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Many studies on classical thermoelastoicity have been denoted to materia s with memory Nunziato, Chen and
Gurtin, whereas few on generalized thermoelagticity address materials with memory. The present paper deals
with the wave propagetion in materias with memory in generalized thermoelagticity. Plane progressive waves
and Rayleigh waves have been discussed in detail. The results show appreciable differences with those in the
usual classical thermoelasticity theory.
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1. Introduction

I'n the mechanics of continuous media, a material is said to have hereditary characteristics or memory
if its behavior at time t is specified by the past experience of the body up to time t. The theory of heat
conduction in materias with memory has drawn the attention of many researchers. The motivation was
provided by an unpleasant feature of the classical linear theory of heat conduction viz., that a thermal
disturbance produced a some point in the body felt instantaneoudy at al other points. This contradicts the
relativistic principle that energy cannot be propagated at speeds exceeding the velocity of light. Gurtin and
Pipkin (1968) first established a general non-linear theory of heat conduction in rigid materias with memory
for which thermal disturbances propagate with finite speed. They assumed that the response functiona viz.,
the entropy, free energy and heat-flux depend on the present value of the temperature and the integrated
histories of the temperature and the temperature gradient.

Nunziato (1971) considered a dightly different memory theory of heat-conduction. He assumed the
response functional to depend on the histories upto the present time of the temperature and the temperature
gradient. In his theory, heat conduction depends also on the present value of the temperature gradient so that
Fourier's law of heat conduction is obtained as a particular case, if k(O) , the instantaneous conductivity, is
non-zero. On the other hand, if k(O) =0, Nunziato's heat conduction equation agrees with that of Gurtin and
Pipkin. Chen and Gurtin (1970) extended the theory presented by Gurtin and Pipkin to deformable media.
They started with the constitutive assumptions that the response functional viz., the stress, entropy, free
energy and heat-flux depend on the present values of the temperature and the deformation gradient and the
integrated histories of the deformation gradient, temperature and the temperature gradient. McCarthy (1970),
on the other hand, assuming the response functionals to be dependent on the present values of the
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temperature and the deformation gradient, histories of the deformation gradient and the temperature and the
integrated history of the temperature gradient, devel oped atheory of thermo-mechanicd materias with memory.

Ghosh (1972), however, assumed the response functionals to be dependent on the present val ues of
the temperature and the deformation gradient and the histories of the temperature, deformation gradient and
the temperature gradient. His assumptions are thus less restrictive than those of Chen and Gurtin and of
McCarthy. He extended Nunziato's theory of heat conduction to deformable bodies and deduced the
generalized stress-strain relation and the coupled equation of heat conduction for materials with memory and
obtained the linearised forms of these equations. The stress-strain relation is similar to that for a linear
thermo-visco-elastic solid given by Eringen (see Eringen (1967), p.367-368). The heat conduction equation
for a thermo-visco-dastic solid is the same as that for the thermo-d astic solid (Eringen, 1967). It is, thus,
observed that the stress-strain relation and the heat conduction equation obtained by Ghosh (1972) is more
genera than those of others in the sense that the equations of classica thermoelasticity as well as those of
classical thermo-visco-dasticity can al be obtained as particular cases. The stress-strain relation and the
coupled equation of heat conduction in the linear coupl ed thermo-eagticity theory given by Chadwick (1960)
for thermoelastic materias (see MUller (1967)) can be obtained as particular cases from those deduced by
Ghosh. This is to be expected, since for “thermodastic’ materials the response functionals depend only on
the present values of the temperature, temperature gradient, and the deformation gradient and so
“thermod astic” materials are special cases of “thermoelastic materials with memory”.

Chen, Amos, Nunziato and McCarthy have studied propagation of thermoel astic waves. Chen (1969)
studied the amplitude variation of the temperature rate waves of arbitrary form, assuming that the
congtitutive relations of the material are given by the linearised theory derived by Gurtin and Pipkin (1968).
Amos and Chen (1970) aobtained the speed of propagation of thermal waves in a one dimensional case, while
Nunziato (1971) determined the attenuation and the speed of plane temperature and temperature rate waves.
McCarthy (1970) studied the propagation of “first order” waves using the equations derived by him
McCarthy (1970).

