Int. J. of Applied Mechanics and Engineering, 2006, vol.11, No.4, pp.813-844

MODELING MICROPOLAR ELECTRORHEOLOGICAL FLUIDS

W. ECKART
Justinus-K erner-Str. 1, 71636 L udwigsburg, GERMANY

M. RUZICKA"
Mathematical Institute, University Freiburg, Eckerstr.1
79111 Freiburg, GERMANY
e-mail: rose@mathematik.uni-freiburg.de

In general, electrorheological fluids are suspensions consisting of solid particles and a carrier ail. If such a
suspension is exposed to an electric field, the particles form structures which have essertially the direction of the
electric field, resulting in a higher effective viscosity. Of considerable interest is the dependence of this effect on
the direction of the dectric field. Towards this end, we propose a micropolar theory including appropriate
balance and constitutive equations for these suspensions essentially based on the works of Eringen. An
appropriate non-dimensionalization is carried out which combines procedures of Eringen for micropoler fluids,
on the one hand, and Eckart and RaZi¢ka for electrorheological fluids on the other. We then derive constitutive
equations for the Cauchy stress and the couple stress and discuss the restrictions imposed on them by the second
law of thermodynamics using scaling arguments.

To illustrate the enhanced possihilities of micropolar electrorheology, a simple constitutive model which is
linear in the strain rate is discussed in a study of a viscometric flow. We finally show that the velocity profile
(hence the flow rate) may strongly depend on the direction of the electric field.

Keywords micropolar theory, electrorheological fluids, entropy inequality, non-dimensionalization,
constitutive theory, viscometric flow.

1. Introduction

Many electrorheological fluids (abbreviated: ERFS) are suspensions consisting of a solid phase, the
particles, and a fluid phase, the carrier oil. These suspensions change their materid properties dramaticaly if
they are exposed to an eectric fidd. The observed increase of the measured shear stresses (or the measured
viscosity) will be caled electrorheological effect (abbreviated: ERE). It is generally accepted that the ERE of
such fluids is essentialy dueto the existence of particle structures forming in the presence of an eectric field
hindering the flow and resulting in a higher, apparent viscosity. It is often assumed that these structures are
essentially in the direction of the dectric field, at least if the fluid is at rest or dowly flowing. For an
overview especially of microscopic models and explanations in dectrorheology we refer the reader to
Parthasarathy and Klingenberg (1996).

Of considerable interest is the dependence of the ERE on the direction of the dectric fied. If we
consider a pressure driven channel flow with a (constant) eectric field either perpendicular or parald to the
flow direction, for example, then these structures would also be essentially perpendicular or parald to the
flow direction, respectively. It is to be expected that the ERE is not the same in both cases. Furthermore, in
every industrial application the eectric field is more or less inhomogeneous (especialy the direction is not
constant), and thus a precise description of the dependence of the ERE on the direction of the dectric field is
necessary to devel op effective technica applications.

So far, not many attempts have been made to describe this dependence accuratdy. For example, the
general model for the Cauchy stress tensor first described by Rajagopal and Wineman in (1992) and later
also used by Ceccio and Wineman in (1994), Eckart in (2000) and Ruzi ¢kain (2000) is admittedly capabl e of
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some dependence on the direction of the eectric field, but it cannot account for different material response, if
the (constant) electric field is either perpendicular or pardld to the flow and has the same fidd strength.
Brunn and Abu-Jdayil studied fluids with transverse isotropy (director theory) as modes for
eectrorheologica fluids in Brunn and Abu-Jdayil (1998), but with the intention of describing normal yield
stresses. Instead of the dectric field, they used the director as an independent variable. Unfortunately, no
relationship between the eectric field and the director is given. Furthermore, their stressis gill symmetric.

As was already indicated, the ERF can clearly be viewed as a fluid with microstructure, if an eectric
fied is present. There are various possibilities to describe such fluids, see especialy the monograph of
Stokes for a comparison of couple stress fluids, anisotropic fluids, microfluids and micropolar fluids,
(Stokes, 1984).

The micropolar theory was essentially developed by Eringen in a series of papers, from which we
name only the most interesting ones in view of our paper: Eringen (1966), (1980), (1997), Kafadar and
Eringen (1971). In all papers, balance egquations and constitutive equations for microfluids or micropolar
fluids are given and discussed. The entropy inequality is evaluated and specia cases are investigated. In
Eringen (1966), Eringen studied micropolar fluids in a steady, pressure driven pipe flow. He illustrated the
velodity, the micro-rotation, the shear stress difference and the couple stress. Kafadar and Eringen studied
micropolar media (not only fluids) in Kafadar and Eringen (1971). Anisotropic micropolar fluids were
studied in Eringen (1980). In Eringen (1997), Eringen studied liquid crystals subject to € ectromagnetic
fields and discussed various special cases, especialy the passageto director theory.

Electromagnetic interactions on micropolar fluids were aso studied in Tanahashi and Okanaga
(1989). Tanahashi and Okanaga focussed on the derivation of balance equations and discussed the transition
from the relativistic case to a non-relativistic case.

The theory of anisotropic fluids was essentially developed by Ericksen and Leslie, see for example
Ericksen (1960), (1961), (1991), Leslie (1968), (1979). The main difference in the micropolar theory of
Eringen is the introduction of a so-called director (and an additional equation for it) which describes at |east
the orientation (possibly also the length) of a particle or molecule. In Ericksen (1960), (1961), Ericksen
focussed on the governing equations of anisotropic fluids and applied his theory to steady shear flows of
viscodastic fluids. In Ericksen (1991) he discussed specia types of liquid crystalsin greater detail.

