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Efforts have been made to study the effect of the magnetic fluid lubricant and the sealing of the boundary for 
the squeeze film between two circular disks when the upper disk having a porous facing with its boundary sealed, 
approaches the non-porous lower disk normally. The modified Reynolds equations for the fluid region and the 
governing Laplacian equation for the pressure in a porous region are solved with appropriate boundary 
conditions. Expressions are obtained for pressure, load carrying capacity and the response time. The results are 
presented graphically. The combined effect of the magnetic fluid lubricant and sealing of the boundary increases 
the load carrying capacity significantly and hence the performance of the bearing can be enhanced considerably 
by sealing the boundary and taking a magnetic fluid as lubricant. 
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1. Introduction 
 
 It was Wu (1970) who analyzed the behavior of the squeeze film between two annular disks when 
the upper disk having a porous facing approaches the lower non porous disk. Murti (1974) considered this 
problem of the squeeze film behavior between the circular disks. In both the analyses it was assumed that the 
porous boundary was open resulting in the flowing out of the lubricant from the porous boundary. Ajwaliya 
(1984) studied this problem and improved the performance of the porous bearing while retaining its self 
lubrication property. Of course, he considered the squeeze film between two circular disks when the upper 
disk having a porous facing with its boundary sealed approaches the non porous lower disk normally. These 
types of bearings may have applications in lubricating clutch plates and automobile transmissions. 
 Verma (1986) and Bhat and Deheri (1993) investigated the squeeze film between porous plates. 
They proved that the application of a magnetic fluid lubricant improved the performance of the squeeze film. 
 The above mentioned improved performance of the bearing in the case of sealing the boundary and 
choosing the magnetic fluid lubricant makes it appealing to study the magnetic fluid based squeeze film 
between porous circular disks with a sealed boundary. 
 
2. Analysis 
 
 The bearing configuration is shown in Fig.1. The bearing consists of two circular disks each of 
radius a. The upper disk has a porous facing of uniform thickness H and moves normally towards the non 

porous lower disk with a uniform velocity 
dt
dhh =& , h being the central film thickness. Assuming axially 
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symmetric flow of the magnetic fluid between the disks under an oblique magnetic fluid H , whose 
magnitude H is a function of r vanishing at ar = , the modified Reynolds equation governing the film 
pressure p for the fluid region (Wu, 1970) is 
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where ( ) arakrH 22 −=  (c.f. Bhat and Deheri, 1993; Prajapati, 1995), k is the permeability parameter of the 
porous matrix, 0µ  is the permeability of the free space, µ  is the magnetization permeability and µ  is the 
viscosity of the fluid. The inclination φ  of the external magnetic field H  with the lower disc is determined from  
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Fig.1. Squeeze film porous bearing; geometry and co-ordinates system. 
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 Further, the governing Laplacian equation for the pressure ∗p  in porous region is 
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 The boundary conditions for (2.1) and (2.2) are 
 
  ( ) 0ap = , (2.3) 
 
  ( ) 0rp 0r =∂∂ = , (2.4) 
 
  ( ) 0rp ar =∂∂ =

∗ , (2.5) 
 
  ( ) 0zp Hhz =∂∂ +=

∗ . (2.6) 
 
 The boundary condition (2.5) results from Darcy’s law and the requirement that there is no radial spilling 
of lubricant across the boundary of a porous matrix. It is to be noted that the matching condition is given by 
 
  ( ) ( )hrprp ,∗= .              (2.7) 
 
 Equation (2.2) is solved by the method of separation of variables with the related boundary 
conditions (2.5) and (2.6). The solution is 
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where 0α  and ( )0nn >α  is the nth eigen value satisfying ( ) 0aJ n1 =α . Equation (2.8) can be rearranged as 
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Substitution of ∗p  from Eq.(2.9) into Eq.(2.1) and then integration with respect to r with boundary condition (2.4)gives 
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 Again integrating (2.10) with boundary condition (2.3) finally yields 
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 Substitution from Eqs (2.8) and (2.11) into Eq.(2.7) and rearrangement of terms yields 
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 To determine the Fourier-Bessel coefficients nC  we invoke the orthogonality of the eigen function 

( )rJ n1 α  over the interval [ ]a0, . Thus for, 0n >  we can have the expression for nC  as 
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 Hence the pressure distribution which is given by (2.11) now assumes the form 
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 Using the dimensionless quantities 
 
  ( )hhk 3

0
&µµµ−=µ∗ ,      ( )Hh3ψ=φ ,      ( )arR = ,      ( )ahh = ,      ( )aHH = , 

 
we get the dimensionless pressure from (2.14) in the form 
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 The load carrying capacity W in a dimensionless form is given by 
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 The time taken by the upper disk to reach a film thickness 1h  starting from 0h  is given by (for 
constant load W) 
 

  ( ) ( ){ }[ ]∑∫∫∫
=

++==∆
N

1n

h

1

33
n

3
n

h

1

3
t

t

hdhB1hAhdh1Ddtt
1

0

 (2.17) 

 
where 
 
  ( )Wh2a3D 2

0
4µπ−= ,      ( )Wha12A 2

0
2
n

4
n αµπ= ,      ( )01 hhh = ,  

 
  ( ) ( )( ) ( )( )[ ]1H21H212HB nn0n

3
n −α+αψα= expexp . 

