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Many studies on classical thermoelastoicity have been denoted to materials with memory Nunziato, Chen and 
Gurtin, whereas few on generalized thermoelasticity address materials with memory. The present paper deals 
with the wave propagation in materials with memory in generalized thermoelasticity. Plane progressive waves 
and Rayleigh waves have been discussed in detail. The results show appreciable differences with those in the 
usual classical thermoelasticity theory. 
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1. Introduction 
 
 In the mechanics of continuous media, a material is said to have hereditary characteristics or memory 
if its behavior at time t is specified by the past experience of the body up to time t. The theory of heat 
conduction in materials with memory has drawn the attention of many researchers. The motivation was 
provided by an unpleasant feature of the classical linear theory of heat conduction viz., that a thermal 
disturbance produced at some point in the body felt instantaneously at all other points. This contradicts the 
relativistic principle that energy cannot be propagated at speeds exceeding the velocity of light. Gurtin and 
Pipkin (1968) first established a general non-linear theory of heat conduction in rigid materials with memory 
for which thermal disturbances propagate with finite speed. They assumed that the response functional viz., 
the entropy, free energy and heat-flux depend on the present value of the temperature and the integrated 
histories of the temperature and the temperature gradient. 
 Nunziato (1971) considered a slightly different memory theory of heat-conduction. He assumed the 
response functional to depend on the histories upto the present time of the temperature and the temperature 
gradient. In his theory, heat conduction depends also on the present value of the temperature gradient so that 
Fourier’s law of heat conduction is obtained as a particular case, if ( )0k , the instantaneous conductivity, is 
non-zero. On the other hand, if ( ) 00k = , Nunziato’s heat conduction equation agrees with that of Gurtin and 
Pipkin. Chen and Gurtin (1970) extended the theory presented by Gurtin and Pipkin to deformable media. 
They started with the constitutive assumptions that the response functional viz., the stress, entropy, free 
energy and heat-flux depend on the present values of the temperature and the deformation gradient and the 
integrated histories of the deformation gradient, temperature and the temperature gradient. McCarthy (1970), 
on the other hand, assuming the response functionals to be dependent on the present values of the 
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temperature and the deformation gradient, histories of the deformation gradient and the temperature and the 
integrated history of the temperature gradient, developed a theory of thermo-mechanical materials with memory. 
 Ghosh (1972), however, assumed the response functionals to be dependent on the present values of 
the temperature and the deformation gradient and the histories of the temperature, deformation gradient and 
the temperature gradient. His assumptions are thus less restrictive than those of Chen and Gurtin and of 
McCarthy. He extended Nunziato’s theory of heat conduction to deformable bodies and deduced the 
generalized stress-strain relation and the coupled equation of heat conduction for materials with memory and 
obtained the linearised forms of these equations. The stress-strain relation is similar to that for a linear 
thermo-visco-elastic solid given by Eringen (see Eringen (1967), p.367-368). The heat conduction equation 
for a thermo-visco-elastic solid is the same as that for the thermo-elastic solid (Eringen, 1967). It is, thus, 
observed that the stress-strain relation and the heat conduction equation obtained by Ghosh (1972) is more 
general than those of others in the sense that the equations of classical thermoelasticity as well as those of 
classical thermo-visco-elasticity can all be obtained as particular cases. The stress-strain relation and the 
coupled equation of heat conduction in the linear coupled thermo-elasticity theory given by Chadwick (1960) 
for thermoelastic materials (see Müller (1967)) can be obtained as particular cases from those deduced by 
Ghosh. This is to be expected, since for “thermoelastic” materials the response functionals depend only on 
the present values of the temperature, temperature gradient, and the deformation gradient and so 
“thermoelastic” materials are special cases of “thermoelastic materials with memory”. 
 Chen, Amos, Nunziato and McCarthy have studied propagation of thermoelastic waves. Chen (1969) 
studied the amplitude variation of the temperature rate waves of arbitrary form, assuming that the 
constitutive relations of the material are given by the linearised theory derived by Gurtin and Pipkin (1968). 
Amos and Chen (1970) obtained the speed of propagation of thermal waves in a one dimensional case, while 
Nunziato (1971) determined the attenuation and the speed of plane temperature and temperature rate waves. 
McCarthy (1970) studied the propagation of “first order” waves using the equations derived by him 
McCarthy (1970). 
 The recent works in this line by Bhattacharyya and Kumar (1991), Matinez and Quintanilla (1995), 
Chirita and Quintanilla (1997), Iesan and Quintanilla (2002), Zhou et al. (2003) may be of worth mentioning. 
 In the present paper, we study plane progressive thermoelastic waves and Rayleigh waves in 
generalized thermoelasticity in a general form using the more general equations deduced by Ghosh (1972). It 
is observed that as in the usual coupled thermoelasticity theory, there exist two types of propagating plane 
waves, one is the quasi-elastic wave and the other is the quasi-thermal wave (Chadwick, 1960, p.283). Both 
the waves, however, exhibit dispersion and attenuation. The modified elastic wave speed approaches the 
“instantaneous” value of the classical compressional wave velocity at high frequencies and its “equilibrium” 
value modified by the coupling factor at low frequencies. Its attenuation coefficient tends to a constant value 
at large frequencies and is proportional to the square of the frequency at low frequencies. Similar features are 
observed in the usual coupled thermoelasticity theory. But a new feature exhibited by plane propagating 
purely elastic waves in materials with memory is that these waves are subject to both dispersion and 
attenuation. The purely elastic wave speed approaches the “instantaneous” value of the classical 
compressional wave velocity at high frequencies and its equilibrium value at low frequencies. The 
attenuation coefficient is proportional to the square of the frequency at low frequencies and tends to a 
constant value at high frequencies. 
 For thermal waves both the velocity and the attenuation coefficient are proportional to the square 
root of the frequency at low and high frequencies. 
 The dispersion equation for Rayleigh waves has also been obtained. It has a form analogous to that 
in the usual linear coupled thermoelasticity theory. 
 
