle from the normal
to the interface. We shall use two sets of two-dimensiona coordinate systems (x, z). One system is the
global coordinate system, which has its origin a the bottom layer of the plate such that x denotes the
propagation direction and z isthe normal to the interfaces. Hence alayered plane will then occupy the space
O£ z£d where d denotes the total thickness of the plate. The second system is local for each sublayer of

the plate. Since the plateis made of N layers, the kth layer will then haveitslocal coordinates (M and 2(m)

with alocal origin at the bottom surface. Hence each layer occupies the space 0 £ 2 £ 4™ where d(™ s
its thickness. With this choice of the coordinate system the equations of motion and heat conduction for each
layer are given by Lord and Schulman (1967), and Green and Lindsay (1972)

n{uyxX + u’ZZ)+ (I + m)(uxX +W’XZ) =ré+ g(T’X +t119’X), (2.3)
MW + W )+ (1 +mu g +wy, ) =rd+ofT, +t,%, ), (2.4)
KT o+ T 2]+ 1 ColB+to8) = gl (0, + W, )+ t oy @8, + 8, )] 2.5)

where the thermal relaxation times satisfy the inequalities t; 3 t; 3 O (for Green-Lindsay theory only), | and rr
are Lame's condtants, g= (3| +2m)a, is the themodastic coupling constant and a, the coefficient of thermal

expansion and al other symbols havetheir usua meanings asin Lord and Schulman (1967), and Green and Lindsay
(1972). The commanotation is used for spatia derivatives and the superposed dot denotes time differentiation.

3. Wavesin an isotropic thermoelastic flat-layer ed plate
For waves whose projected wave vector isalong the x-axis, Eqgs (2.3)-(2.5) admit theformal solutions
(u,vv,T):(Ul,UZ,U3)e(p[ix(x+az— ct)] (3.2)

where x is the wave number, U,, U, and U5 are the constant amplitudes related to displacements and
temperature, c is the phase veocity (: W/x), w is the circular frequency, a is the ratio of the z and x-
directions wave numbers. This choice of solutions | eads to the coupled equations

M,,(a)u, =0, m n=123 (3.2)

where the summation convention is implied, and

My =ca’ +1- 2%, Mg =cCaa, My, =1,
M13=Mg, Mg =c,+a’- 2%, Mg =a,

(3.3)
Mgy =ixew z°%t e, M3 =ixcw z%at ey,

My, =w'z%t - (1+a2), G =1-¢,,
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2

el:r(:-li?—g+2n‘b’ W*:Ce(l +2n‘D/K,

t =(tody +i/xc)t, +i/xc), t =(t, +i/xc), (3.4
c, =ny(l +2m), 22 =rc?/(I +2m.

The existence of a nontrivial solutionfor U;, U, and U, demands the vanishing of the determi nant
in Eq.(3.2), and yields the pol ynomid equation

2 ca?- ¢, )l + Aa?+B)=0 (35)
where

A=2-|Wt +1)- ixct e, |22,

B=|(2- 1)l2w't - 1)+ixcz?t ey,

Solving (3.5) for the six roots of a and using superposition results in the following formal solution relating
the di splacements, temperature, thermd stresses and temperature gradient within alayer to its wave amplitudes.

@ g 61 1 1 1 1 1 BAE,
&, 0 & a4 a, -a, -+ Ll g
) l:] ? 1 1 2 2 a3 a3 l;léA2E2[]
ér u € ug a
gé L’,:§51 S S S 0 0 @éA3E3ﬂE (3.6)
Sz0 €D, D, D, D; D; Dy WAEag
& u e YA ES U
é Xle € 4 - D4 D5 - D5 D6 - Dﬁl;lé 50
gty &, -D, Dg -Dg O 0 YeAsEsl

where a2 a3 arerootsof a* + Aa% +B=0 and

iXxagyz

az=% 1, Ej=e &, E:éx(x'c), q=12.6,

a?,a3 correspond to longitudinal and thermal waves whereas a3 corresponds to the transverse wave which
is not affected by the temperature variations