The recent works in this line by Bhattacharyya and Kumar (1991), Matinez and Quintanilla (1995),
Chiritaand Quintanilla (1997), lesan and Quintanilla (2002), Zhou et al. (2003) may be of worth mentioning.

In the present paper, we study plane progressive thermodastic waves and Rayleigh waves in
generalized thermoelasticity in a genera form using the more genera equations deduced by Ghosh (1972). It
is observed that as in the usual coupled thermoelasticity theory, there exist two types of propagating plane
waves, one is the quasi-dastic wave and the other is the quasi-thermal wave (Chadwick, 1960, p.283). Both
the waves, however, exhibit disperson and attenuation. The modified dastic wave speed approaches the
“instantaneous’ value of the classical compressional wave velocity at high frequencies and its “equilibrium”
value modified by the coupling factor at low frequencies. Its attenuation coefficient tends to a constant val ue
at large frequencies and is proportional to the square of the frequency at low frequencies. Similar features are
observed in the usual coupled thermoelasticity theory. But a new feature exhibited by plane propagating
purdy eastic waves in materials with memory is that these waves are subject to both dispersion and
atenuation. The purdy eastic wave speed agpproaches the “instantaneous’ value of the classical
compressional wave vdaocity at high frequencies and its equilibrium vaue a low frequencies. The
attenuation coefficient is proportional to the square of the frequency at low frequencies and tends to a
constant value at high frequencies.

For therma waves both the ve ocity and the attenuation coefficient are proportiond to the square
root of the frequency at low and high frequencies.

The dispersion equation for Rayl e gh waves has aso been obtained. It has a form anal ogous to that
in the usual linear coupled thermoelasticity theory.

2. Formulation of equation

Following the analysis of Nunziato (1971) regarding the deduction of stress-strain relations in
classical thermoelasticity and Dhaliwa and Sing (1980), Lord and Shulman (1967) and Green and Lindsay
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(1972) in generalized thermoelasticity, the stress-strain-temperature relations and heat conduction equations

arewritten below:

i) assuming isotropy and linearity, the equation of heat conduction or energy equation can be written
as

a(O)(é+t0@)+3((s)[é(x,t- s)+ tl(x.t - s)]as+h(O)div[a(x,t)+ dcto(x,t)] +
; ’ ) (2.1)
Anes)divla(x.t- s)+dytoli(x,t- s)]ds=k(O)RZq(x,t)+ cx¢s)N2a(x,t - s)ds.

ii)  Stress-strain-temperature relations are

s;; (x,t) =]l (0)e(x.1)- bOYa(x.t)+ t,(x,t)}d; +2m{0)e; (x.t)] +

¥ (2.2)
+ d{l t(s)e(x,t— s)— b((s){q(x,t- s)+tlé(x,t- s)}dij}+ 2m(s)qj (x,t— s)]ds
0
iii)  Equations of motion are
Sij. (x,t)=rt(x,t). (2.3
iv)  Strain-displacement rel ations
8 :%(ui’j fu), i i=123. 2.4)

In Egs (2.1) and (2.2) a(s), k(s) are the energy-temperature relaxation function and the heat-
conduction relaxation function respectively, which in the case of “thermoelastic’ materials correspond to
specific heat and conductivity respectively. I(s), n(s) may be caled the Lamé relaxation functions
corresponding to the usual Lamé constants. b(s), h(s) are the relaxation functions corresponding to b, h
where b is the coefficient of the temperature deviation in the stress-strain relation, and h is the coupling
constant. q denotes temperature deviation, u(x,t) is the displacement vector.

