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In general, electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a 
suspension is exposed to an electric field, the particles form structures which have essentially the direction of the 
electric field, resulting in a higher effective viscosity. Of considerable interest is the dependence of this effect on 
the direction of the electric field. Towards this end, we propose a micropolar theory including appropriate 
balance and constitutive equations for these suspensions essentially based on the works of Eringen. An 
appropriate non-dimensionalization is carried out which combines procedures of Eringen for micropolar fluids, 
on the one hand, and Eckart and Růžička for electrorheological fluids on the other. We then derive constitutive 
equations for the Cauchy stress and the couple stress and discuss the restrictions imposed on them by the second 
law of thermodynamics using scaling arguments. 

To illustrate the enhanced possibilities of micropolar electrorheology, a simple constitutive model which is 
linear in the strain rate is discussed in a study of a viscometric flow. We finally show that the velocity profile 
(hence the flow rate) may strongly depend on the direction of the electric field. 
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1. Introduction 
 
 Many electrorheological fluids (abbreviated: ERFs) are suspensions consisting of a solid phase, the 
particles, and a fluid phase, the carrier oil. These suspensions change their material properties dramatically if 
they are exposed to an electric field. The observed increase of the measured shear stresses (or the measured 
viscosity) will be called electrorheological effect (abbreviated: ERE). It is generally accepted that the ERE of 
such fluids is essentially due to the existence of particle structures forming in the presence of an electric field 
hindering the flow and resulting in a higher, apparent viscosity. It is often assumed that these structures are 
essentially in the direction of the electric field, at least if the fluid is at rest or slowly flowing. For an 
overview especially of microscopic models and explanations in electrorheology we refer the reader to 
Parthasarathy and Klingenberg (1996). 
 Of considerable interest is the dependence of the ERE on the direction of the electric field. If we 
consider a pressure driven channel flow with a (constant) electric field either perpendicular or parallel to the 
flow direction, for example, then these structures would also be essentially perpendicular or parallel to the 
flow direction, respectively. It is to be expected that the ERE is not the same in both cases. Furthermore, in 
every industrial application the electric field is more or less inhomogeneous (especially the direction is not 
constant), and thus a precise description of the dependence of the ERE on the direction of the electric field is 
necessary to develop effective technical applications. 
 So far, not many attempts have been made to describe this dependence accurately. For example, the 
general model for the Cauchy stress tensor first described by Rajagopal and Wineman in (1992) and later 
also used by Ceccio and Wineman in (1994), Eckart in (2000) and Růžička in (2000) is admittedly capable of 
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some dependence on the direction of the electric field, but it cannot account for different material response, if 
the (constant) electric field is either perpendicular or parallel to the flow and has the same field strength. 
Brunn and Abu-Jdayil studied fluids with transverse isotropy (director theory) as models for 
electrorheological fluids in Brunn and Abu-Jdayil (1998), but with the intention of describing normal yield 
stresses. Instead of the electric field, they used the director as an independent variable. Unfortunately, no 
relationship between the electric field and the director is given. Furthermore, their stress is still symmetric. 
 As was already indicated, the ERF can clearly be viewed as a fluid with microstructure, if an electric 
field is present. There are various possibilities to describe such fluids, see especially the monograph of 
Stokes for a comparison of couple stress fluids, anisotropic fluids, microfluids and micropolar fluids, 
(Stokes, 1984). 
 The micropolar theory was essentially developed by Eringen in a series of papers, from which we 
name only the most interesting ones in view of our paper: Eringen (1966), (1980), (1997), Kafadar and 
Eringen (1971). In all papers, balance equations and constitutive equations for microfluids or micropolar 
fluids are given and discussed. The entropy inequality is evaluated and special cases are investigated. In 
Eringen (1966), Eringen studied micropolar fluids in a steady, pressure driven pipe flow. He illustrated the 
velocity, the micro-rotation, the shear stress difference and the couple stress. Kafadar and Eringen studied 
micropolar media (not only fluids) in Kafadar and Eringen (1971). Anisotropic micropolar fluids were 
studied in Eringen (1980). In Eringen (1997), Eringen studied liquid crystals subject to electromagnetic 
fields and discussed various special cases, especially the passage to director theory. 
 Electromagnetic interactions on micropolar fluids were also studied in Tanahashi and Okanaga 
(1989). Tanahashi and Okanaga focussed on the derivation of balance equations and discussed the transition 
from the relativistic case to a non-relativistic case. 
 The theory of anisotropic fluids was essentially developed by Ericksen and Leslie, see for example 
Ericksen (1960), (1961), (1991), Leslie (1968), (1979). The main difference in the micropolar theory of 
Eringen is the introduction of a so-called director (and an additional equation for it) which describes at least 
the orientation (possibly also the length) of a particle or molecule. In Ericksen (1960), (1961), Ericksen 
focussed on the governing equations of anisotropic fluids and applied his theory to steady shear flows of 
viscoelastic fluids. In Ericksen (1991) he discussed special types of liquid crystals in greater detail. 
 In addition to what was said up to now, the present paper may be motivated by an experimental 
observation. Wunderlich (2000) obtained experimental results in a pressure driven channel flow of an 
electrorheological fluid with particles which lead to the conclusion that the effective viscosity is lower, if the 
electric field is not perpendicular to the flow, but has also a significant component parallel to the flow. This 
was obtained by comparing different electrodes in a channel flow. 
 Both theories mentioned above are surely appropriate to describe this observed phenomenon. 
However, we have decided to follow essentially the works of Eringen. Thus, we propose a micropolar theory 
in the present paper that is based on rational thermodynamics and electrodynamics of moving media. This 
includes the derivation of appropriate balance equations by means of a non-dimensionalization procedure as 
well as the statement of constitutive equations, both of general and simplified (linearized) form. Finally, we 
investigate the linearized constitutive equations in a viscometric flow and illustrate the velocity profile, and 
the flow rate. It can be explicitly shown that these quantities indeed depend on the direction of the electric 
field in a way that is qualitatively in agreement with the experimental results observed in Wunderlich (2000). 
 Consequently, this paper is arranged as follows. In section 2, we record the balance laws, the 
Clausius-Duhem-inequality and Maxwell’s equations for a micropolar continuum. This is followed by a 
discussion of constitutive relations appropriate for ERFs, the restrictions imposed by the invariance 
requirements and the entropy inequality and some comments on thermodynamic equilibrium. In section 3, in 
view of electrorheological applications, a non-dimensionalization with a subsequent approximation is carried 
out. Such procedures were also used in Eckart (2000), Rajagopal and Růžička (1996) and Růžička (2000), 
for example, however for non-polar electrorheological fluids. In this paper, we follow essentially (Růžička , 
2000). The approximation made in Tanahashi and Okanaga (1989) is different from our approach insofar as 
Tanahashi and Okanaga used the „usual” non-relativistic approximation without introducing a specific non-
dimensionalization. In Eringen (1997), no approximation is carried out at all. 
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 Having derived the balance equations for micropolar fluids in the electrorheological approximation, 
we switch to the constitutive theory in section 4. Here we especially introduce the general constitutive 
relations of the Cauchy stress and the couple stress, simplify it and evaluate the residual entropy inequality 
with scaling arguments to obtain certain restrictions on the material parameters. Linear constitutive equations 
(linear in the velocity gradient and the gradient of the microrotational velocity, respectively) are given for the 
Cauchy stress and the couple stress, respectively. Constitutive equations for micropolar fluids without 
electric fields were introduced in Eringen (1966), (1980), while (quasi-linear) constitutive equations for 
special liquid crystals subject to electromagnetic fields were given in Eringen (1997). 
 In section 5, a viscometric flow of a (linear) micropolar electrorheological fluid is discussed. We 
compare shear stresses for different directions of the electric field and show the influence of the different 
material parameters. Furthermore, the solutions for the velocity and the microrotation are derived explicitly 
by assuming Dirichlet boundary conditions. Moreover, we illustrate the velocity, and the flow rate depending 
on the direction and the absolute value of the electric field. Viscometric flows of micropolar fluids have also 
been considered for example in Eringen (1966), (1980), Stokes (1984). 
 Finally, we close by summarizing the results in section 6. 
 
1.1. Notation/Preliminaries 
 
 Let Ω  denote the reference configuration of an abstract body. In a micropolar continuum each 
material point has three translational and additionally three rotational degrees of freedom, i.e., it is 
phenomenologically equivalent to a rigid body. The motion of the fluid is determined by a one-to-one 
mapping x̂  that assigns to each material point Ω∈X  a position x in the three dimensional Euclidean space 
at an instant of time t, i.e., 
 
  ( )Xxx ,ˆ t= , 
 
and a proper orthonormal tensor Ξ , i.e., II ,=TΞΞ  is the identity matrix, that assigns to each material point 

Ω∈X  a rotation Ξ  at an instant of time t, i.e., 
 
  ( )X,ˆ tΞΞ = . 
 