2
Dlzczgc—z- 27, Dy=-2c,
&t g
3.7)
2
D,=2,a,  Ds=2c,8,, Dy :;—2% 2%,
3ebr a
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D; =a,S;, Dg =255, Cr =—,

S = 1+";’§'_ij1722 +ad.  q=12, (3.7)
(,=52{ =%  {eI¢
IX IX IX

The matrix in (3.6) is the field matrix, describing the relationship between the wave amplitudes and
the displacements, temperature, stresses and temperature gradient at any location in any layer. Its coefficients
depend on the through-thi ckness position in the plate, the material properties of the layer, the frequency and
the invariant plate and wave number. The origin of the coordinate may be placed arbitrary and may even be
different for each layer because phase differences between layers can be accounted for by the phase of the
complex wave number.

4. Thetransfer matrix method

The Transfer Matrix method works by condensing the layered system into a set of six equations
relating the boundary conditions at the first interface to the boundary conditions at the last interface
(Thomson, 1950). In the process, the equations for the intermediate interfaces are eiminated so that the
fieldsin all of the layers of the plate are described soldy in terms of the externa boundary conditions.

The various parameters a;, a,, a;, S;, S;, D, ec. ae speciaized to the material under

consideration. Specializing EQ.(3.6) to the upper and bottom surface of each layer we can relate, after
lengthy algebraic reductions and manipulations, the displacements, temperature, stresses and temperature
gradient of the upper to those of the bottom as

Py =AnRn,  mM=L12.N (4.0)

where

B ={fuwt.$ 8 1) 4.2)

defines the variables column specidized to the upper and lower surfaces of the layer, m, respectively, and
which provide us

An = XD X

whereis X, is 6" 6 squarematrix and D, is 6" 6 diagonal matrix whose entries are E :e(p(ixaqd) of

Eq.(3.6). Thematrix A, constitutes the transfer matrix for the layer m. By appl ying the above procedure to
each layer and invoking the continuity relations on the upper and bottom of each layer to those of its
neighbors we can finally relate the displacements, temperature, stresses and temperature gradient at the top
(top of layer (N)) of the plae to those a the bottom of the plate (bottom
of layer (1)) via the transfer matrix multiplication. We can finally relate the displacements, stresses,
temperature and temperature gradient at the top of the layered plate, z=d to those at its bottom, z=0 via
the transfer matrix multiplication
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Pr = AnPr (4.3)

where Pnf = {[u,w,T e(.zz, XZT(G]} and the superscripts (+) and (-) designate quantities defined at the upper

and bottom of the layer, respectively. By applying the above procedure to each layer and invoking the
continuity relaions on the upper and bottom of each layer to those of its neighbors we can finally relate the
displacements, temperature, stresses and temperature gradient a the top (top of layer (n)) of the plate to those
at the bottom of the plate (bottom of layer (1)) viathe transfer matrix multiplication

|4y |=[Aln[Alp 1AL (4.4)
which leads to

JON 8,

ey 0 S Au As Au As Agle g

WU BAn Ay Ap Ay A A U

ot G e A A A A Al s

L0 A Ae As Au As Asid 0y

?XZ(N)B eA51 A, Az Ay Ass Amggéxz(l)g

algn) G A A As Au A Aes bal 1) 1

e Uz=d S Uz=0

The characteristic equation for such a situation is obtained by invoking stress-free upper and bottom
surfacesin Eq.(4.5).