It should be noted that the relations

b(0)=[3 (0)+2n{0)]a;, h(0)=Tyb(0)

where a isthe coefficient of linear expansion and T, isthe reference temperature, hold though they are not
valid for other values of the argument s (they are valid for “thermoeastic’ materiadls when
a(s), b(s),l (s) k(s), h(s), n(s) are dl constants). If the relaxation functions a(s), b(s),l (s) k(s), h(s), n(s)
are constants Egs (2.1) and (2.2) reduce to the corresponding equations in the usual linear thermoelasticity
theory.

g In the absence of body forces the equation of motion in deformable materials with memory becomes,
by the use of Eq.(2.2)
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m{0)R2u(x,t)+{I (0)+ m{O)grad divu(x,t)- b(0)arada(x,t)+ t,gradd(x,t)] +
+ dm(s)ﬂlzu(x,t— s)+{I &€s)+nts)}grad divu(x,t - s)+ (2.5)
- bt(s)[gradq(x,t- s)+tlgradé(x,t- s)]ds:rﬁ&(x,t).

Taking the divergence of Eq.(2.5), we obtain

{1 (0)+ 2n{O)R%e(x,1)- b(o)qu(x,mtl%mzq(x,t)g+

v . (2.6)
+ gl ¢s)+ 2nks)Ne(x,t - s)- b((s)iﬂlzq(x,t- s)+tl%l§|2q(x,t- s)gzds:rﬁ(x,t)
o€ ' a
where e(x,t) = divu(x,t).
3. Solution of the problem
L et us assume the following form of the plane wave solutions of Egs (2.1) and (2.6)
[ex.t).a(x.t)] = (e, a0 Jexpliw(t - xn/c)] (3.1

where w>0 and A isaunit vector.
Substituting Eq.(3.1) in Egs (2.6) and (2.1), we get

1 (0)+ 2r(0)} +{I €w) + 27w} - r 2|y - [p(0)(1+tiiw) + W1+ tiiwd]ao =0,  (3:29)

[a(O)(iW- tow? +§t(w){iw- towz}] dB +[(iw)+d|kt0 ( WZ)] h(0)e, +
+epliw+tod, (- WZ)]HQW):[k(O)+ IZ‘(W)]( Wz/cz)qo,

(3.2b)
-t Y] st + o2 o)+ ko] o+
+ (iW' dlktOWZ)[h(O) +hdwle, =0
where
(bw), g, o) rw), ), K w) =
= (fb€s). o€s).! €s).ms). h¢s) k¢s))exp (- iws)ds: (33)
Putting
a(0)+aw)=A, b0)+bdw)=B, 1(0)+2n(0)+T ¢w)+2mgw)=L,
(3.4)

k©0)+kdw)=K, n{0)+m(w)=M, h(0)+h(w)=N,
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and diminating &), q, between Egs (3.2a) and (3.2b), we get
(1+iwtydy )r c*A- c[(1+iwd,to )AL +riwkK + (1+tiw)(L+ dyytoiw)BN]|+iwLK =0. (3.5)

If ty=t;=0, we ge back the results (6a) and (6b) of Chakraborty (1976) in classical
thermoel asticity.

Theroots sz of Eq.(3.5) are given by
CZ, = [AL(L+iwtody ) +riwK +(1+iwt, )(1+iwtyd, )BN £ D]/[2r AlL+iwtody )] (3.6)
where
D2 ={AL(1+iwtydy ) +riwK +(1+iwt; )(1+iwtody, )BN}? - 4iwLK (L+iwtody )rA.  (3.7)

If h(s)1 0, theroot C,; corresponds to a quasi-d astic wave and theroot C, corresponds to a quasi-
thermal wave, because for h(s) =0and t; =0

Ci=(r)2, ¢, =(wk/A)%,

and these roots correspond, in the uncoupled problem, to a pure eastic and thermal wave respectively.
Let us now analyse the roots of the dispersion Eq.(3.5) for low and high frequencies.

