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Singularity behavior of a flow in a curved pipe is analyzed. A series related to a similarity parameter is 
obtained by using algebraic programming language MAPLE. The series is then analyzed by various 
generalizations of the approximate methods. The result is not conclusive, but we show approximately the 
dominating behavior of the flow near the (unphysical) singularity point. 
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1. Introduction 
 
 The first theoretical analysis of flow in a curved pipe was carried out by Dean (1927; 1928). He 
compared his results with the experimental data obtained by Eustice in 1911, and found a good agreement. In 
essence, Dean’s solution shows that the streamlines exhibit helical motion when the curvature of the pipe is 
small; this motion divides into two “screw” motions on both sides of the central plane of the pipe. In his first 
paper, Dean could not describe how the curvature of the pipe affects the flow near the boundary. Later, in his 
second paper, he remarked that the curvature reduces the pressure gradient on the boundary, so that the flux 
ratio decreases there. 
 Following Dean, many mathematicians such as White (1929), Taylor (1929), Itö (1959), Mori and 
Nakayama (1965) worked on the problem. A power series for Dean’s solution was analysed by Topakoglu 
(1967), Larrain and Bonilla (1970) and Van Dyke (1978). Van Dyke (1978) used a series for the flux ratio, 
while Dean’s conclusions were based on the first two terms of the series for the friction ratio. Other 
contributions have made use of boundary layer theory.  
 The remainder of this paper is as follows: We describe the mathematical model of the flow in a 
curved rotating pipe in 2. In 3, we use approximate methods to analyse the dominant singularity behavior of 
the solution. 
 
2. Formulation of the problem 
 
 We consider the steady motion of an incompressible viscous fluid through a circular curved pipe of 
uniform cross section. We follow Dean (1928) in using the spherical coordinates ( )ϕθ,,r . Let Oz be the axis 
perpendicular to the central line through the pipe so that θ  is the angle between the radius vector and the Oz 
axis. See Fig.1. 
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Fig.1. A schematic diagram of the flow in a curved pipe. 
 

 C is the centre of the section of the pipe by a plane that makes an angle ϕ  with a fixed axial plane. 
Denote by u, v and w the components of the velocity vector defined as follows: consider a cross section of 
the pipe as in Fig.1. Then u is the component in the radial direction in the plane of the cross section, v is the 
component in the tangential direction in the same plane, and w is the component along the central line 
through the pipe. The radius of the cross section is denoted by a and the radius of the circle around 
which the pipe is coiled is denoted by L. The general direction of flow is assumed to be that of ϕ  
increasing.  
 Then the Navier-Stokes equations can be written as  
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with the continuity equation 
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 We assume that L is large, so that La  is small. We shall in fact consider the limit 0La → . We 
shall also assume that the motion is the same in each cross section of the pipe, that is 
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where G is the pressure gradient along the central line. Let ( )θ,rf  be the stream function so that we 
have 
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 We introduce the dimensionless variables 
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where 0w  is the maximum speed in a straight pipe under the same axial pressure gradient. Then by 
eliminating the pressure gradient terms, we can write Eqs (2.1)-(2.3) in the following form (dropping the 
tildes for simplicity) 
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with the boundary conditions  
 

  1w = ,     0=ψ      at     0r =      and     0
r

w =
∂
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=ψ=      at     .1r =  (2.10) 

 
 Now, Eqs (2.7), (2.8) with the boundary condition (2.10) can be solved easily when .0K =  The 
solution then corresponds to a Poiseuille flow for a straight circular pipe. In order to investigate the flow for 
a curved pipe, it is therefore natural to expand the solution in powers of the parameter K  
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 By using MAPLE, we find the first 25 coefficients of the series for the axial velocity w and the 
stream function ψ  in terms of the coordinates r  and θ . The coefficients are computed symbolically and are 
thus free of round-off error. The first two coefficients of the series for the axial velocity w are  
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3. Result and discussion  
 
 For the analysis, we choose the series for the functional  
 

  ( )21r
dr
dw

π=θ= , , 

 
which is related to the tangential shear stress at the wall of the pipe. From the results shown in Tabs 1 and 2, 
it appears that there is a pair of complex conjugate singularities along the imaginary axis in the complex K  
plane. These singularities have the form  
 

  ( ) ( )α±+π cKKBA~21
dr
dw ,      as     cKK ±→ ,                          (3.1) 

 
with, 21=α . These findings are comparable to those of Van Dyke (1978). We have plotted an approximate 
bifurcation diagram in Fig.2. Van Dyke (1978) used an Euler transformation to show that a solution exists 
for large .K  As can be seen in Fig.3, the method of Drazin and Tourigny (1996) succeeds in continuing the 
real solution beyond the circle of convergence of the series. However, to learn something about the 
properties of the flow, we need to consider yet larger values of K . But we do not have enough series 
coefficients to do this accurately. 
 
Table 1. Estimates of cK  and α  in Eq.(3.1) by high-order differential approximants Khan (2002; 2003). 
 

D N NKc ,  Nα  

2 
3 
4 

7 
13 
18 

− 14.85549 ± 602.09315i 
− 0.2254334 ± 587.00711i 
0.0018806 ± 585.77978i 

0.376181981± .2153940 i 
0.454255624 −0 .0080953 i 
0.500724160 − 0.0001890 I 

 
Table 2. Estimates of AKc ,  and B  in Eq.(3.1) by the Drazin-Tourigny (1996) method.  
 

d N NKc ,  NA  NB  
2 
3 
4 
5 

5 
9 
14 
20 

− 0.115356 ± 0.623030 i 
0.82090911± 588.474987 i 
0.16830677 ± 585.694255i  
− 0.00038021±585.788540i  

0.441070 − 0.2382118i 
−1.869690 − 0.506063i 
−1.871674 − 0.496850i 
−1.871356 − 0.497227i  

0.113566 +0.136524i 
0.005503 +0.023646i 
0.004964 +0.022470i 
0.004962 +0.022582i 
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Fig.2. Approximate bifurcation diagram (curves I and II) in the ( )( )21K dr
dw π,,Im  plane obtained by the 

Drazin-Tourigny (1996) method for 5d = . The inset in the lower right-hand box is a zoom-in on the 
bifurcation point. Note that the other curves are spurious.  

 

 
 

Fig.3. Approximate solution diagram (curve I) for 0K >  obtained by the Drazin-Tourigny (1996) method 
for 5d = . The other curves are spurious. 

 
4. Conclusion  
 
 We have verified that the convergence of the series Eq.(2.11) is limited by a pair of singularities 
located along the imaginary axis in the complex K  plane. Again, the dominant singularities are complex, as 
previously noted by Van Dyke. Such complex singularities have no physical interpretation, and thus tell us 
very little about the flow. Dean described the secondary motion in the flow that occurs as the relevant 
expansion parameter increases. In principle, we can learn something about the aspects of the flow by using 
our (Drazin-Tourigny, 1996 and Khan, 2002) powerful approximate methods to continue the series solution 
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well beyond the nearest (unphysical) singularities. In practice, however, we simply do not have enough series 
coefficients at our disposal to exploit the approximate methods. This unfortunate situation arises all too often 
in applications to problems of fluid dynamics. 
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