 
 Now the dimensionless response time T∆  is given by 
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3. Results and discussion 
 
 Expressions for pressure distribution, load carrying capacity and response time are presented in Eqs 
(2.15), (2.16) and (2.18) respectively. The results are presented graphically. All these results indicate that 
pressure distribution, load carrying capacity and response time increase significantly in the case of a 
magnetic fluid based squeeze film with sealed boundary in comparison to that of an open end porous bearing 
with a conventional lubricant. For larger values of permeability parameter the effect of sealing the boundary 
of the porous matrix in the presence of the magnetic fluid as lubricant results in a substantial increase in the 
response time. However, the effect of sealing the boundary on the response time is independent of the 
magnetization parameter which is the essence of expression of response time. 
 As special cases these results yield the results of Ajwaliya (1984) and Bhat and Deheri (1993). The 
combined effect of the magnetic fluid lubricant and sealing of the boundary increases the load carrying 
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capacity significantly and hence the performance of the bearing can be enhanced considerably by sealing 
properly the boundary and choosing a magnetic fluid as lubricant. 
 
Appendix 
 
 Normally the following assumptions are made. 
 
1. The lubricant flow is considered laminar and lubricant film is assumed to be isoviscous. 
2. There are no external fields of force acting on the fluid. While magnetic and electric forces are not present 

in the flow of non conducting lubricants, forces due to gravitational attraction are always present. 
However, these forces are small compared to the viscous force involved. 

3. The flow is considered steady and temperature changes of the lubricant are neglected. 
4. The bearing surfaces are assumed to be perfectly rigid so that elastic deformations of the bearing surfaces 

may be neglected. 
5. Bearing surfaces are assumed to be perfectly smooth or even when there is surface roughness it is of very 

small order of magnitude in comparison with the minimum film thickness. 
6. The thickness of the lubricant film is very small when compared to the dimensions of the bearing. 
7. The lubricant velocity along the transverse direction to the film is considered small enough. 
8. Velocity gradients and indeed the second derivatives along the direction transverse to the film are 

predominant as compared to those in the plane of the film. 
9. The lubricant inertia is considered negligible. 
10. The porous matrix of the bearing surface is assumed to be homogeneous and isotropic. 
11. Darcy’s law is assumed to govern the lubricant flow within the porous matrix, while no slip condition is 

taken at the porous matrix-film interface. 
 
 In cylindrical polar coordinates ( )zr ,, θ  assuming axially symmetry the following two equations 
were obtained 
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Derivation of magnetohydrodynamic equations 
 
 Let ( )w0uq ,,=  be the fluid velocity in the film region, ( )zr M0MM ,,=  the magnetization vector, 

( )zr H0HH ,,=  the external magnetic field, µ  the viscosity of the magnetic fluid lubricant and 0µ  is the 
permeability of the free space. Then the governing equations for the pressure p in the film region are as in 
Verma (1986), Bhat and Deheri (1993; 1991) 
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 If ( )w0uQ ,,=  is the velocity and p  the pressure in the porous region 
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k  being the permeability of the porous material. Assuming Φ  to be the potential of H  and µµ= ,HM  
being the magnetic permeability, we can show that 
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H being the magnitude of H . Substituting Eqs (A.7) and (A.8) into Eqs (A.1), (A.2), (A.4) and (A.5) and 
using Eqs (*1) and (*2) we get the Reynolds’ equation as in (2.1), wherein the associated boundary 
conditions are as in Eqs (2.3) to (2.6). 
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Fig.2. Load carrying capacity in the absence of the magnetic fluid. 
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Fig.3. Load carrying capacity due to the combined effect of the magnetic fluid and sealing the boundary. 
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Fig.4. Variation of response time with respect to height (open end). 
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Fig.5. Variation of response time with respect to height (sealed end). 
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Nomenclature 
 
 a  – radius of the circular disk 
 nC  – Fourier Bessel coefficients 
 h  – central film thickness 
 H  – thickness of the upper disk 
 nJ  – Bessel’s function 
 k  – permeability of the porous matrix 
 p  – pressure distribution 
 P  – dimensionless pressure 
 ∗p  – pressure in the porous region 
 W  – load carrying capacity 
 W  – dimensionless load carrying capacity 
 nα  – nth eigen value satisfying ( ) 0aJ n1 =α  
 t∆  – response time 
 T∆  – dimensionless response time 
 µ  – viscosity of the fluid 
 µ  – magnetization permeability 
 0µ  – permeability of the free space 
 ψ  – porosity parameter 
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