 The material velocity ( )xv ,t , the velocity gradient ( )xL ,t  and the microrotational velocity tensor 

( )x,tΩ  are defined through 
 

  
t∂

∂
=

xv
ˆ

: ,      
321jij
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,,,
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where ∇  is the derivative with respect to x and where we fixed the standard Cartesian basis ie , 321i ,,= , in 

order to give a representation of v∇  in terms of the partial derivatives 
j

i

x∂
ν∂ , 321ji ,,, = . The material time 

derivative is denoted by dtd  or by a superposed dot. ε  denotes the isotropic third order tensor. For vectors 
u, w, second order tensors S, T we use the notation 
 
  ii

2 uu=u ,      iiwu=⋅ wu ,      ( )
321ikjijk wu ,,=

ε=× wu ,      ( )
321jijiwu ,,, =

=⊗ wu , 
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  ijijTS=TS : ,      ( )
321kijkijTS ,,, =

=ST ,      jiij
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=
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in which the summation convention over repeated indices is employed. We will use this convention 
throughout the paper. For functions 3ℜ→Ω:u , 33×ℜ→Ω:S  and vectors w we use the notation 
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while for scalar functions ℜ→ℜ3e : , ℜ→ℜ ×33f :  we denote the corresponding Fréchet derivatives by 
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 The symmetric part of the velocity gradient is denoted by D and the skewsymmetric part by W. A 
uniquely determined microrotational velocity vector ω  is associated to Ω  by 
 

  Ωεω :
2
1

−= ,         ωεΩ ⋅−= . 

 
 Furthermore, we shall assume sufficient smoothness of all the field variables in order to make all 
operations that are carried out meaningful. Throughout this paper we use MKSA-units (cf. Jackson, 1983). 
 
2. Balance laws 
 
 We start by stating Maxwell’s equations. Here we use the so-called „statistical formulation”, which 
is based on a „dipole-current-loop” model (see Eringen and Maugin, 1989; Hutter and van de Ven, 1978; 
Grot, 1976; Pao, 1978) 
 

  
t∂

∂
−=

BEcurl , (2.1) 

 

  JDH +
∂

∂
−=

t

e
curl , (2.2) 

 
  ee q=Ddiv , (2.3) 
 
  0=Bdiv  (2.4) 
 

where E is the electric field, B the magnetic flux density, H is the magnetic field given by MBH −
µ

=
0

1  

with the magnetization M, eD  is the dielectric displacement given by EPD 0
e ε+=  with the electric 
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polarization P, J the current density, eq  the density of the free electric charges and 0ε  and 0µ  denote the 
dielectric constant and the permeability in vacuum, respectively. 
 The balance equations for micropolar continua are well known. Here, we follow essentially Eringen 
(see 1966; 1980; 1997), Kafadar and Eringen (1971). The balance of mass and momentum are 
 
  0=ρ+ρ vdiv& , (2.5) 
 
  effTv +=−ρ div& , (2.6) 
 
respectively, where ρ  is the mass density, T the Cauchy stress tensor1, f the mechanical force density and 

ef  is the electromagnetic force density which is given by (cf. (Pao, 1978, pp.284-285), (Hutter and van de 
Ven, 1978, p.64-65)) 
 
  [ ] ( )[ ] [ ] [ ]PBBPvPvPf ΕℑΕ ∇+∇+×+∇−++= MTee q div&  
 
where Ε  is the effective electric field strength defined as   
 
  BvE ×+=Ε , (2.7) 
 
ℑ  the conductive current density given by 
 
  vJ eq−=ℑ , (2.8) 
 
and M  the effective magnetization defined through 
 
  PvM ×+=M . (2.9) 
 
 The balance of internal spin takes the form 
 
  eT llTNs ++=−ρ :div ε&  (2.10) 
 
where s is the specific internal spin, N is the couple stress tensor2, l the mechanical couple density and el  
the electromagnetic couple density which is given as [cf. (Pao, 1978, pp.284-285), (Hutter and van de Ven, 
1978, p.64-65)] 
 
  BPl ×+×= MΕe . 
 
 As usual, we define the specific internal spin s according to 
 
  Θω=s , (2.11) 
 
in which the symmetric micro-inertia tensor Θ  which represents the microstructure of the fluid fulfills the 
following relation 
 
                                                        
1  T is introduced via nTt ⋅= , where t is the Cauchy stress vector and n the outer unit normal vector. 
2 N is introduced via nNm ⋅=  where m is the couple stress vector and n the outer unit normal vector. 
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  0=−− TT ΘΩΩΘΘ& . (2.12) 
 

 With the kinetic energy density ω⋅ρ+⋅ρ svv
2
1

2
1 , the balance of total energy takes the form 

 

  ( ) ( ) ( ) eeeTT ww
2
1

2
1e

dt
d

++⋅++⋅++−+=





 ⋅+⋅+ρ ωωω 11vffqNvTsvv div  (2.13) 

 
where e denotes the specific internal energy, q the heat flux, w the mechanical energy supply density and ew  
the electromagnetic energy production density which is given as [cf. (Pao, 1978, pp.284-285), (Hutter and 
van de Ven, 1978, p.64-65)] 
 
  vPBP div⋅+⋅−⋅+⋅= ΕΕΕℑ && Mew . 
 
 From Eq.(2.12), the symmetry of Θ  and the skewsymmetry of Θ  follows 
 
  ( ) 0=⋅ ωΘω & . 
 
 Thus we obtain from Eq.(2.11) 
 
  ( ) ωωωΘωω &&&& ⋅=⋅+⋅=⋅ sss . (2.14) 
 
 Multiplying Eq.(2.6) by v, Eq.(10) by ω  and using Eqs (2.14), (1.1) and (2.2), we obtain from 
Eq.(2.13) the reduced balance of internal energy according to 
 
  ( ) ( ) we +⋅+⋅−⋅+⋅+∇++=+ρ vPBPNRDTq div::div ΕΕΕℑω &&& M  (2.15) 
 
where we introduced the notation Ω−= WR . 
 We interpret the second law of thermodynamics in the form of the Clausius-Duhem inequality3: 
 

  0w
≥

θ
−








θ
+ηρ

qdiv&  (2.16) 

 
where η  is the specific entropy and θ  is the absolute temperature. 
 The system (2.1)-(2.4), (2.5), (2.6), (2.10), (2.15) and (2.16) which describes the motion of the body 
has far more unknowns than equations. It is rendered determinate by providing appropriate constitutive 
relations reflecting the material properties. Towards this end, we will assume that 
 
  ( ) ( ) BERDv ,,,,,,,,,, AS ωωΘ ∇∇θ∇θρ  (2.17) 
 
where ( ) ( )AS ωω ∇∇ ,  - the symmetric and the skewsymmetric parts of ω∇  are the independent variables and 
thus we provide constitutive relations for 
 
                                                        
3 The second law of thermodynamics can also be evaluated by the method introduced by Liu and Müller (1972), Liu 
(1972; 2002), for example. We also refer the reader to Hutter (1975; 1977), Hutter and van de Ven (1978), Leslie 
(1979) and Müller and Ruggeri (1993) for different formulations of the second law of thermodynamics. 
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  ℑ,,,,,,, MPqNTηe , (2.18) 
 
of the form 
 
  ( ) ( )( )BERDv ,,,,,,,,,,ˆ

ASff ωωΘ ∇∇θ∇θρ=  (2.19) 
 
where f stands for any of the quantities in Eq.(2.18). 
 Note that one usually introduces the sum RD +  and ω∇  as independent variables [cf. (Eringen, 
1999; Leslie, 1979)], while here we use D, R, ( )Sω∇  (symmetric part of ω∇ ) and ( )Aω∇  (skewsymmetric 
part of ω∇ ) separately. This approach allows us to consider constitutive equations that are not of the same 
order in D and R and ( )Sω∇  and ( )Aω∇ , respectively. We will come back to this in section 4. 
 As pointed out by Eringen in (1980), the micro-inertia tensor Θ  enlarges the possibilities of 
describing new effects remarkably, if it is taken as an independent variable. Indeed, especially for 
electrorheological fluids that may be considered to have variable micro-inertia, it is recommended to take it 
into account. 
 Both the material and the balance equations are subject to invariance requirements. It is well known 
that the mechanical balance laws Eqs (2.5), (2.6), (2.10) and (2.15) are forminvariant under Galilean 
transformations given by 
 
  00t bvQxx ++=∗ ,          tt =∗  (2.20) 
 
where 00 bv ,  are constant vectors and Q is a time independent orthogonal tensor, while Maxwell’s Eqs (2.1)-
(2.4) are forminvariant under Lorentz transformations4. We are interested in non-relativistic effects and it is 
well-known that there are problems with consistent invariance requirements for all thermo-mechanical and 
electro-magnetic balance laws and constitutive equations in a non-relativistic situation [cf. (Grot, 1976; 
Rajagopal and Růžička, 1996; Růžička, 2000)]. To avoid these difficulties we shall make the following 
invariance requirements. We assume that the quantities (2.18), describing the material properties, are 
invariant under Galilean transformations (2.20)5. Moreover we require that all balance laws Eqs (2.5), (2.6), 
(2.10), (2.15), (2.16) and (2.1)-(2.4) are forminvariant under Galilean transformations (2.20). These two 
requirements imply consistent transformation formulae for all necessary quantities [cf. (Růžička, 2000)]. In 
particular, we obtain from the invariance requirements that the constitutive relations Eq.(2.19) are isotropic 
functions of their arguments and that Eq.(2.19) has to be replaced by [cf. (Grot, 1976)] 
 
  ( ) ( )( )BRD ,,,,,,,,,ˆ ΕωωΘ ASff ∇∇θ∇θρ=  (2.21) 
 
where f stands for any of the quantities in Eq.(2.18). 
 We require that the second law of thermodynamics in the form of the Clausius-Duhem inequality 
(2.16) is satisfid in all admissible processes, i.e., processes compatible with the balance laws Eqs (2.1)-(2.4), 
(2.5), (2.6), (2.10), (2.15) and constitutive relations for Eq.(2.18) in the form (2.21). This requirement places 