2. Formulation of equation 
 
 Following the analysis of Nunziato (1971) regarding the deduction of stress-strain relations in 
classical thermoelasticity and Dhaliwal and Sing (1980), Lord and Shulman (1967) and Green and Lindsay 
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(1972) in generalized thermoelasticity, the stress-strain-temperature relations and heat conduction equations 
are written below: 
i) assuming isotropy and linearity, the equation of heat conduction or energy equation can be written 

as       
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ii) Stress-strain-temperature relations are 
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iii) Equations of motion are 
  
  ( ) ( )ttjij ,,, xux &&ρ=σ . (2.3) 
 
iv) Strain-displacement relations 
 

  ( )ijjiij uu
2
1e ,, += ,        321ji ,,, = . (2.4) 

 
 In Eqs (2.1) and (2.2) ( ) ( )sks ,α  are the energy-temperature relaxation function and the heat-
conduction relaxation function respectively, which in the case of “thermoelastic” materials correspond to 
specific heat and conductivity respectively. ( ) ( )ss µλ ,  may be called the Lamé relaxation functions 
corresponding to the usual Lamé constants. ( ) ( )ss ηβ ,  are the relaxation functions corresponding to ηβ,  
where β  is the coefficient of the temperature deviation in the stress-strain relation, and η  is the coupling 
constant. θ  denotes temperature deviation, ( )t,xu  is the displacement vector. 
 It should be noted that the relations  
 
  ( ) ( ) ( )[ ] T02030 αµ+λ=β ,          ( ) ( )0T0 0β=η  
 
where Tα  is the coefficient of linear expansion and 0T  is the reference temperature, hold though they are not 
valid for other values of the argument s (they are valid for “thermoelastic” materials when 

( ) ( ) ( ) ( ) ( ) ( )sssksss µηλβα ,,,,,  are all constants). If the relaxation functions ( ) ( ) ( )sss λβα ,, ( ) ( )ssk η, , ( )sµ  
are constants Eqs (2.1) and (2.2) reduce to the corresponding equations in the usual linear thermoelasticity 
theory. 
 In the absence of body forces the equation of motion in deformable materials with memory becomes, 
by the use of Eq.(2.2) 
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 Taking the divergence of Eq.(2.5), we obtain 
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where  ( ) ( )tte ,div, xux = . 
 
