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Letter to the Editor

A NOTE ON THE EFFECT OF RADIATION ON FREE CONVECTION
OVER A VERTICAL FLAT PLATE EMBEDDED IN A NON-NEWTONIAN
FLUID SATURATED POROUSMEDIUM

T. GROSAN and I. POP
Faculty of Mathematics and Computer Science
Babes-Bolyai University, R-3400 Cluj-Napoca, ROMANIA
e-mail: popi @math.ubbd uj.ro

The effect of radiation on the free convection from a vertical plate embedded in a power-law fluid saturated
porous media has been considered. Similarity equations have been obtained and solved numericaly. It was found
that there is an increase in the boundary layer thickness with an increase in the radiation parameter N and a
decrease in the power-law index n was observed.
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1. Introduction

Heat transfer in porous media occurs in practical applications in geophysics, energy related
problems, environment, etc. An excellent summary of the work on this subject is given in the monographs by
Ingham and Pop (1998; 2002), Nield and Bgan (1999), Vafai (2000), Pop and Ingham (2001), Bgan and
Kraus (2003), Ingham et al. (2004) and Bgan et al. (2004).

Many fluids involved in industria applications have a non-Newtonian behaviour. On the other hand,
if the processes take place at a high temperature, radiative effects cannot be neglected (Modest, 2003; Siege
and Howdl, 1992). The effects of radiation on free convection past a horizonta plate with a variable wall
temperature and embedded in a non-Newtonian fluid saturated porous medium has been studied by Mehta
and Rao (1994). Mansour and Gorla (1998) have considered the case of mixed convection from a wedge and
Mohammadein and EI-Amin (2000) have studied the case of mixed convection from a horizontal plate in a
porous medium.

The object of this Note is to study the radiation effects on free convection from a vertica flat plate
embedded in a power-law fluid saturated porous medium using the Rosseland model.

2. Basic equations

Consider a semi-infinite vertical flat plate which is maintained at a constant temperature T,, and
which is embedded in a non-Newtonian fluid saturated porous medium of ambient temperature Ty, see

Fig.1. Using the boundary layer and Boussinesq approximations the mathematical model is given by the
continuity, modified Darcy law and energy equation

—+—=0, (21)
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respectively, where x and y are the Cartesian co-ordinates along and normd to the plate, respectively, uand v are
the ve ocity components dong x- and y- axes, respectively, T is the fluid temperaure, n is the power-law index,

b is the therma expansion coefficient, n” is the modified kinematic viscosity, a,, isthetherma diffusivity of

the medium, r isthe dengty, Cp is the specific heat a constant pressure, q' isthe radidive heat flux, and the

lower indices ¥ and f refer to the ambient conditions and fluid phase, respectively, and the upper index * refers
to the modified quantitiesin the power-law fluid. The modified permesbility K" (n) isgiven by

(Christopher and Middleman, 1965)

3(10n- 3) (2.4)
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(Darmadhikari and Kale, 1985)

where j is the porosity and d is the partice diameter. It is worth mentioning that n<1 corresponds to a

pseudoplastic fluid, n=1 to aNewtonian fluid and n>1 to adilatant fluid. Theradiative heat flux q" under
the Rosseland approxi mation has the form
.. 4
q =- aeﬁg'ﬂT_ (2.5)
3c gy
where s isthe Stefan-Boltzman's constant and c is the mean absorption coefficient.
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Fig.1. Physical modd and co-ordinate system.
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Equations (2.1)-(2.3) have to be solved subject to the boundary conditions

v=0, T=T, for y=0, x>0,
(2.6)
u® 0, T® Ty for y® ¥, - ¥ <Xx<¥.

In order to obtain similarity solutions, i.e, the governing partial differential equations reduce to
ordinary differential equations, of Egs (2.1)-(2.3) subject to the boundary conditions (2.6), we introduce the
following variables

th)=y/anRal?,  qfh)= . h=Ra(y/x) @7

where y is the stream function defined in the usual way as u=1y /Ty and v=- Ty /fx and Ra; isthe
modified local Rayl e gh number which is defined as

Sl

(2.8)

Re’ :gﬂgbK*(n)STW- Ty )x”g .
van P

Substituting (2.7) into Egs (2.1)-(2.3) and (2.6), we obtain the following ordinary differential
equations

(14" =0, (2.9)
e 4 o i 1

le = ) 3U 1 _

%81+3N[1+(qw 1)q] anz +2 1q¢=0, (2.10)

subject to the boundary conditions
f(0)=0, q0)=1, f(¥)=0 (2.12)

where N isthe radiation parameter

3
N = asTy. , (212)
ke
and q,, isthetemperature parameter
Tw
=, 2.13
G =, (213)

Using the energy balance on the surface of the plate it is possible to calculate the coefficient of the
convective heat transfer, h, defined as
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kETO g =n(T,-Ty), (2.14)
le By=0

and thus we can obtain thelocal Nusselt number
Nu, /Ra,"? =- ‘E’EH%Nqﬁ,gq' (). (2.15)
e ]

We mention that in the case when the radiation effect is absent (N = 0) , Egs (2.9) and (2.10) reduce
to those obtai ned by Chen and Chen (1988).