                                                        
4 For the rotation Ξ  we require that it transforms according to ΞΞ Q=∗  (cf. (Kafadar and Eringen, 1971)). For the 
remaining quantities we refer the reader to Růžička (2000), section 1.1. 
5 Note that one usually assumes that the constitutive relations depend on L instead of D, and then one deduces from the 
principle of material frame indifference, i.e., (2.20) is replaced by ( ) ( )tt cxQx +=∗ , that the dependence on L has to 
reduce to a dependence on D only. Moreover, we introduced the quantity Ω−= WR  because it is invariant under the 
above transformation but W and Ω  alone are not. In fact, these are the only relevant consequences of the stronger 
requirement of material frame indifference for us which cannot be obtained from the requirement that the material 
properties are invariant under Galilean transformations (2.20) alone. 
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further restrictions on the form of the constitutive relations. Firstly, introducing the specific free energy ψ  
through 
 

  P⋅
ρ

−ηθ−=ψ Ε
1e , (2.22) 

 
we re-write Eq.(2.16), using Eqs (2.5) and (2.15), as 
 

  ( ) ( ) [ ] 0≥
θ

θ∇⋅
−⋅−⋅−⋅+∇+++θη+ψρ−

qPBNRDT ΕΕℑω &&&& M:: . (2.23) 

 
 Using Eq.(2.21) and computing ψ&  in Eq.(2.23) we obtain using again Eq.(2.5) 
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
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ρ−⋅
∂
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ρ−⋅
∂
ψ∂

ρ−

+θ∇
θ∂∇

ψ∂
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∂
ψ∂

ρ−θ





 η+

θ∂
ψ∂

ρ−







ρ∂
ψ∂

ρ+

⋅⋅

qNRTB
B

P

R
R

D
D

DIT

ΕℑωΕ
ε

ω
ω

ω
ω

ΩΘΘΩ
Θ

&&

&&

&

M

 (2.24) 

 
 Since at every fixed point in space and every instant in time the quantities 
 
  ( ) ( ) ( ) BRD &&&&& ,,,,,,, Εωω ⋅⋅⋅ ∇∇θ∇θ AS , 
 
can be chosen arbitrarily and are independent of the arguments in Eq.(2.21) (cf. Coleman and Noll (1963), 
Truesdell and Noll (1965)) and since the inequality (2.24) is linear in Eq.(2.2) we immediately deduce the 
following relations 
 

  0=
θ∂∇

ψ∂ ,      0
D

=
∂

ψ∂ ,      0
R

=
∂
ψ∂ ,      ( ) 0=

∇∂
ψ∂

Sω
,      ( ) 0=

∇∂
ψ∂

Aω
, 

   (2.25) 

  
θ∂
ψ∂

−=η ,      
Ε∂
ψ∂

ρ−=P ,      
Β∂
ψ∂

ρ−=M . 

 
 Thus, ηψ, , P and M are functions of ΕΘ,,,θρ  and B only. Furthermore, the following residual 
entropy inequality remains 
 

  ( ) 0TT2 ≥
θ

θ∇⋅
−+

∂
ψ∂

ρ−⋅+∇++







ρ∂
ψ∂

ρ+
qNRTDIT ΩΘΘΩ

Θ
Εℑω :::: . (2.26) 

 
 We can derive further restrictions of the constitutive relations by evaluating the residual entropy 
inequality (2.26). Following (Liu and Müller, 1972; Nečas and Šilhavý, 1991; Růžička, 1992) we introduce 
the equilibrium part of T, N, q, ℑ  and ψ  through (cf. Hutter (1977)) 
 
  ( ) ( )B000000B ,,,,,,,,,ˆ:,,, ΘΘ θρ=θρ ff E , 
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  ( ) ( )B0B ,,,,ˆ:,,, ΘΘ θρψ=θρψE , 
 
and the non-equilibrium parts through 
 

  
( ) ( )( ) ( ) ( )( )

( ) ,,,,

,,,,,,,,,:,,,,,,,,,

B

BRDBRD

Θ

ΕωωΘΕωωΘ

θρ−

+∇∇θ∇θρ=∇∇θ∇θρ
E

ASAS
D

f

ff
 

 
  ( ) ( ) ( )BBB ,,,,,,,:,,,, ΘΕΘΕΘ θρψ−θρψ=θρψ ED  
 
where f stands for T, N, q and ℑ . Since Eq.(2.26) has to hold in every process, we consider, at a fixed point 

0x  in space and a fixed instant 0t  in time, the process EBv ,,,,,, Θωθρ  and for [ ]10,∈α  the related 
process EBv ,,,,,, Θωθρ  defined through 
 
  ( ) ( )xtxt ,, ρ=ρ ,      ( ) ( )( )xx1txt 0 α+α−θ=θ ,, ,      ( ) ( )xtxt ,, vv α= , 
 
  ( )xt,ωω α= ,          ( ) ( )xtxt ,, ΘΘ = , 
 
  ( ) ( )( )xtt1xt 0 ,, α+α−= BB ,          ( ) ( )xtxt ,, EE α= . 
 
 Thus, the variables 
 
  ( ) ( ) BRD ,,,,,,,,, ΕωωΘ AS ∇∇θ∇θρ , (2.27) 
 
can be systematically replaced by 
 
  ( ) ( ) BRD ,,,,,,,,, ΕωωΘ α∇α∇αααθ∇αθρ AS . (2.28) 
 
 The residual entropy inequality Eq.(2.26) in the new process reads 
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≥
θ

⋅θ∇α
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∂
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
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q

NRTDIT
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Εℑω
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:::
 

 
where T, N, q and ℑ  are evaluated by Eq.(2.28) and ψ  is evaluated at B,,,, ΕΘ αθρ . Dividing this 
inequality by α  and letting 0→α  we arrive at 
 

  

( ) ( ) .:

:::

0
E

TT
E

ΕEE
E

2E

≥
θ
⋅θ∇

−+
∂
ψ∂

ρ−

+⋅+∇++










ρ∂
ψ∂

ρ+

q

NRTDIT

ΩΘΘΩ
Θ

Εℑω
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 Since the constitutive quantities are evaluated at B,,, Θθρ  this inequality is linear in 
Εω,,,, ∇θ∇ RD  and Ω , which can be chosen arbitrarily. Therefore we obtain 

 

  IT
ρ∂

ψ∂
ρ−=

E
2E ,         ( )TEE TT = ,          0N =E ,       

   (2.29) 

  0=Εℑ ,          0q =E ,          0=
∂
ψ∂
Θ

E
, 

 
and the residual entropy inequality 
 

  

( ) ( ) .:

:::

0
D

TT
D

DDD
D

2D

≥
θ
⋅θ∇

−+
∂
ψ∂

ρ−

+⋅+∇++










ρ∂
ψ∂

ρ+

q

NRTDIT

ΩΘΘΩ
Θ

Εℑω
 (2.30) 

 
Obviously, the relations Eqs (2.29) and (2.30) are equivalent to Eq.(2.26). 
 Because the free energy ψ  may depend on Θ , also the electric polarization and the effective 
magnetic field strength may depend on this quantity. This emphasizes the importance of the micro-inertia, 
providing the possibility that effects of microstructure entering Maxwell’s equations through P and M. 
 
3. Electrorheological approximation 
 
 The equations derived in the last section may be simplifed in view of electrorheological applications. 
To this end, it is recommended to carry out an appropriate nondimensionalization with a subsequent 
approximation. Note that the electorheological approximation given here differs from well-known non-
relativistic approximations insofar, as in the former case we need additional assumptions concerning the 
magnetic quantities. These and all other assumptions made in this section are based upon our understanding 
of the behaviour of electrorheological fluids, both from a theoretical and an experimental point of view (cf. 
(Bloodworth, 1994; Bloodworth and Wendt, 1996; Eckart, 2000; Růžička, 2000; Wunderlich, 2000)). 
 Firstly, we shall assume that the Cauchy stress tensor T and the couple stress tensor N do not depend 
on the magnetic flux density B, i.e., 
 
  ( ) ( )( )ΕωωΘ ,,,,,,,,ˆ

AS ∇∇θ∇θρ= RDTT , (3.1) 
 
  ( ) ( )( )ΕωωΘ ,,,,,,,,ˆ

AS ∇∇θ∇θρ= RDNN . (3.2) 
 
 This assumption reflects the observation that the material properties of an ERF do not change if a 
magnetic field is applied, because, surely, the particles in an ERF bear no magnetic properties. 
 Secondly, we shall assume that 
 
  0≡M          where         PvM ×+=M , (3.3) 
 
M is the magnetization and P the electric polarization. This assumption ensures that an apparent 
magnetization can only be generated by a moving polarized fluid, see also (Grot, 1976). This common 
assumption is one crucial point to derive the so-called „quasi-electrostatic equations”. In view of Kirwan 
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(1986) assumption Müller (1985) also implies that the specific free energy ψ~ , and thus also the polarization 
P and the entropy η , are only functions of Θ,, θρ  and Ε . 
 Thirdly, we shall assume that the fluid is electrically non-conducting, i.e., 
 
  0≡ℑ . (3.4) 
 