3. Solution of the problem 
 
 Let us assume the following form of the plane wave solutions of Eqs (2.1) and (2.6) 
                    
  ( ) ( )[ ] ( ) ( )[ ]cntiette 00 ˆexp,,,, xxx −ωθ=θ  (3.1) 
 
where 0>ω  and n̂  is a unit vector. 
 Substituting Eq.(3.1) in Eqs (2.6) and (2.1), we get 
 
  ( ) ( ){ } ( ) ( ){ }[ ] ( )( ) ( ){ }[ ] 0it1it10ec2020 0110
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 Putting 
 

  ( ) ( ) A0 =ωα′+α ,     ( ) ( ) B0 =ωβ′+β ,     ( ) ( ) ( ) ( ) L2020 =ωµ′+ωλ′+µ+λ , 
   (3.4) 
  ( ) ( ) Kk0k =ω′+ ,     ( ) ( ) M0 =ωµ′+µ ,     ( ) ( ) N0 =ωη′+η ,                                    
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and eliminating 0e , 0θ  between Eqs (3.2a) and (3.2b), we get 
  
  ( ) ( ) ( )( )[ ] 0LKiBNit1it1KiALti1cActi1 0lk10lk

24
lk0 =ω+ωδ+ω++ωρ+ωδ+−ρδω+ . (3.5) 

 
 If 0tt 10 == , we get back the results (6a) and (6b) of Chakraborty (1976) in classical 
thermoelasticity.  
 The roots 2

21C ,  of Eq.(3.5) are given by 
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 If ( ) 0s ≠η , the root 1C  corresponds to a quasi-elastic wave and the root 2C  corresponds to a quasi-
thermal wave, because for ( ) 0s =η and 0t0 =  
 

  ( ) 2
1

1 LC ρ= ,          ( ) 2
1

2 AKiC ω= , 

 
and these roots correspond, in the uncoupled problem, to a pure elastic and thermal wave respectively.       
 Let us now analyse the roots of the dispersion Eq.(3.5) for low and high frequencies. 
 
(a) Low frequency 
 
 Expanding ( )ωα′  for small ω  in the form  
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 If we assume the existence of integrals of the type 
  

  ( )( )∫
∞

α=α
0

nn
n dsss ,           1n > , 

 



A.Baksi and R.K.Bera 776 

 
we can retain the terms of higher order in ω  in Eq.(3.8).  
 Thus, for a small ω , we can write 
 
  ( ) ωα−∞α≈ 1iA ,        ( ) 1iB ωβ−∞β≈ ,         ( ) ωµ−∞µ≈ 1iM , 
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where  111111 k,,,,, ηµλβα  are integrals, assumed to converge, of the type (3.9). Using the results 
Eq.(3.10) in Eq.(3.6) and extracting the square root, we get for a small ω  
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 If 1V , 2V  denote the wave velocities and 21 νν ,  the attenuation coefficients for the modified elastic 
and thermal waves respectively, then  
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(b) High frequency              
 
 Integrating each of the transforms in Eq.(3.3) by parts, we obtain 
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 The wave velocities and attenuation coefficients for the elastic and thermal waves are given by 
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 It is observed that both the modified elastic and thermal waves in a generalized thermoelastic 
medium exhibit damping and dispersion. The modified thermal elastic wave speed, unlike that in the 
classical result approaches the instantaneous value of the classical compressional wave velocity at high 
frequencies and its equilibrium value is modified due to the presence of the coupling factor at low 
frequencies. Both the quasi-thermal wave speed and attenuation coefficient are proportional to the square 
root of the frequency at low frequency. Results for ‘thermoelastic’ materials may be obtained from the 
results of Eqs (3.15)-(3.18) and (3.24)-(3.27) by taking the relaxation functions to constants. They agree with 
those given by Chadwik (1960) and Nowacki (1962). 
 We neglect the coupling between the temperature and the displacement fields by putting 
 