Furthermore, for the traction-free boundary as well as thermally insulated conditions on the top and
bottom surfaces of the plate, Eq.(4.6) can be rewritten as

g
z

AN u Ay Ap A Ay A Alel]éU(l)U
gW(N)H gAzl Axy Az Aoy Ags Azeu (l)ﬂ
TG Ay Ay Ay Agy Ags A36ue1'(1u
é u =é a . 4.7
& q e'%ll'%lz'%l3A44A45A46l;]§) a
O U A Ay Ay Au A AU Y
@ O @Aﬁl Az Az Pes Ass Aec 0B  B=0
We obtain the characteristic equation as
Au A A
Ass Ay As3=0. (4.8)
A A2 Pes

Dispersion relation (4.8) is a transcendental function implicitly relating the phase velocity with the
wave frequency. It is not possible to solve it analytically in an explicit form; hence numerical root
searching tools have to be used to find phase velocity for every frequency point at a given wave number
direction.
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5. The global matrix method

Boundary conditions on top and bottom surfaces of the layered plate are:
(52:5%:TY| .4, =0, (5.1)

where d isthethickness of the plate.
Continuity conditions at the interface between the adjacent layers are given by

P - Prasn) =0- (5.2)

Equations (5.1) and (5.2) can be assembl ed into a matrix form as follows

+

s Aw g
&P - Plk-1)g
L u
é o
g0 Py o=
§ 1 ]
e u
o)- Py
e 5, U
g Adw 1§
§F(N)D(+N)L-6 Us Ay 0
& FPn) - Fin-1D(n-) G5AN-1)
: o O e
Y _ + ;e u
=< Fir-9Pfr-1) Fn)Dlw) & An) a=0
é O @) L
e 0 F2DR) - FwPh) ﬂg Az) E
& [Fyoi], o A0 & (63)
where D(‘;) =< glkPz >(n), é’l Zn)z (ézz,éxzj(@L:d/Z is the stress and thermal gradient components column

on the top surface of the layered plate and égl)): (5('u5('xz'§©| is the stress thermal gradient
z=d /2

components on the bottom surface, moreover the operator [ ] 4. denotes extracting last three rows from the
matrix in Eq.(3.6), thus both the first sub-matrix in the first row and the last sub-matrix in the last row are

3" 6 matrix. For nontrivia solutions of Eq.(5.3), the determinant of the assembled matrix must vanish and
consequently the dispersion relations for thermoelastic waves in alayered plate are
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F)P e
Fin)Din) - Fin-1)D(n-1)
(@] (@]
F(n-1)D(n-1) F(n)D(n) =0. (54)
(@] (@]
0 F)Di2) - FwD
[F(l)D('l)L.6

Although Eq.(5.4) is apparently different from Eq.(4.8) based on transfer matrix, both of them will
yield the same dispersion results since they are deduced from the same traction-free surfaces and interface
continuity conditions. Similarly to Eq.(4.8), when the material properties and fiber orientation of al layers
are the same, Eq.(5.4) is expected to reduce to Eq.(14) of Verma (2001). Additionally, both symmetric
modes and antisymmetric mode will be mixed together in the same manner as the transfer matrix
method.

6. Thermoeastic symmetric and antisymmetric modes of separation

Although both the transfer matrix method and global matrix method can directly cal culate a general
thermoel astic layered plate with an arbitrary stacking sequence, it is unlikely to distinguish the symmetric
and antisymmetric modes, even in symmetric multilayered plates, where the materid properties of the
multilayered plate are symmetric with respect to the center layer (z=0 in the undeformed configuration), all
solutions of the multilayered plate system decouple into the sum of a symmetric solution and an
antisymmetric sol ution.

In order to overcome this shortcoming, a method is devdoped to decouple symmetric and
antisymmetric modes in a symmetric laminate by imposing boundary conditions a the mid-plane of the
plate. It isworth of noting that this method is only valid for symmetric laminates.

For eastic waves in alayered plate, boundary conditions on the top surfaces are

(Szz’sxz’Tq)izzd/zzo’ (6.2)

where d isthethickness of the laminate.

Continuity conditions at the interface between the adjacent layers are expressed in Eq.(5.2). Because
of the symmetric structure of the laminate, one can consider only half of the laminate and then impose the
symmetric or antisymmetric conditions on the stress and displacement components at the mid-plane. For
nontrivial solutions of Eq.(6.1), the determinant of the matrix in Eq.(6.1) must be zero and consequently the
dispersion relations for symmetric waves in alayered plate can be numerically obtained.