 This assumption may not be fully justified in general, because some electrorheological fluids exhibit 
a certain electrical conductivity which is often due to the content of water. However, many of them are free 
of water and have very low electrical conductivity (for example the polyurethane dispersions described in 
detail in Bloodworth (1994) and Bloodworth and Wendt (1996)), and thus we may restrict ourselves to such 
a class. Note that in electrorheological applications like valves and dampers, the effective electric current 
should be as small as possible to guarantee a small power consumption and to avoid Joule heating. 
 In order to reach the final electrorheological approximation and to determine and retain terms that 
are dominant and discard others that are insignificant, we will carry out a dimensional analysis which follows 
closely that performed in Rajagopal and Růžička (1996), Růžička (2000). 
 To this end we may introduce the following dimensionless quantities6 
 

  
0E

EE = ,      
0B

BB = ,      
0

e
e q

qq = ,      
0T

TT = ,      
0N

NN = ,      
0Θ

=
Θ

Θ , 

 

  
0V
vv = ,      

0L
xx = ,      

0t
tt = ,      

00Eε
=

PP ,      
0ρ

ρ
=ρ ,      

0f
ff = ,      

0θ
θ

=θ  

 
where the quantities with the subscript „0” are appropriate characteristic quantities of the problem in 
question. In typical problems and for many electrorheological fluids (cf. (Bloodworth, 1994 and Bloodworth 
and Wendt, 1996)), we envisage that 
 
  ( ) 164

0 mV10103E −−⋅~ ,          ( ) 13
0 ms110V −− −~ , 

 
  ( )m10105L 34

0
−− −⋅~ ,            ( ) ( ) 112

0 smkg1010 −−− −η ~ , (3.5) 
 
  ( )s110t 3

0 −−~ ,                          33
0 mkg10 −ρ ~ . 

 
 The time 0t  may either be a characteristic electric or a hydrodynamic time, depending on the specific 
problem. Moreover, 0ρ  and 0η  are the density and the dynamic viscosity of the fluid in the absence of an 
electric field, respectively. Using Eq.(3.5), the Reynolds number ( ) 0000 VL ηρ=Re  and the Strouhal 
number ( )000 tVL=Str  lie in the range 
 
  23 105105 ⋅≤≤⋅ − Re           and          34 105105 ⋅≤≤⋅ − Str , 
 
respectively. Magnetic quantities are missing in Eq.(3.5). No experimental observation is known to us that 
shows that the magnetic field plays a significant role in electrorheological applications. Usually, no external 
magnetic field is applied and thus B is only induced by the electric field. We interpret the secondary role of 
B in electrorheological fluids through the assumption that 
 
                                                        
6 In this section, dimensionless quantities and operators are denoted by a superposed bar. 
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  ( )1O
tc

L
B
E

0
2

0

0

0 = , (3.6) 

 
resulting in 
 
  ( ) 21016

0 msV1010B −−− −~ . 
 
 Recall that 18 sm103c −⋅≈  denotes the speed of electromagnetic waves in vacuum. Eqation (3.6) is 
consistent with the assumption that the magnetic flux density is only induced by oscillations of the electric 
field and/or the motion of a polarized body (cf. Tanahashi and Okanaga (1989)). 
 Let us introduce a small non-dimensional number ε  through 
 
  310−≡ε , 
 
which measures the importance of the terms. The situation described above – together with an assumption 
that there are only few free charges in the fluid – can thus be summarized as 
 

  ( ) ( )43

0

0 OO
tc

L
ε−ε= ,          ( ) ( )430 OO

c
V

ε−ε= , 

 

  ( ) ( )ε−ε= − OO
L

tV 1

0

00 ,         ( )3

00

00 O
E
Lq

ε=
ε

, (3.7) 

 

  ( ) ( )85

00

00 OO
tE
LB

ε−ε= ,         ( )1O
cB
VE

2
0

00 = . 

 
 The non-dimensionalized system of balance laws may then be approximated by retaining terms up to 
order 2ε , while neglecting terms of higher order. 
 Firstly, let us discuss the role of Ε  in the constitutive relations. It follows from the definition of Ε , 
that 
 

  ( )5

0

00

0
O

E
BV

Ε
ε+=×+== EBvEΕ

Ε  (3.8) 

 
where we used that 
 

  ( ) ( )75

0

00 OO
E
BV

ε−ε= . (3.9) 

 
Thus, Ε  can be replaced by E  in all non-dimensionalized constitutive relations. 
 The dimensionless form of Maxwell’s Eqs (2.1)-(2.4) may be obtained by using the definition of H, 

eD , Eqs (3.3), (3.7) and (3.8) 
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( )

( )5
e

O

00

00 Oq
E
Lq

3

ε+
ε

=+

ε
321

PE vidvid ,           

( )

0BE =
∂
∂

+

ε

ttE
LB

5O

00

00

321

rluc ,          0=Bvid , 

 

  

( )

( )
( )

( )

( )

( )5
e

O

2
0

00

00

00

1O
0

2
0

0

0

1O

2
0

00 Oq
cB
VE

E
Lq

ttc
L

B
E

cB
VE

3

ε+
ε

−+
∂
∂

=×+

ε

vPEPvB
4342143421321

rlucrluc  

 
where we also used the relation 2

00 c−=µε . Neglecting terms of ( )3O ε , we obtain the electrorheological 
approximation of Maxwell’s equations according to7 
 
  ( ) 00 =+ε PEdiv , (3.10) 
 
  0=Ecurl , (3.11) 
 
  0=Bdiv , (3.12) 
 

  ( ) ( )
t

1 0

0 ∂
+ε∂

=×+
µ

PEPvB curlcurl  (3.13) 

 
where   ( )EPP ,,, Θθρ= . 
 
 Now we turn to the approximation of the thermo-mechanical balance laws. The conservation of mass 
Eq.(2.5) remains unaffected. In the momentum Eq.(2.6) we rewrite the electromagnetic force ef  on using 
(2.7), (3.3), (3.4), (3.7), (3.8) and (3.9), which leads to 
 

  

[ ]

( ) ( ) ( )

( )

[ ] ( ) [ ]( )( ) [ ] ( )5

O

0

00

O

00

00
e

O

0

00
e

O

00

00
2
00

0
0

2
00

0
2
00

2
00

0
2
00

000

O
E
BV

ttE
LB

q
E
BV

q
E
Lq

E
L

f

E
T

E
V

ttE
LV

5

553

ε+∇+∇×+×+∇+

+×
∂
∂

+





















×+
ε

+
ε

=

=
ε

−∇ρ
ε

ρ
+

∂
∂

ρ
ε

ρ

ε

εεε

PEPBvBPvvP

BPBvEf

Tvvv

vid

vid

321

321321321

 (3.14) 

 
where in ( )5O ε  only terms coming from Eq.(3.8) are included. This form of the nondimensionalization was 
chosen in order to evaluate the relative importance of the various terms that occur in the electromagnetic 
force density ef . We see that all underbraced terms on the right-hand side of Eq.(3.14) have to be neglected. 

                                                        
7 Since 0=M , we can rewrite Eqs (3.10)-(3.13) in terms of E, B, H, eD  only. 
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We shall retain the mechanical force term and the term with the Cauchy stress. Furthermore, one easily 
computes that 
 

  

( ) ( )

( ) ( )

( ) ( )













⋅−ε

⋅ε−ε

⋅ε−

=
ε

ρ

−−

−−

−

,~if

,~if

,~if

2282
0

2

22102
0

11

22122
0

2

0
2
00

000

mV109E1OO

mV109EOO

mV109EO1O

tE
LV  (3.15) 

 

  

( ) ( )

( ) ( )

( ) ( )













⋅−ε

⋅ε−ε

⋅ε−

=
ε

ρ

−−

−−

−

.~if

,~if

,~if

2282
0

2

22102
0

11

22122
0

2

2
00

2
00

mV109E1OO

mV109EOO

mV109EO1O

E
V  (3.16) 

 
 Therefore also the first and second term on the left-hand side of Eq.(3.14) has to be kept. With regard 
to the approximation of the other thermo-mechanical nondimensionalized equations, we only replace Ε  by 
E  since we have no indication of the behaviour of the other quantities. 
 Therefore, the electrorheological approximation of the thermo-mechanical balance laws is given by 
 
  0=ρ+ρ vdiv& , (3.17) 
 
  [ ]PEfTv ∇+=−ρ div& , (3.18) 
 
  EPlΤNs ×++=+ρ Τ:εdiv& , (3.19) 
 
  0=−− TT ΩΘΘΩΘ& , (3.20) 
 

  wkc 2
2

2
2

+
ρ∂
ψ∂

ρ+=θ










θ∂ρ∂
ψ∂

ρ−⋅
θ∂∂

ψ∂
−θ∇−θρν DDTDE

E
tr

~
:tr

~~
div && , (3.21) 

 

  ( ) ( ) ( ) 0
D

T
D

DDD ≥
θ
⋅θ∇

−+
∂
ψ∂

ρ−∇++π−
qNRTDIT ΤΩΘΘΩ

Θ
ω ::::  (3.22) 

 
where we used the definition of the specific heat νc  and of the thermodynamic pressure π  according to 
 

  2

2
c

θ∂

ψ∂
θ−=ν

~
,          

ρ∂
ψ∂

ρ−=π
D

2
~

. 

 
 Moreover ψπν

~,,, Pc  and Dψ~  are functions of Θ,, θρ  and E; while we have for the dissipative 

part of the stress tensor ( ) ( )( )ERDTT ,,,, AS
DD ωω,,,Θ, ∇∇θ∇θρ=  and the dissipative part of the couple 
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stress tensor ( ) ( )( )ERDNN ,,,, AS
DD ωω,,,Θ, ∇∇θ∇θρ= . In the next section, we will discuss various 

formulations for the stress DT  and the couple stress tensor DN . 
 