3. Resultsand discussion

Equations (2.9) and (2.10), subject to the boundary conditions (2.11) were solved numerically using
the Runge-K utta method in combination with a shooting technique for different values of the parameters N,

q,, and n (N=0,1,5,10; q, =1.1,1.5,2.0,n =0.5,0.8,1,1.5,2.5). The obtained values of the local Nusselt
number when the radiation effect is absent (N :O) are given in Tab.1 and the values of Chen and Chen

(1988) are dso included in this table for the sake of comparison. It is seen that the present results arein very
good agreement with those reported by Chen and Chen (1988) and this confirms the accuracy of the present
method. The values of the local Nussdlt number for different values of the parameters N ( 0), q,, and n are
giveninTab.2.

Figures 2-4 show the dimensionless temperature profiles for some vaues of the governing
parameters of interest. We can see that the thickness of the boundary layer increases as the radiation
parameter N and the temperature parameter q,, increase. The radiation effect is more evident by increasing

the boundary layer thickness for the pseudoplastic fluids (n < 1), the thickness becoming lower for the
Newtonian (n=1) and dilatant n>1 fluids.

Table 1. Vaues of thelocal Nussdlt number - q (0) for N =0 and different values of the parameter n.

N Chen and Chen (1988) present results
0.5 0.3768 0.377670
0.8 0.4238 0.423999
1.0 0.4437 0.443885
15 0.4752 0.475379
2.0 0.4938 0.493804
25 0.5059 0.505912
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Table 2. Vaues of thelocal Nussdlt number - q (0) for different values of the parameters N, nand q,,.

\ - q(0)
n
g, =11 gy, =15 g, =20
0.5 1 0.129473 0.109367 0.095490
5 0.056356 0.049000 0.043692
10 0.039518 0.034618 0.030997
0.8 1 0.140203 0.118992 0.104629
5 0.062999 0.052978 0.047731
10 0.042194 0.037386 0.033836
1.0 1 0.144489 0.122876 0.108364
5 0.061836 0.054560 0.049370
10 0.043234 0.038486 0.034990
15 1 0.150952 0.128776 0.114005
5 0.064111 0.056939 0.051870
10 0.044768 0.040138 0.036760
2.0 1 0.154573 0.132108 0.117363
5 0.065364 0.058269 0.053288
10 0.045611 0.041059 0.037747
25 1 0.156894 0.134251 0.119478
5 0.066159 0.059119 0.054202
10 0.046144 0.041649 0.038390

40

Fig.2. Dimensionless temperature profiles for n=0.5, N=0,1,5,10 and q,, = 1.1(_><_>), 1.5(___) and

2(.....).
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40

Fig.3. Dimensionless temperature profiles for n=1, N=0,15,10 and g, :1.1(_><_>), 1.5(___) and

2(.....).
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Fig.4. Dimensionless temperature profiles for n=15, N=0,1,5,10 and q,, = 1.1(_><_>), 1.5(___) and

2(.....).
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4. Conclusons

Natural convection over a vertical flat plate embedded in a fluid-saturated porous medium exposed
to therma radiation has been investigated. Numerical solutions are given in terms of three parameters,
namey the radiation parameter, N, the plate temperature, q,,, and the power-law index, n. It is found that

both the heat transfer, - ' (0) and the non-dimensional temperature profiles, q(h), are gresatly affected by

these parameters. The solution showed that the values of heat transfer from the plate without radiation
(N = 0) arein very good agreement with those reported by Chen and Chen (1988).
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Nomenclature

O
o

— gpecific heat at constant pressure
— particle diameter
— reduced stream function
— gravitational acceleraion
— hest transfer coefficient
—thermal conductivity
K" —modified permeability of the porous medium
n —power-law index
N —radiation parameter
Nu, —local Nusselt number
q" —radiative heat flux

Ra’ — modified Rayleigh number for porous medium
T —fluid temperature
T, —wall temperature
Ty —ambient temperature
u,v —velocity components aong the x- and y-axes, respectively
x,y — Cartesian coordinates
a, - effectivethermal diffusivity
b — coefficient of thermal expansion
¢ —mean absorption
j —porosity
h —similarity variable

* X > Q = o

n" —modified kinematic viscosity

g — hon-dimensionless temperature
g, - temperature parameter

r —fluid density

s — Stefan-Boltzman constant

y —stream function
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