  ( ) ( ) ( ) 00s =∞η=η=η , 
                                                                                                 
in Eqs (3.15)-(3.18) and (3.24)-(3.27) and get the corresponding results for the purely elastic and the purely 
thermal modes. Results for the purely thermal mode agree with those given by Nunziato (1971). 
 For the purely elastic mode 
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 The results of Eqs (3.28)-(3.31) show that the purely elastic wave has its modification, the 
quasi-elastic wave is subject to damping and dispersion. This is a feature exhibited by the elastic 
waves only in material with memory both in the cases of classical and generalized thermoelasticity. 
The attenuation coefficients at low and high frequencies are proportional to 11 2µ+λ  and 

( ) ( )020 µ′+λ′  respectively. These vanish if ( ) ( )s2s µ+λ  is a constant i.e., in classical elasticity. Thus 
attenuation of a pure elastic wave occurs in materials with memory. However, it may be pointed out 
that the effect of generalized thermoelasticity is found to be absent. The velocity for pure elastic 
waves tends to different limits, in general, according as 0→ω  or ∞→ω ; but if ( ) ( )s2s µ+λ  is a 
constant, as in the classical elasticity EV  becomes independent of ω  and assumes the constant value 
of the classical compressional wave velocity. 
 
4. Rayleigh waves 
 
 Putting the displacement vector u  in the form  
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as the sum of irrotational and solenoidal components in Eqs (2.1) and ( 2.5), we get 
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( )( ) ( ) ( ) ( )[ ] ( ) ( ) ( ){ }

( ) ( ) ( ){ } ( ) ( ) ( ) ( ) .,,,,

,,,,

∫∫

∫
∞∞

∞

−θ∇′+θ∇=−ϕδ+−ϕ∇η′

φ∇δ+φ∇η+−θ+−θγ′+θ+θα

0

22

0
0lk

2

0

2
0lk

2
00

dsstskt0kdssttsts

ttt0dssttstst0

xxxx

xxxx

&&&

&&&&&&&&&

  (4.3) 

 
 Using the substitution (see Nowacki, 1962) 
  
  ( ) ( ) ( ){ } ( ) ( ) ( ){ } ( )[ ]Cxtixxxttt 2111 −ωψφθ=ψφθ expˆ,ˆ,ˆ,,,,, xxx , 
  
and Eq.(3.4) in Eqs (4.1)-(4.3) we get 
  

  
( ) ( ) ( ) ( )( ){ }

( ) ]( ) ,ˆ,ˆ 0Ait1i

KiBNit1ti1ALit1CDiCDKL

0
3

010
2222222

=φθω+ρω−


 +ρω+ω+ω++ω+ω−ω−ω−

 (4.4)   

 
  ( )[ ] 0CDM 2222 =ψρω+ω− ˆ  (4.5)  
 

where    
1dx

dD ≡ .                                                                                                          

 
 For surface waves we assume the solutions of Eqs (4.4)-(4.5) in the form 
  
  ( ) ( )131 xAx γ−=ψ expˆ , (4.6) 
 
and 
  
  ( ) ( ) ( )2121111 xAxAx χ−+χ−=φ expexpˆ  (4.7)                                               
 
where 21 χχ ,  are the roots of the equation 
  

  
( ) ( ) ( ) ( )( ){ }

( ) .0Ait1i

KiBNti1ti1ALit1aiaKL

0
3

010
22222

=ω+ρω−

+



 ρω+ω+ω++ω+−χω−−χ

 (4.8) 

 
 If 0t  and 1t  equal to zero, Eq.(4.8) totally coincides with that obtained by Chakraborti (1976). 
Now putting the expression (4.7) in Eq.(4.1), we get  
 

  
( ) ( ) ( )( ) ( ){[

( )( ) ( )}].exp

expˆ

122
222

2

111
222

1
1

11

xAaL

xAaL
ti1B

1x

χ−ρω+−χ+

+χ−ρω+−χ
ω+

=θ
  (4.9)  

 
 The stress components ( ) ( )tt 1211 ,,, xx σσ  given by Eq.(2.2) can be written in terms of the potential 
functions ψφ,  as  
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( ) ( ) ( ) ( )

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ,,,,,

,,

,,,,

,,

∫

∫
∞

∞

−ψ−−ψµ′+ψ−ψµ+

+−φµ′+φµ=σ

0
11221122

0
121212

dsstststt0

dssts2t02

xxxx

xx

 (4.10) 

 

  

( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ] .,,

,,,,

,,

,,

dsststs2

tt02tt

0
2212

221211

∫
∞

−φ−−ψµ′+

+φ−ψµ+φρ=σ

xx

xxxx &&

                (4.11) 

 
 Thus the boundary conditions                                                                            
              

  
( ) ( ) 0tx0h

x
tx0

2
1

2 =θ+
∂

θ∂ ;,;, ,          ( ) ( )tx00tx0 212211 ;,;, σ==σ , 

 
will yield the system of equations 
  
  ( ) ( ) 0Aia2Aa2Aa2 32

22
1

22 =γ+τ−+τ− , 
 
  ( ) 0Aa2Aia2Aia2 3

22
2211 =τ−−χ+χ ,  

 
  ( ) ( ) 0AnhAnh 222111 =χ−+χ−  (4.12) 
                                                    
where     
 

  222
2121 an −σ+χ= ,, ,    L22 ρω=σ ,    222 Ca ω= ,    M2ρω=τ ,    ( ) 2

122a τ−=γ .  
 
 The condition of consistency of the system of Eq.(4.12) gives 
 

  ( ) ( ) ( ) ( )
( ) ( )221121

212112212
1222222

nnhnn
nnhnnaa4a2

χ−χ+−
−χχ+χ−χ

τ−=τ− , 

  

i.e.,  
( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( ){ } .







χχ−−στ−+χ+χτ−=

=χ+χχχτ−−χχ+χ+χ+−στ−

21
222

1222
21

222

2121
2

1222
21

2
2

2
1

22222

aaa4a2h

aa4aa2
 (4.13) 

 
 For small 1<<ωω, , this Eq.(4.13) becomes 
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) .
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ρ

−×

×






















∞∞
∞η∞β+∞α∞









∞η∞β+∞α∞
∞ρα

−ω+

−

−

−

2
12

1

2
1

2
2

12
1

22

2
1

2

2
1

2
1

2
12

2
2

1

2
1

2

2
1

22

2

2

2
1

2
1

2
2

1
2

1

01
kl

l
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1i

C
1

C
4

lC
1

k
li

C
2h

lC
1

C
1

C
4

C
2

kl
l

lC
1ii

 (4.14)                                                                                                                      
 

 The result (4.14) shows that, on neglecting terms of order 2
1

ω , the velocity C ceases to depend upon 
the frequency ω  and the thermal constant h (Chadwick, 1960). 
 We then have 
 

  ( ) ( )
( )

( ) ( ) ( ) ( )
2

1
22

1
222

l
C1C14C2













∞η∞β+∞∞α
∞αρ

−












∞µ
ρ

−=












∞µ
ρ

− . 

 
 This result is analogous to the corresponding result in classical thermoelasticity. 
 
5. Numerical results and discussion 
 
 Numerical results are obtained for k=1, 2l = , 0890.=β , 0718.=η , 010.=α , 00201 .=α  and 
different values of ω . The wave velocity 2V  and the attenuation coefficient 2ν  are calculated for CDT and 
GLT for low frequency and the corresponding graphs are drawn to show the relationship between wave 
velocity and frequency and that between attenuation coefficient and frequency. 
 It is seen from the graphs that velocity and attenuation increase due to the increase of frequency 
in both cases of CDT and GLT. They show slightly non-linearity in behaviour but are different in 
magnitude. 
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Fig.1. Wave velocity 2V  for different values of ω  (low frequency) in GLT and CDT. 
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Fig.2. Attenuation coefficient 2v  for different values of ω  (low frequency) GLT and CDT. 
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Nomenclature 
 
 ( )sk  – heat conduction relaxation function 
 0T  – reference temperature 
 ( )t,xu  – displacement vector 
 ( )sα  – energy temperature relaxation function 
 Tα  – coefficient of linear expansion 
 β  – coefficient of the temperature deviation in the stress-strain relation 
 ( )sβ  – elaxation functions corresponding to β  
 η  – coupling constant 
 ( )sη  – relaxation functions corresponding to η  
 ( )sλ  – Lamé relaxation functions corresponding to the usual Lamé constants 
 ( )sµ  – Lamé relaxation functions corresponding to the usual Lamé constants 
 θ  – temperature deviation 
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