For symmetri c modes, the boundary conditions at mid-plane can be expressed as

(W.T.s )., =0. (6.2)

Then these boundary conditions of the half-plate can be assembled into a matrix form
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é u
& 4. y
e u
e Am
- _ + u
P - Pu-y
é a
e v
&) - Py U=
e u
¢ | q
en- + u
a0 P,
€é2 g &2 gl
é o. U
& dge a
8 25 G
pa + )
4F DG Q6 Agy U
€ ! . N
& Fn)Din) - Fn-1)D{n-1) Ue 0
¢ o o 0 eAN-1) ¢
e ) N ue uou
g Fn1)Blna)  Fn)Pln) e A
e n) u
) 0 F v . -F,. .Df _Ue G
A aN 0 &N .0 o0 aN .0 A 7
é "1 Co+1% —+1* ¢—+1-U 5
é 32+1z 82+1z 82+lz 32+1ﬂugA§%+193 (6.3)
g é a gée il
& - g GeWNo
e SmiPmoy U Lo
g €€e2p e2alp35H

+ + +

where D(n) =< g/kP? >(n) é (N): (é Zz,e(.xz,'étqzzd/z, is the stress component column on the top surface of

thelaminated plaeand &~ = (W,T,éxz)t
N o

is the stress components on the middle plane, moreover the
z=0

€2,
operator [ ]4_6 denotes extracting last four rows from the matrix in Eq.(3.6), similarly [ ]2’3’5 indicates the
second, third, fifth Eq.(3.6).
For nontrivial solutions of Eq.(6.4), the determinant of the matrix in Eq.(6.4), must be zero and

consequently the dispersion relations for symmetric waves in a layered plate can be numerically
obtai ned.

Similarly, the boundary conditions of antisymmetric modes on the mid-plane are
(us,.Tg  =0. (6.5)

The assembl ed boundary condition matrix form of the half-plate has the following expression
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where é Tz (u,éz,{(atr
aN o
€24

middle plane, operator [ ]1’4’6 denotes extracting the first, fourth and sixth rows from the matrix in Eq.(3.6).

To guarantee nontrivial solutions of Eq.(6.6), the determinant of the matrix in Eq.(6.6) should be
zero.

are the displacements stress and temperature gradient components on the
z=0

7. Special cases
7.1. Smooth interface

If a smooth contact interface is introduced within the plate at an arbitrary location, say the interface
between layer (m) and (m+ 1), then the previous anaysis must be modified. In this sense, we may now

consider the plate to be composed of two subplates, the top subplate with n-m layers, where 1Em£n. The
appropriate conditions for the smooth contact surface are

w(me) = wim), T (m+1) =T (m),
s,M =g M Tdma) =Tm), (7.1)
s ™=s M=0 a zm)=0,  z(m=dm).

First, we construct the top subplate macro transfer matrix by truncating A; starting from thetop as
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] =[] sl fa ), (72

Next, we construct the bottom subpl ate macro-transfer matrix from the remaining part of A;

Hy] =[a], [apal, L2, (7.3

here [Aj] = [Tip] [H pj] . Invoking the smooth conditions (7.1) leads to a modified matrix [Aj] rdating the
field variables at the top and bottom of the plate and hence replacing Eq.(4.5).

7.2. Displacements, temperature, stresses and temperature gradient within the plate

The displacements, temperature, stresses and temperature gradient within an arbitrary layer, |, a an

arbitrary point, say A1) = Z, , are obtained by exactly the same procedure as we use to obtain the relationship

between the plate boundary responses, given by Eq.(4.5). That is the matrix transfer technique is used to
extend the boundary solution at z=0 to locations within the plate

U ) &l o
é (") U éFy Fio Fi3 Fiy Fis Fiel @ ) ua
= . & 0 a .
gN ﬂ eFa1 Fo Faz Fay Fi Fyy gN ﬂ
ér ) a ngl Fo Faz Fay Fys Fseg ér w a (7.4)
%E(n)g e Fio Faz Fa Fus FlGl;] %E(l)g .
gs—xz(”)g gF51 Fso Fs3 Fsy Fss FlGE gs—xz(l)g
éf n) U 8Fs1 Fe2 Fes Fes Fes Fes Qméf 1)
e Uzzzo e u
where, for the plate with all rigidly bonded interfaces
Fil =lbo] e - fagl,  121EN (7.5)

and the entries of [bij] in (7.5) are obtained from the micro-transfer matrix for layer | ([aij]) by replacing

z inEq.(7.2) by z,. Thus, [Fij] in Eq.(7.5) is atransfer matrix that relates the displacements, temperature,

stresses and temperature gradient at z() = z, withthoseat z=0.