4. Constitutive relations 
 
 Now we will develop constitutive models for the Cauchy and the couple stress. The models 
presented should describe the directional dependence of the material response more accurately than previous 
ones. Nevertheless, in order to keep the already very long and complicated formulae as simple as possible we 
shall drop the dependence of the dependent variables (2.18) on the micro-inertia tensor Θ . Moreover, we 
keep the dependence on θ∇  only in the constitutive relation for q and assume 
 
  θ∇−= kq  
 
where the thermal conductivity k is a positive constant. In all other constitutive relations we drop the 
dependence on θ∇ . We also restrict ourselves to the case of an incompressible ERF, i.e., 
 
  0tr =D . 
 
 Thus, in view of Eq.(4.17), we can drop in all constitutive relations the dependence on ρ , in 

particular 0T =E . For the stress tensor, which may be split according to SIT +π−=D , we assume that the 
extra stress tensor S is of the form 
 
  ( )ERDSS ,,,θ= . 
  
Note that we drop the dependence of S on ω∇  for the sake of simplicity. 
 From representation theorems (cf. appendix of Eringen and Maugin, (1989) and references therein) it 
follows that the most general form for S is given by 
 

  

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )DEEDEDDEEEREREEEDEDE

DRDREREREEEDEDEE

RDDRRREERERRE

DRRRDRRDRDRDR

REREREEERERDDRR

EDEEEDDEEEDEDDEE

⊗−⊗α+⊗−⊗α+⊗−⊗α+

+−α+⊗−⊗α+⊗−⊗α+

++α+α+⊗+⊗α+

+−α+−α+α+

+⊗α+⊗+⊗α+−α+α+

+⊗+⊗α+⊗+⊗α+α+α+⊗α=

22
22

22
21

22
20

22
191817

1615
22

14

22
13

22
1211

1098
2

7

22
65

2
432S

 

 
where 221ii ...,, =α  may be functions of the invariants 
 
  ( ) ( ) ( )EREEEDEDERDDE 22322 ⋅⊗⊗θ tr,tr,tr,tr,tr,tr,, , 
 
  ( ) ( ) ( ) ( ) ( ) ( )ERDREREDEDREEDRRDRDDR 2222222 ⋅⋅⋅ tr,tr,tr,tr,tr,tr . 
 
 Note that the terms with 142 α−α  are generating the symmetric part of S, while the terms with 

2215 α−α  are generating the skewsymmetric part of S. 
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 On the one hand, the couple stress DN  shall improve the description of the material behaviour with 
respect to the directional dependence on the electrical field and hence should depend on E. On the other 
hand, it should be as simple as possible and in accordance with the classical theories. Thus, we assume that 

DN  is of the form  
 
  ( ) ( )( )ENN ,,, AS

DD ωω ∇∇θ= . 
 
 From representation theorems (cf. appendix of Eringen and Maugin, (1989) and references therein) it 
follows that the most general form for DN  is given by 
 

  

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )EEEE

EEEEEEE

EEEE

EEEE
EEEE

EE
EEEE

EEEE

EEEEEEIN

S
2
S

2
SS22

2
A

2
A21

2
S

2
S20

S
2
A

2
AS19AA18

SS17SAAS16

A15A
2
A

2
AA14

AS
2
A

2
ASA13

2
SAA

2
S12

ASA11AA10

AA9SAAS8

2
A7

2
S

2
S6

SS5
2
S4S321

D

E

ωωωω

ωωωω

ωωωωωω

ωωωωωω

ωωωωω

ωωωωωω

ωωωω

ωωωωω

ωωωωωω

ωωω

ωωωω

∇⊗∇+∇⊗∇β+

+⊗∇−∇⊗β+⊗∇−∇⊗β+

+∇∇−∇∇β+⊗∇−∇⊗β+

+⊗∇−∇⊗β+∇∇+∇∇β+

+∇β+∇⊗∇+∇⊗∇β+

+∇∇∇−∇∇∇β+

+∇∇−∇∇β+

+∇∇∇β+∇⊗∇β+

+∇⊗+⊗∇β+∇∇−∇∇β+

+∇β+∇⊗+⊗∇β+

+∇⊗+⊗∇β+∇β+∇β+⊗β+β=

 

 
where 221ii ...,, =β  may be functions of the invariants 
 
  ( ) ( ) ( ) ( ) ( )( )EEE ⊗∇∇∇∇∇θ S

2
A

3
S

2
SS

2 ωωωωω tr,,tr,tr,tr,, , 
 
  ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )2

A
2
S

2
AS

2
A

2
S E ωωωωωω ∇∇∇∇∇⋅⊗∇ tr,tr,tr,tr EEE , 

 
  ( ) ( ) ( ) ( )( ) ( ) ( )( )EE ASAS

2
A

2
S ωωωωωω ∇∇⋅∇∇∇∇ tr,tr , 

 
  ( ) ( )( ) ( ) ( ) ( )( )EEEE 2

ASAA
2
S ωωωωω ∇∇∇⋅∇∇⋅ tr,tr , 

 
and ( )S  and ( )A  means the symmetric and skewsymmetric part, respectively. The terms with 142 β−β  are 

generating the symmetric part of DN , while the terms with 2215 β−β  are generating the skewsymmetric 

part of DN . 
 It would be futile to experimentally determine all these material functions and thus we are left with 
the task of simplifying the expressions for the stresses without forsaking the possibility to obtain a model that 
can reflect the behaviour of electrorheological fluids. This section is devoted to a discussion of special 
constitutive models with a view towards developing a theoretical framework that is amenable to analysis. 
Firstly, we may assume that the extra stress S is linear in D and R and quadratic in E, and the couple stress 
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DN  is linear in ( ) ( )AS ωω ∇∇ ,  and quadratic in E. Then we obtain restrictions on the form of S and DN , 
which are posed by the reduced entropy inequality Eq.(2.30). 
 Assuming now that S is linear in D and R and has quadratic growth in E, we get 
 
  12 α=α ,      2

323 Eα+α=α ,      45 α=α , 

 
  59 α=α       2

7615 Eα+α=α ,      817 α=α ,      918 α=α , 

 
  014131211108764 =α=α=α=α=α=α=α=α=α , 
 
  02221201916 =α=α=α=α=α  
 
where 91 αα ...,,  are functions of θ  only. Similarly, we obtain from the assumption that DN  is linear in 
( )Aω∇  and ( )Sω∇   
 
  ( ) ( ) ( )S

2
5S4S3

2
211 ωωω ∇β+∇⋅β+∇β+β+β=β trtr EEEE , 

 
  ( )S762 ω∇β+β=β tr ,      2

983 Eβ+β=β ,      105 β=β , 
 
  119 β=β ,      2

131215 Eβ+β=β ,      1417 β=β ,      1518 β=β , 
 
  014131211108764 =β=β=β=β=β=β=β=β=β , 
 
  02221201916 =β=β=β=β=β  
   
where 151 ββ ...,,  are functions of θ  only. Now, holding the temperature fixed in the Clausius-Duhem 
inequality (3.22), we obtain 
 

  

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( ) .

trtr

tr

02

2

2E

2

22

2
A15

2
A

2
1312AS1411

2
S10

2
S

2
98S6

SS74
2

S
2

53

S
2

21
2

9
22

76

85
2

4
22

321

≥∇β−

+∇β+β+∇⋅∇β−β+

+∇β+∇β+β+∇⋅β+

+∇⋅∇β+β+∇β+β+

+∇β+β+α−α+α+

+⋅α−α+α+α+α+⋅α

E

EEE

EEE

EEE

ERERE

REDEDEDEDEE

ω

ωωω

ωωω

ωωω

ω

 (4.1) 

 
 This inequality has to hold for all D, R, ( )Sω∇ , ( )Aω∇  and E. By specifying and rescaling their 
values we obtain restrictions on the remaining material parameters8. 
                                                        
8 A similar rescaling argument was used in a completely different context by Nečas and Šilhavý (1991), Růžička (1992) 
and also in Rajagopal and Růžička (1996), Růžička (2000). 
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 Inequality (4.1) splits into 2 inequalities, one including all terms with D and R and the other 
including all terms with ( )Sω∇  and ( )Aω∇ , which will be discussed separately. 
 Firstly, we set 0=∇ω . In the remaining part of Eq.(4.1) we first choose 0R =  and thus Eq.(4.1) 
reads 
 

  ( ) 02 2
4

22
321 ≥α+α+α+⋅α DEDEDEE . 

 
 Thus we are in the same situation as in the case of a linear incompressible non-polar 
electrorheological fluid and we can proceed in the same way [cf. (Růžička, 2000), Lemma 1.3.34]. 
 Setting 0E =  we get 
 
  02 ≥α . (4.2) 
 
 If we replace D by Dγ , multiply by 1−γ  and let 0→γ  we obtain 
 
  01 =α . 
 
 Setting 0=DE , rescaling EE γ→ , multiplying by 2−γ , letting ∞→γ  then yields 
 
  03 ≥α , (4.3) 
 
and (rescaling EE γ→ , multiplying by 2−γ , letting ∞→γ ) 
 
  02 2

4
22

3 ≥α+α DEDE . 
 