(a) Low frequency

Expanding a((w) for small w intheform
at(w):at(o)+%§(w)@ W (39)

we can write
a(w)»a(¥)- a(0)- iaw

where
¥
a, = (‘yaf(s)ds . (3.9
0
If we assume the existence of integrals of the type

¥
a, :(‘)sna(”)(s)ds, n>1,
0
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we can retain the terms of higher order in w in Eq.(3.8).
Thus, for asmal w, we can write

A»a(¥)-ia,w,  B»b(¥)-iwb,, M » m¥)- imw,
Ll (¥)+2n{¥)-iw(l { +2m)=1(%)- iwl,, (3.10)
K » k(¥)- iwk,, N »h(¥)- iwh,

where a4, by, I 4, m, hy, k; are integrals, assumed to converge, of the type (3.9). Using the results
Eq.(3.10) in Eq.(3.6) and extracting the square root, we get for asmall w

ru%gl (¢)2.

O
R

e é |(¥)a(¥)u
¢ |t0dlk|( Ja(¥)- ajl(¥)- l,af¥)- byh(¥)- hyb(¥)+(t; +tod )b(¥ )h(¥ Juu (3.11)
& wl 1(4)a¥) +b¥ )
g+'§: toa(¥)d|k-a1+r k(¥ )b(¥)h(¥) ?/ﬂ
e 1 al) (1()a¥)+b¥)n(¥))? ba
o, euk)uZ. & blen(¥)u 2,
gt £l o1
.8 w U . w
gl+ 2|(¥)(t0a(¥)d,k - al)ﬁﬂ%l' W toa d,k gu.

If V;, V, denotethe wave velocities and n4, n, the attenuation coefficients for the modified eastic
and thermal waves respectively, then

_lef
Vi = ReC, " (3.13)
n; :W%, i=12. (314)
cl’
Form Eqgs (3.11)-(3.14) we obtain
- +2n(¥ uyze h(¥)@}/2 2
A g I(¥ )a(¥)H [1+0(w )] (3.15)
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0 W2é r u}/ze b(¥ h(¥)
' g )+ 2n¥)l & 1)al¥)
éayl(¥ )+I1a( )+bih(¥ )+h1b(¥) todud (¥ )a¥ ) - (ts +todi Jo(¥ )n (¥) , 0 (3.16)
& I(¥)a¥)+h(¥)o(¥) i
€ 1y-al¥)dyty , k(¥ )b (¥ )n(¥) u’
s al¥) (1(¢)a(¢)+b(¥)n(x)y d
é2wl uyze U%é wi a(¥)tody - a, G0
@ SRt B o
o B B e
(b) High frequency
Integrating each of the transforms in Eq.(3.3) by parts, we obtain
adw)=- a\(flo)i - av:/(ZO)' 5;(;"’), (3.19)
bw) = - bf\?)i . b“(f)- B‘é"’) etc. (3.20)
where
EG(W):%\G(S)Q(p(- iws)ds etc.
Hence for alarge w, we can write
A»a(0)- iwao{o), B » b(0)- inc(o),
K » k(0)- iwkt(o), L » (1 (0)+2n0))- iW(' ¢0)+ 2n10)), (3.21)

M » m{0)- iwm(o), M » h(0)- ith(o).

The substitution of Eq.(3.21) in Eq.(3.6) yidlds, for alarge w
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_enk(0)u'2¢, 11b0)n(0), k€0) ado), 1

. & al0) b 81 2wi rk(0) +k(0) a(0)+rk(0)(tl+t0dlk gu, (3.24)
_éwa(0)r2¢,  11b(0)n(0) k¢o) ado), 1

g0 & owl ko) T KO alo) i) o) ﬁ“’ (3.25)
»el (0)+2n(0)g}/2§ 21 gl

e TR (3.26)

1l r o}/zelf(0+2m(0) el o
Y2 S8 o)+ 2n0)5 el()+zn(o)ue1 O (327

It is observed that both the modified dastic and thermal waves in a generdized thermoelastic
medium exhibit damping and dispersion. The modified therma eastic wave speed, unlike that in the
classical result approaches the instantaneous vaue of the classical compressional wave velocity at high
frequencies and its equilibrium value is modified due to the presence of the coupling factor a low
frequencies. Both the quasi-thermal wave speed and attenuation coefficient are proportiona to the square
root of the frequency at low frequency. Results for ‘thermodastic materials may be obtained from the
results of Egs (3.15)-(3.18) and (3.24)-(3.27) by taking the relaxation functions to constants. They agree with
those given by Chadwik (1960) and Nowacki (1962).