If a smooth interface is present between layers m and m+ 1, the displacements, temperature,
stresses and temperature gradient are again given by Eqs (7.4) and (7.5) with the constraint 1£1 £ N and

[Aj] in (4.5) replaced by the appropriate micro-transfer matrix. On the other hand, the displacements,
temperature, stresses and temperature gradient above the smooth interface, upon invoking the continuity and
zero shear stress conditions in Eq.(7.1), are given by replading [Fij ] in Eq.(7.5) by

[Fl=[cs ¢[Qls u[Rlas (7.6)

where
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and (Go] =lba) lag] las] .. 1£TEN 7.7)

Equation (7.4) together with Egs (7.5) and (7.6) give the displacements, temperature, stresses and
temperature gradient at arbitrary points within a platein terms of the lower boundary response for the case of
al rigidly bonded interfaces and the case of a smooth interface between layers (m) and (m+1),

respectively.
7.3. Classical case

This case corresponds to the situation when the strain and temperature fields are not coupled with
each other. In this case the thermo-mechanical coupling constant isidentically zero.

7.4. Zero coupling

When the coupling constant e; =0, the thermal wave which is influenced by the thermal relaxation
time t , gets decoupled from its counterpart in e asticity (Nayfeh and Taylor, 1990).

7.5. Coupled thermoelasticity

When the thermal relaxation time t, ® O, then the results obtained in the analysis reduce to
conventional coupled theory of thermoe asticity.

8. Conclusion and discussion

The deved opment of a generd purpose model for thermoel astic wave propagati on for heat conducting
isotropic layered plates is shown. The obtained modd can account for thermo and visco-eastic heat
conducting isotropic materials, single or multi-layered structures, and free or leaky systems. Displacements,
temperature, thermal stresses and temperature gradient within a multilayered plate in generalized theories of
thermoel asticity are also obtained, using the matrix transfer technique. Rigidly bonded and smooth interface
conditions are also considered as a specia case to stimulate de-bonding of two materials layers and the
model deve oped will be of value in material characterization and providing other quantitative information
on thermo-mechanical, strength related properties of advanced materials. The Globa Matrix methodis power
ful and the same matrix may be used for all types of solutions. The disadvantage is that the globa matrix
may be large and therefore the solution may be relatively slow. The method can aso be used to calculate
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dispersion relations for a one layered plate case, when the layer number N =1, or the material properties of
al layers are the same.
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Nomenclature

A, —transfer matrix constitutes
¢ —phase velocity
Ce — Specific heat at constant deformation
d —thickness of the plate
D, — 6" 6 diagona matrix
[G][Q][R] - denotes matrices
i —imaginary number
K —therma conductivity
N —number of layers
P, —column specialized to the upper and lower surfaces of the layer, m
TC —temperature gradient
T¢ — temperature gradient
u —isplacement vector
§ — denotes time differentiation
U Wy —COommanotation is used for spatial derivatives
U;,U,,Ugz —constant amplitudes
X —propagation direction
Xmn — 67 6 sguare matrix
z —norma to theinterfaces
a; —coefficient of thermal expansion
e; —coupling constant
¢ —thermoelastic coupling parameter
| ,m —Lame parameters
go — uniform reference temperature
g, T —temperature change above
r —massdensity
S 7Sz Sy —thermal stresses
t1,tg,to,t° —thermal relaxation times
w —circular frequency
w"  — characteristic frequency
X —wave number
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