 Using in this inequality that 222

3
2 EDDE ≤ , where equality is attained, [cf. Lemma 1.3.7 

(Růžička, 2000)] we deduce 
 

  0
3
4

43 ≥α+α . (4.4) 

 
 Now setting 0D =  and 0=∇ω  in Eq.(4.1) we have 
 

  ( ) 02 2
9

22
76 ≥α−α+α RERE , 

 
and we deduce in the same way as above 
  
  06 ≥α ,          07 ≥α ,          97 α≥α  (4.5) 
 

where we used 222

2
1 ERRE ≤  for the last inequality. Finally, we obtain by rescaling EE γ→ , 

multiplying by 2−γ , letting ∞→γ , and by changing the sign of D that 
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  0222 2
9

22
785

2
4

22
3 ≥α−α+⋅α−α−α+α REREREDEDEDE , 

 

from which we deduce, on choosing D, R, E such that 222

3
2 EDDE = , 222

2
1 ERRE =  and 

222

2
1 EDDE = , 222

2
1 ERRE = , 2

2
1 ERDREDE =⋅ , respectively 

 

  7439 3
4

α+α+α≤α , 

 
  743859 α+α+α≤α−α+α , (4.6) 
 
  ( )( )9743

2
85 4 α−αα+α≤α−α . 

 
 Secondly, we choose 0RD == . Setting now in the remaining inequality (4.1) ( ) 0=∇ Aω , we are in 
a very similar situation as in the case of a linear compressible non-polar electrorheological fluid [cf. 
(Růžička, 2000), sec. 1.3.1]. By setting 0E =  we get 
 
  ( ) ( ) ( ) 0trtr 2

S8
2

S3S1 ≥∇β+∇β+∇β ωωω ,  
 
from which we deduce by an appropriate rescaling of ( )Sω∇ , choosing ( ) 0tr S =∇ω  and by choosing 

ID = , respectively, 
 
  01 =β ,          08 ≥β ,          03 83 ≥β+β . (4.7) 
 
 Rescaling now EE γ→ , multiplying by 2−γ , letting ∞→γ , we obtain from Eq.(4.1) 
 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

trtrtr

02 2
S10

2
S

2
9S6

2
S

2
5SS74S

2
2

≥∇β+∇β+∇⋅β+

+∇β+∇∇⋅β+β+∇β

EEEE

EEEE

ωωω

ωωωω
 (4.8) 

 
 One sees that the coeffcients in front of the linear terms in ( )Sω∇  have to vanish, i.e., 
 
  062 =β=β . 
 
 Choosing ( ) 0tr S =∇ω  we get (cf. Eq.(4.4)) 
 

  09 ≥β ,          0
3
4

109 ≥β+β , (4.9) 

 
while ( ) 0E =∇ Sω  implies 
 
  03 95 ≥β+β . (4.10) 



W.Eckart and M.Růžička 832 

 Now we are exactly in the same situation as for a linear compressible non-polar electrorheological 
fluid. Thus we decompose ( )Sω∇  as 
 

  ( ) ( )( ) GI +∇=∇ SS 3
1

ωω tr ,          0=Gtr  

 
where now G and ( )Sω∇tr  may be chosen independently. Thus inequality (4.8) can be re-written as 
 

  
( )

( ) 02
3
4tr

9
2

3
1

3
1

3
1tr

2
10

22
91074S

107495
22

S

≥β+β+β+β+β⋅∇+

+






 β+β+β+β+β∇

GEGEGEE

E

ω

ω
 (4.11) 

 
where we also changed the sign of G. Choosing now 0=G  provides 
 

  0
3
2

3
1

109745 ≥





 β+β+β+β+β . (4.12) 

 
 The right-hand side of Eq.(4.11) is a polynomial of second order in ( )Str ω∇  and its non-negativity 
is equivalent to the condition 
 

  
( ),2

10
22

91074

95
22

2

1047

2
9
2

3
1

3
1

3
14

3
4

GEGE

EGEE

β+β

β+β+β+



 +β+β≤⋅+β+β+β

 (4.13) 

 

from which we deduce using 222

3
2 GEGE ≤  and GEGEE 22

3
2

≤⋅  where equality is attained in both 

inequalities for the same choice of E and G [cf. (Růžička, 2000), Lemma 1.3.28] 
 

  





 β+β














 β+β+β+β+β≤β+β+β 109109745

2

1047 3
4

3
2

3
16

3
4 . (4.14) 

 
 Setting now in Eq.(4.1) ( ) 0RD =∇== Sω  and varying ( )Aω∇ , one immediately deduces (cf. (4.5)) 
 
  012 ≥β ,          013 ≥β ,          1513 β≥β . (4.15) 
 

 Decomposing again ( ) ( )( ) G+∇=∇ SS 3
1

ωω tr , we can vary ( )Sω∇tr  and G independently, and 

derive from Eq.(4.1) with 0RD == , after rescaling E and on changing the sign of G [cf. (4.11)] 
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( ) ( )

( ) ( )

( )

( ) ( ) .

tr

tr

02

22

3
4

9
2

3
1

2
A15

2
A

2
13

A1411
2

10
22

9

1074S

107495
22

S

≥∇β−∇β+

+∇⋅β−β−β+β+

+⋅β+β+β∇−

+



 β+β+β+β+β∇

EE

EGEGEGE

GEE

E

ωω

ω

ω

ω

 (4.16) 

 
 The choice ( ) 0S =∇ωtr  yields the analogue of Eq.(4.6), namely 
 

  1310915 3
4

β+β+β≤β , 

 
  13109141115 β+β+β≤β−β+β , (4.17) 
 

  ( )( )1513109
2

1411 4 β−ββ+β≤β−β . 
  
 Inequality Eq.(4.16) is quadratic in ( )Sω∇tr  and thus we get [cf. (4.13)] 
 

  

(

( ) (
( ) ( ) ( ) ),2

A15
2

A
2

13A1411

2
10

22
910749

5
2

2

1074

22

2
9
2

3
1

4
3
4

EEEGE

GEGE

GEE

ωωω ∇β−∇β+∇⋅β−β−

+β+β

β+β+β+β+

+β≤⋅+β+β+β

 (4.18) 

 
from which one can deduce [cf. (4.6)] 
 

  ( ) ,





 β−β+β+β






 β+β+β+β+β≤β+β+β 1513109107495

2

1074 3
4

9
2

3
16

3
4  

   (4.19) 

 ( ) ( ).15131411109107495

2

1074 22
9
2

3
18

3
4

β−β+β−β−β+β





 β+β+β+β+β≤β+β+β  

 
 Furthermore, we require the extra stress to be symmetric, if 0E = , thus choosing 06 =α . For the couple 
stress we choose 03 =β . Note that if either 08 >β  or 012 >β  the couple stress does not vanish, if 0E = . 
 Summarizing, the constitutive equations for the extra stress and the couple stress, considered in the 
remainder of this paper, are 
 

  
( ) ( ) ( )

( ) ( ),EREREEEDEDEERE

REEEREDEEEDEDES

⊗−⊗α+⊗−⊗α+α+

+⊗+⊗α+⊗+⊗α+α+α=

98
2

7

54
2

22  (4.20) 
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( ) ( )( ) ( )
( )( ) ( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( ).

trtr

EEEEEEEE

EEEEE

EEEEE

EEIEEEN

⊗∇−∇⊗β+⊗∇−∇⊗β+

+∇β+β+∇⊗+⊗∇β+

+∇⊗+⊗∇β+∇β+β+

+⊗∇β+∇β+∇⋅β=

AA15SS14

A
2

1312AA11

SS10S
2

98

S7S
2

5S4
D

ωωωω

ωωω

ωωω

ωωω

 (4.21) 

 
 Note that 52 α−α , 97 α−α and 15754 β−βββ ,,  are functions of θ  only. In the following sections 
we assume that all nontrivial inequalities in Eqs (4.2), (4.3)-(4.7), (4.9), (4.10), (4.12), (4.14), (4.15) and 
(4.17)-(4.19) are strict. These constitutive equations look still complicated, but we do not want to simplify 
them before the important case of a viscometric flow is studied. 
 The system (3.17)-(3.21), with S and DN  given above, and Eqs (3.10)-(3.13) completed with 
appropriate boundary and initial conditions describes the behaviour of a micropolar ERF. 
 