We neglect the coupling between the temperature and the displacement fields by putting

h(s)=h(0)=h(¥)=0,

in Egs (3.15)-(3.18) and (3.24)-(3.27) and get the corresponding results for the purely dastic and the purdy
thermal modes. Results for the purely thermal mode agree with those given by Nunziato (1971).
For the purely elastic mode

el +2m ou

n{ 2€
VE»e +2 ¥uyA | +2rr1¥
ﬂH

é r u 8

WT as we o, (3.28)
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w e r D}/zé [, +2m

BTG W) ) &)

where Vg, ng arethe wave speed and attenuation coefficient for the purely elastic waves; and

as w®o0 (3.29)

él (0)+2n{0) u}/zé1 e

» 1 Il+ U
Ve e , u g 4w gl (0)+2n’(0)z|5| as we® ¥, (3.30)

Jole v o%el €0)+2nk0)UE =l ol
Ve SE Gl a0l §1(0)s 2o & (0ESS s we . (3.31)

The results of Egs (3.28)-(3.31) show that the purdly elastic wave has its modification, the
guasi-elastic wave is subject to damping and dispersion. This is a feature exhibited by the elastic
waves only in material with memory both in the cases of classical and generaized thermoel asticity.
The attenuation coefficients at low and high frequencies are proportional to |, +2m and

| (0)+2n¥(0) respectively. These vanish if | (s)+ 2n(s) is a constant i.e., in classical elasticity. Thus

attenuation of a pure elastic wave occurs in materials with memory. However, it may be pointed out
that the effect of generalized thermoelasticity is found to be absent. The velocity for pure eastic

waves tends to different limits, in general, according as w® 0 or w® ¥ ; but if | (s)+ Zn(s) isa
constant, as in the classical elasticity Vg becomes independent of w and assumes the constant val ue
of the classical compressional wave velocity.

4. Rayleigh waves
Putting the displacement vector u intheform
u=gradf +rot A, A=(0,0,y),
asthe sum of irrotational and solenoidal componentsin Egs (2.1) and ( 2.5), we get
§| +2n(0 - rﬂTZEf (x t)- [q x t +tlé(x t)]

(4.1)

+ d{l ds)+ 2nshR2f (x,t - 5)- bés)fa(x.t)+ (x,t}]ds =0,

mo)N2y (x,t)- r(xt) +Bﬂ(s)l§l2y (x,t- s)ds=0, (4.2)

0
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a(O)(é+t0@)+E(s)[é(x,t- s)+tl(x,t- §)ds+h 2R (x,t) + dtoMZH(x,t)

4.3
¥ ¥
61((5){N2j&(x,t - )+ dytof(x,t - s)}ds: k(O)NZq(x,t)+ (K&s)N2q(x,t - s)ds.
0 0
Usi ng the substitution (see Nowacki, 1962)
ol ) F O, hy (x, 0 ={a0a ) f (¥ (o Jexplingt- . /C)],
and Eq.(3.4) in Egs (4.1)-(4.3) we get
gKL(DZ - wz/cz)2 - iw(D2 - WZ/CZ){(1+it0W)AL +(1+iwt, )(1+itgw)BN +ir wk} + "
- iwdr (L+itw)al(af) =0,
M(D2 - w?/c?)+rw2ly =0 (4.5)
where Do a .
dxy
For surface waves we assume the sol utions of Egs (4.4)-(4.5) in theform
y (%)= Asexp(- o), (4.6)
and
f(x) = Avexp(- xc1)+ Ay expl- xc5) (4.7)
where ¢4, ¢, aretheroots of the equation
gKL(cz - a2 - iwfe? - a? f(L+itgw)AL + (L+iwt, L+ iwto)BN +ier}g+ 8
- iwr (1+t5iw)A=0.
If ty and t; egual to zero, Eq.(4.8) totaly coincides with that obtained by Chakraborti (1976).
Now putting the expression (4.7) in Eq.(4.1), we get
. - Llc2- a2 2 )
(%) B(1+iwtl)[{( (63~ a2)+rveJaep(- o)+ (4.9)

+ (L(c% - a2)+rW2)A2 exp(- cle)}].

The stress components s ll(x,t), S12 (x,t) given by Eq.(2.2) can be written in terms of the potential
functions f,y as
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¥
Sip = Zn(O)f ’lz(x,t)+ Zéﬂ(s)f ’12(x,t - s)ds+
0 (4.10)

+n(0)[y ,22(X’t)' y ,11(X,t)]+¥6ﬁ(8)[y ,22(X’t' s)-y ,11(X’t' 5)]d5’

sqa(x ) =rf(x.t)+ 2”(0)[3/ 12(xt)-f (X’t)]"'

¥ (4.12)
+26ﬁ(s)[y 12(x,t-8)- f (xt- s)]ds.
0

Thus the boundary conditions

%+hq(0,xz;t):0, 511(0,%;t) =0=5,(0,%,;t),
1

will yidd the system of equations
(2a2 - t2)a, +(2a2 - t2)p, +2iaga, =0,
2iac, A +2iac, A, - (Za2 )
(h- co)mA +(h- cp)npAp =0 (412)
where
n,=c?,+s?-a% s?2=rw?/L, a?=w?/Cc?, t=rw?/M, g:(a2 - tz)yz.
The condition of consistency of the system of Eq.(4.12) gives

(2a2 i tz)z :4a2(a2 i tz)% (can; - cony)h+cycy(ny - ny)
(ng- np)h+(cyny - cony)

| tz)Z[(Sz a )+cl+c2+clc2] 4a ( tz)}/zclcz(cl+c2):
e j 2)2 (c,+c,)+4a® (a - tz)%{(sz_ a ) clcz}g.
& u

For small w, w<<1, this Eq.(4.13) becomes

/\

(4.13)
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[SEENe
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_hie2 r gzgy+wy2||(¥ a(¥)+b(¥ )n(¥ )y 12
w2psc? m¥)ae T alkkké) p
11 ra(¥) u%ng

ic? 1(¥)af¥)+b)n(¥)p 4

4@l §2ne1

i al(¥ )+ U-%é e
P g

0
a (4.14)

The result (4.14) shows that, on neglecting terms of order w}/2 , the velocity C ceases to depend upon
the frequency w and the thermal constant h (Chadwick, 1960).
Wethen have

rc? U%ﬁl rC%a(¥) Uyz

=LA = L N [ N

>

Thisresult is analogous to the corresponding result in classica thermod asticity.
5. Numerical resultsand discussion

Numerical results are obtained for k=1, | =2, b=0.089, h=18.07, a =0.01, a;, =0.002 and
different values of w. The wave velodity V, and the attenuation coefficient n, are calculated for CDT and
GLT for low frequency and the corresponding graphs are drawn to show the rdationship between wave
velodity and frequency and that between attenuation coefficient and frequency.

It is seen from the graphs that velocity and attenuation increase due to the increase of frequency
in both cases of CDT and GLT. They show slightly non-linearity in behaviour but are different in
magnitude.
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Fig.1. Wave ve ocity V, for different values of w (low frequency) in GLT and CDT.
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Fig.2. Attenuation coefficient v, for different values of w (low frequency) GLT and CDT.
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Nomenclature

k(s) —heat conduction relaxation function
T, - referencetemperature
u(x,t) — displacement vector
a(s) - energy temperature rel axation function
ar —coefficient of linear expansion
b —coefficient of the temperature deviation in the stress-strain relaion
(s) — elaxation functions corresponding to b
h —coupling constant
h(s) - relaxation functions corresponding to h
(s) —Lamé relaxation functions corresponding to the usual Lamé constants
n(s) — Lamé relaxation functions corresponding to the usual Lamé constants
q -—temperature deviation

o

n
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