5. Viscometric flow 
 
 To show the behaviour of the velocity and the importance of the material parameters, a viscometric 
flow is studied in this section. We determine analytical solutions in a pressure driven channel flow and a 
simple shear flow and illustrate selected results. 
 It is our purpose to show that the micropolar theory may be used for electrorheological fluids if a 
dependence on the direction of the electric field is to be modelled. 
 It is not our intention to review or discuss general results of micropolar theories nor other properties 
of electrorheological fluids that have been observed. 
 Before we start the calculations, it is necessary to specify the model that we want to use. Indeed, 
there are „different” micropolar fluids, depending on the choice of the micro-inertia tensor which represents 
symmetries of the microstructures in the fluid. In Eringen (1966) and Stokes (1984), isotropic micropolar 
fluids are investigated, while Eringen studied anisotropic micropolar fluids in Eringen (1980). In the former 
case, the micro-inertia tensor has a diagonal form and only one (constant) component IΘ=Θ , while in the 
latter case it has in general six components differing from each other. For the sake of simplicity we are 
dealing here with isotropic micropolar fluids. Note that in this case the balance of micro-inertia (2.12) 
implies that Θ  is materially constant. 
 Now let us consider steady state flow configurations also described in Stokes (1984), where Stokes 
studied simple shear flows, channel flows and pipe flows, respectively. The latter case was also studied in 
sec. 3 of Eringen (1966)9. 
 Thus, we investigate a steady state flow of a micropolar ERF between two parallel infinite plates 
(compare Eringen (1966) and (1980)) with the following properties 
 
  032 =ν=ν ,       ( )211 xν=ν ,        021 =ω=ω ,        ( )233 xω=ω , (5.1) 
 

  212112 2
1DD ,ν== ,               0Dij =     otherwise, (5.2) 

 

                                                        
9 Note that if we considered anisotropic micropolar fluids (i.e., rigid particles of arbitrary shape), the motion would 
inherently unsteady, as pointed out in Happel and Brenner (1965), p.161. However, if both the translational and 
rotational Reynolds numbers are small, it is permissible to adopt a quasi-static form of the equations which was also 
assumed in Eringen (1980). Nevertheless, we are not interested in anisotropic micropolar fluids and thus may study 
steady state flows without any additional restriction. 
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  3212112 2
1RR ω+ν=−= , ,     0Rij =     otherwise (5.3) 

 
where we switched to index notation. The flow direction is the positive 1x - direction. 
 Furthermore we assume the (plane) electric field to be constant with respect to space and time, i.e., 
 
  const.=1E ,        const.=2E ,        0E3 = 10. (5.4) 
 
 For the sake of simplicity the temperature is held constant, resulting in constant material parameters. 
The boundary conditions are given as 
 
  ( ) 00x21 ==ν ,          ( ) 021 Vhx ==ν , (5.5) 
 
  ( ) l23 0x ω==ω ,        ( ) u23 hx ω==ω  (5.6) 
 
where uω  and lω  are functions of 2E  such that 0u =ω  and 0l =ω  if 0E = . Note that the latter 
restriction guarantees that 03 =ω  is a solution of Eq.(5.10) below. We have also investigated the well-
known boundary condition 
 
  213 n ,ν−=ω       at      0x2 =       and      hx2 = , (5.7) 
 
as is discussed in detail by Kirwan in (1986), for example. Although the solutions using the „Neumann 
conditions” (5.7) are slightly simpler than solutions with the „Dirichlet conditions” (5.6), we found that for 
our purposes the latter ones seem to produce „more appropriate” solutions. 
 From the balance of momentum (3.18) it follows, on using (5.1)-(5.4) and 0f = , that 
 
  1212S ,, π= ,          2222S ,, π= . (5.8) 
 
 Recall that it follows from the assumptions (5.1)-(5.4), that 12S  and 22S  calculated from Eq.(4.20) 
cannot depend on 1x . Now integrating both Eqs (5.8) to obtain π  and compare the resulting terms with each 
other, we conclude that the pressure must be given as 
 
  ( )2221 xSKx +−=π  (5.9) 
 
where 212SK ,−=  is the (prescribed) pressure gradient in 1x - direction in case of a pressure driven flow. 
Using Eqs (5.1)-(5.4) and 01 = , the balance of internal spin (3.19) reduces to 
 
  0NSS 2321221 =+− , , (5.10) 

provided that the micro-inertia tensor ijΘ  has a diagonal form (as was already said). 
 Let us now compare the shear stresses 12S  and 21S  in a viscometric flow. From Eq.(4.20) it follows, 
on using the simplifications, that 
 
                                                        
10 Surely, the electric field will be space-dependent in real applications. On the other hand, it can be shown that a 
viscometric flow is not possible if the electric field is space-dependent. Thus, we are forced to make this assumption, 
else no closed analytical solution is possible. 
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( ) ( )( ) ( )[ ]

( )( ) ( )[ ] ,,

,







 ω+ν−α−+α−α+

+ν−α++α+α+α=

321
2
2

2
15

2
2

2
197

21
2
2

2
18

2
2

2
1432212

2
1EEEE

EEEE
2
1xS

 (5.11) 

 

  
( ) ( )( ) ( )[ ]

( )( ) ( )[ ] .,

,







 ω+ν−α++α−α−

+ν−α−+α+α+α=

321
2
2

2
15

2
2

2
197

21
2
2

2
18

2
2

2
1432221

2
1EEEE

EEEE
2
1xS

 (5.12) 

 
 Now it is much clearer to see that the underlined terms are responsible for nonsymmetric shear 
stresses. In particular, we obtain for electric fields perpendicular (i.e., ( ) 2E

1202112 SEE0ES :, ===  and 

electric fields parallel (i.e., ( ) 1E
12020112 SEEEES :, ===  to the flow direction 

 

  ( )[ ] ( )[ ] 





 ω+να+α−α+να−α+α+α= 321

2
05

2
09721

2
08

2
0432

E
12 2

1EEEE
2
1S 2

,, , (5.13) 

 

  ( )[ ] ( )[ ] 





 ω+να−α−α+να+α+α+α= 321

2
05

2
09721

2
08

2
0432

E
12 2

1EEEE
2
1S 1

,, , (5.14) 

 
respectively. Clearly, they are not the same in general, even if the velocity fields were the same: directly due to the 
existence of 5α  and 8α  and indirectly due to 97 α−α , because 3ω  may not be the same in both cases. 
 The normal stress differences are given by 
 

  





 ω+να=− 3212152211 2

1EE4SS , , 

 

  





 ω+να−να=− 321215212143322 2

1EE2EESS ,, . 

 
 The only relevant couple stress component 32N  is given by Eq.(4.21) as 
 

  ( ) ( )( ) ( ) 23
2
215141110

2
2

2
113912832 E

2
1EE

2
1

2
1N ,ω



 β−β−β+β++β+β+β+β= . (5.15) 

 
 From Eqs (4.9)1, (4.15)2, 3 and (4.17)2 it follows that the coefficient in front of ω 3, 2 in Eq.(5.15) is 
strictly positive. Introducing the abbreviations 
 

  
( )( ) ( )[

( )( ) ( )],2
2

2
15

2
2

2
197

2
2

2
18

2
2

2
14321

EEEE

EEEE
2
1

−α−+α−α+

+−α++α+α+α=η
 

 
  ( )( ) ( )2

2
2
15

2
2

2
1972 EEEE −α−+α−α=η , 
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it follows from Eqs (4.2) and (4.6)2 that 
 
  01 >η . 
 
 Now from Eqs (5.8), (5.9) and (5.11) we deduce 
 

  21
2

1

2

1

2

2
3

CKx
,ν

η
η

−
η

+
η

−=ω ,          02 ≠η 11 (5.16) 

 
where 1C  is an integration constant. Note that 3ω  is linear in the shear rate 21,ν  which is due to the linear 
dependence of S on R and D. 
 Using Eqs (5.11), (5.12) and (5.15) and inserting them in (5.10), the following equation emerges 
 
  0223134213 =ωζ+ωη−νη− ,,  (5.17) 
 
where we have introduced the abbreviations 
 
  ( ) ( )( )2

2
2
197

2
2

2
183 EEEE +α−α+−α=η , 

 
  ( )( )2

2
2
1974 EE2 +α−α=η , 

 

  ( ) ( )( ) ( )[ ]2
215141110

2
2

2
11391281 EEE

2
1

2
1

β−β−β+β++β+β+β+β=ζ . 

 
 Note that due to Eqs (4.5)3, (4.9)1, (4.15)2, 3 and (4.17)2 it follows that 
 
  04 >η         for        0E ≠ ,        01 >ζ . (5.18) 
 
 Eliminating 3ω  in Eq.(5.17) by means of Eq.(5.16) and integrating the emerging equation w.r.t. 2x , 
a linear ordinary differential equation of second order in 1ν  alone is obtained,i.e. 
 

  2211
2
2112221 CxCZ2xKZ

l
1

+−=ν−ν ,  

 
where 
 

  
11

3214
2l
1

ηζ
ηη−ηη

=         and        
11

4
1 2

Z
ηζ

η
= . (5.19) 

 
l  is an internal lengthscale. Note that due to physical reasons the right-hand side of Eq.(5.19)1 must be 
positive. An appropriate particular solution of Eq.(2.5) and the general solution of the corresponding 
homogeneous differential equation can easily be obtained, implying 

                                                        
11 When 122 S0,=η  is not depending on 3ω ; we can determine 1ν  from Eq.(5.8) without knowledge of 3ω . The simple 
parabolic profile is obtained for a pressure driven flow (and the linear profile for a simple shear flow). Once 1ν  is 
known, 3ω  can be determined from Eq.(5.10). Note that the extra stress is still not symmetric. 
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  ( )[ ]2211

2
2

2
1

2p
1 CxCZ2xl2KZl −++−=ν : , (5.20) 

 
  lxClxC 2423

h
1 sinhcosh: +=ν . (5.21) 

   
 Due to its linearity the general solution of Eq.(2.5) can be obtained by superposition of the particular 
and the homogeneous solution. 
 For the determination of the four unknown constants 321 CCC ,,  and 4C  we use the four boundary 
conditions (5.5)1, 2 and (5.6)1, 2. Using Eqs (5.20) and (5.21), we obtain 
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where 
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with 
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 (5.24) 

 
 Equation (5.22) together with Eqs (5.23) and (5.24) is the analytical solution to our boundary value 
problem. The microrotation 3ω  can now easily be calculated by means of Eqs (5.16) and (5.22) and is given as 
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 (5.25) 

 
 Before we proceed, let us briefly discuss the identification of the material parameters in the 
constitutive model. The best way would surely be to measure directly the velocity fields of the ERF for 
different electric fields and field directions (for example: 0EE 2

2
2
1 =− , 0E1 ≠ , 0E2 = , 0E2 ≠ , 0E1 =  

and so on). In reality, this seems to be unapplicable. However, an acceptable compromise would be to 
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measure the flow rate vs. the pressure drop for different electric fields and field directions. In a simpler case 
without electric fields, this method has already been pointed out by Stokes in (1984) (see for example p.47). 
 
5.1. Channel and shear flows 
 
 Let us now illustrate the above solutions for a specific set of parameter values. It turns out that the 
„perfect” parameter choice is not easy to find. As is well-known, a great variety of velocity profiles is 
possible. The following pictures have been generated by the following set of parameters 
 
  302 .=α ,       4143 =α+α ,       1615 =α ,       4197 =α−α ,       1678 −=α , 
 
  0128 =β+β ,       10139 .=β+β ,       01015141110 .=β−β−β+β . 
 
 This choice was partly guided by the restrictions imposed upon the parameters by the entropy 
inequality, compare especially Eq.(4.6)2, 3. The signs of 8α  and 5α  were chosen due to the following 
reason. Comparing Eqs (5.13) and (5.14) it can be seen that 08 <α  and 05 >α  helps to ensure that the 

shear stress 2E
12S  is larger than 1E

12S  for the same electric field strength 0E ; this reflects our impression that 
the shear stress should be larger if the electric field is perpendicular to the flow direction than if it is parallel 
to it12. 
 Furthermore, we have chosen 0lu =ω=ω . Although investigations show that these values may 
have a strong influence on the velocity profiles, we want to point out that for the desired purpose here we do 
not necessarily need dependences of the type [ ]( )2

uu f E=ω  and [ ]( )2
ll f E=ω , respectively. 

 Let us now introduce two dimensionless quantities a [ ]10a ,∈  and 0b >  which are defined via 
 

  ba
E
E

0

1 = ,       2

0

2 a1b
E
E

−= ,       2
2
0

2
2

2
1 b
E

EE
=

+ ,       ( ) 22
2
0

2
2

2
1 b1a2
E

EE
−=

− . 

 
b is the relative electric field strength, while a is a „direction parameter”: for the viscometric flows 
investigated here, 0a =  and 1a = , respectively, reflect the situations when the electric field is perpendicular 
and parallel to the flow direction, respectively. 
 In Fig.1a, the velocity profile is illustrated as a function of the channel coordinate 2x  and the 
direction parameter a. One clearly sees that the maximum velocity increases if a increases, i.e., if the angle 
between the electric field and the flow direction decreases from 90 to 0 degrees. This reflects the desired fact 
that the flow is hindered much less if the electric field is parallel to the flow than if it is perpendicular to it. In 
Fig.1b, the maximum velocity is illustrated as a function of both a and b. Firstly, the maximum velocity 
decreases if the electric field strength b increases, as it is common for electrorheological fluids. Secondly, it 
shows that with increasing b the dependence on a is more pronounced. This means that for small electric 
field strengths the dependence of the flow on the direction of the electric field is less pronounced than for 
strong electric field strengths. 
 

                                                        
12 This partly assumes that the sign of 21,ν  is the same as that of ( ) 32121 ω+ν ,  which cannot be guaranteed for all 
cases. However, the results that have been found using the introduced set of parameters will show that this choice is 
reasonable. 
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Fig.1. (a): Velocity profile 1ν  depending on the direction parameter a. (b): Maximum velocity max
1ν as a 

function of the relative electric field strength b and the direction parameter a. 
 

 Finally, let us switch to the illustrations of the flow rate Q which is given as 
 

  ( )∫ ν=
h

0 221 xdxQ : . 

 
 In Fig.2a, the flow rate is shown as a function of the pressure gradient K and the direction parameter 
a. Due to the linear constitutive relation, the flow rate is a linear function of K. It increases with increasing a, 
as was to be expected from the velocity plots in Fig.1. Furthermore it should be noted that the dependence on 
a is much more pronounced for higher than smaller pressure gradients K. In Fig.2b, the flow rate Q is 
diplayed vs. the relative electric field strength b and the direction parameter a. It can be seen that Q increases 
either with decreasing b or increasing a, as was to be expected from the velocity plots. 
 

 
 

Fig.2. (a): Flow rate Q as a function of the pressure gradient K and the direction parameter a. (b): Flow rate 
Q as a function of the relative electric field strength b and the direction parameter a. 
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 Note that the simple dependencies shown in Figs 1-2 are a direct consequence of the simple 
constitutive equation (linear in the shear rate and quadratic in the electric field). It is to be expected that more 
complicated (possibly non-monotonous) dependencies on the shear rate and/or the electric field will offer a 
great variety of possibilities to describe the behaviour of an electrorheological fluid more realistically. 
 
6. Summary and concluding remarks 
 
 In this paper, we derived a micropolar theory for electrorheological fluids, starting with the 
thermomechanical and electromagnetic balance equations including  the second law of thermodynamics in 
the form of the Clausius-Duhem inequality. Furthermore, we simplified the balance equations in view of 
electrorheological applications using an appropriate non-dimensionalization with a subsequent 
approximation. We then introduced constitutive equations both for the Cauchy and the couple stress tensor 
and evaluated the restrictions imposed on the material parameters by the entropy inequality. Linear 
constitutive equations were proposed which were discussed in a study of a viscometric flow. Finally, we 
illustrated the velocity and the flow rate depending on the electric field strength and the direction of the 
electric field. 
 The tasks of this paper were as follows. Firstly, we wanted to establish a complete framework for 
micropolar electrorheological fluids including all necessary balance equations, approximations and general 
constitutive equations (Sects. 1 – 4). In particular, the constitutive equations and the evaluation of the 
restrictions imposed on the material parameters by the second law of thermodynamics using scaling 
arguments (Sect. 4) may serve as a foundation for further studies on micropolar electrorheological 
constitutive equations. 
 Secondly, the main task of this paper was to show that the micropolar theory offers the possibility of 
describing the dependence of the electrorheological effect on the direction of the electric field in an objective 
and precise manner based on a sound theory, namely the framework of rational thermodynamics. In Section 
5 we explicitly showed that the velocity (and hence the flow rate) depend on the direction and the absolute 
value of the electric field which enlarges the possibilities of describing electrorheological fluids in real 
applications significantly. To our knowledge, this has not been done before. Changing the dependence of the 
stress tensors on the shear rate and the electric field may easily be possible and results in a great varity of 
descriptive possibilities of electrorheological fluids. Thus, this paper may just be the beginning of a 
discussion on micropolar electrorheological constitutive equations. 
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Nomenclature 
 
 a – direction parameter of the electric field, [ ]10a ,∈  
 b – relative electric field strength, 0b >  
 B – magnetic flux density 
 c – speed of electromagnetic waves in vacuo 
 νc  – specific heat 
 iC  – integration constants 
 D – symmetric part of the velocity gradient 
 eD  – dielectric displacement 
 e – specific internal energy 
 321iei ,,, =  – fixed Cartesian basis 
 E – electric field 
 f  – mechanical force density 
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 ef  – electromagnetic force density 
 DE ff ,  – equilibrium and non-equilibrium parts of f 
 0f  – appropriate characteristic quantity of f 

 G – auxiliary quantity defined by ( ) ( )( ) GI +∇=∇ SS tr
3
1

ωω , 0tr =G  

 h – channel height 
 H – magnetic field 
 I – identity matrix 
 J – current density 
 ℑ  – conductive current density 
 k – thermal conductivity 
 K – (constant) pressure gradient 
 l – mechanical couple density 
 el  – electromagnetic couple density 
 l – abbreviation (internal lengthscale) 
 L – velocity gradient 
 M – magnetization 
 M – effective magnetization 
 N – couple stress tensor 
 P – electric polarization 
 q – heat flux 
 eq  – density of the free electric charges 
 Q – flow rate 
 Q – time independent orthogonal tensor (Galilean transformation) 
 Re – Reynolds number 
 s – specific internal spin 
 S – extra stress tensor 
 Str – Strouhal number 
 T – Cauchy stress tensor 
 v – material velocity 
 00 bv ,  – constant vectors (Galilean transformation) 
 0V  – constant velocity 
 w – mechanical energy supply density 
 ew  – electromagnetic energy production density 
 W – skewsymmetric part of the velocity gradient 
 t,, Xx  – coordinates, time 
 1Z  – abbreviation 
 α  – constant, [ ]10,∈α  
 ii αα ,  – material parameters of S 

 ii ββ ,  – material parameters of DN  
 γ  – auxiliary quantity used for scaling 
 ε  – small non-dimensional number 
 ε  – isotropic third order tensor 
 00 µε ,  – dielectric constant and permeability in vacuo 
 Ε  – effective electric field strength 
 iζ  – abbreviations (containing the material parameters iβ ) 
 η  – specific entropy 
 iη  – abbreviations (containing the material parameters iα ) 
 θ  – absolute temperature 
 Θ  – symmetric micro-inertia tensor 



Modeling micropolar electrorheological fluids 843

 Ξ  – proper orthonormal tensor, rotation 
 π  – thermodynamic pressure 
 ρ  – mass density 
 ψ  – specific free energy 
 ω  – microrotational velocity vector 
 Ω  – microrotational velocity tensor 
 ∇  – derivative with respect to x 
 ( ) ( )AS ωω ∇∇ ,  – symmetric and skewsymmetric part of ω∇  
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