In addition to what was said up to now, the present paper may be motivated by an experimental
observation. Wunderlich (2000) obtained experimental results in a pressure driven channel flow of an
eectrorheologica fluid with particles which lead to the conclusion that the effective viscosity is lower, if the
eectric field is not perpendicular to the flow, but has also a significant component paralld to the flow. This
was obtained by comparing different e ectrodesin a channe flow.

Both theories mentioned above are surdy appropriate to describe this observed phenomenon.
However, we have decided to follow essentidly the works of Eringen. Thus, we propose a micropolar theory
in the present paper that is based on rationa thermodynamics and e ectrodynamics of moving media. This
includes the derivation of appropriate balance equations by means of a non-di mensionalization procedure as
wdl as the statement of constitutive equations, both of general and simplified (linearized) form. Finaly, we
investigate the linearized constitutive equations in a viscometric flow and illustrate the velocity profile and
the flow rate. It can be explicitly shown that these quantities indeed depend on the direction of the dectric
fiedd in away tha is quaitatively in agreement with the experimental results observed in Wunderlich (2000).

Consequently, this paper is arranged as follows. In section 2, we record the baance laws, the
Clausius-Duhem-inequality and Maxwel’s equations for a micropolar continuum. This is followed by a
discussion of constitutive relations appropriate for ERFS, the restrictions imposed by the invariance
requirements and the entropy i nequality and some comments on thermodynami ¢ equilibrium. In section 3, in
view of dectrorheological applications, a non-dimensionalization with a subsequent approximation is carried
out. Such procedures were aso used in Eckart (2000), Rajagopal and Razicka (1996) and Ruzicka (2000),
for example, however for non-polar dectrorheological fluids. In this paper, we follow essentially (Ruzicka,,
2000). The approximation made in Tanahashi and Okanaga (1989) is different from our gpproach insofar as
Tanahashi and Okanaga used the ,usua” non-re ativistic approximation without introducing a specific non-
dimensi onalization. In Eringen (1997), no approximation is carried out at all.
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Having derived the balance equations for micropolar fluids in the electrorheological approximation,
we switch to the constitutive theory in section 4. Here we espedially introduce the genera constitutive
relations of the Cauchy stress and the couple stress, simplify it and evaluate the residual entropy inequality
with scaling arguments to obtain certain restrictions on the material parameters. Linear constitutive equations
(linear in the vel ocity gradient and the gradient of the microrotational vel ocity, respectively) are given for the
Cauchy stress and the couple stress, respectively. Congtitutive equations for micropolar fluids without
eectric fidds were introduced in Eringen (1966), (1980), while (quasi-linear) constitutive equations for
specia liquid crystal's subject to d ectromagnetic fid ds were given in Eringen (1997).

In section 5, a viscometric flow of a (linear) micropolar eectrorheological fluid is discussed. We
compare shear stresses for different directions of the dectric field and show the influence of the different
material parameters. Furthermore, the solutions for the velocity and the microrotation are derived explicitly
by assuming Dirichlet boundary conditions. Moreover, weillustrate the vel ocity, and the flow rate depending
on the direction and the absol ute value of the dectric fidd. Viscometric flows of micropolar fluids have also
been considered for examplein Eringen (1966), (1980), Stokes (1984).

Finally, we close by summarizing the results in section 6.

1.1. Notation/Preiminaries

Let W denote the reference configuration of an abstract body. In a micropolar continuum each
material point has three translational and additionally three rotational degrees of freedom, i.e, it is
phenomenologicaly equivaent to a rigid body. The motion of the fluid is determined by a one-to-one
mapping X that assigns to each material point X T W apasition x in the three dimensiona Eudlidean space
at aninstant of timet, i.e,

x = x(t, X),

and a proper orthonormal tensor X, i.e, XX' =1,1 istheidentity matrix, that assigns to each material point
X1 W arotation X at aninstant of timet, i.e,

X=X(t,X).

The material velocity v(t, x), the velocity gradient L(t, x) and the microrotational velocity tensor
W(t,x) are defined through

A N . 0
V—E, L :Nv:g‘qﬂ: and W:=XXx'=-xX"
Tt gt 4, i=1,2,3
where N is the derivative with respect to x and where we fixed the standard Cartesian basis g,i=123,in
order to give a representation of Nv in terms of the partial derivatives m , 1,]=21,2,3. Thematerial time

X.
i
derivativeis denoted by d/dt or by asuperposed dot. € denotes theisotropic third order tensor. For vectors
u, w, second order tensors S, T we use the notation

=Uu;, U>xXw=uw,, U,W:(eiijjWk) UAW:(UiW

i=1,2,3’ i)i,j=1,2,3’



816 W.Eckart and M.Riizicka

2
SIT= SjTij ! ST = (SijTjk)i’k=1’2’3’ |S| = Sj Sji ! Su = (Sjuj)izlyzya’

e:S= (eiijjk) exu= (eijkuk)

i=1,2,3’ i,j=1,2,3"

in which the summation convention over repeated indices is employed. We will use this convention
throughout the paper. For functions u: W® A3, S:wW® A% 3 and vectors w we use the notation
_ Ty

- ' o]
divu_ﬂ—, divS = : [Nu]W:gslﬂwjj ,
X; R

X =
! | F=1,2,3 ) 9=12,3

&S, 9

while for scalar functions e:A3® A, f:A¥3® A we denotethe corresponding Fréchet derivatives by

fe _2fe 0 T _&af O
TlW ﬂW| a=1’2’3 ﬂA gﬂA‘J E,j=1,2,3

The symmetric part of the velocity gradient is denoted by D and the skewsymmetric part by W. A
uniquely determined microrotational velocity vector w isassociated to W by

W:-%e:W, W=-ew.

Furthermore, we shall assume sufficient smoothness of all the fidd variables in order to make dl
operations that are carried out meaningful. Throughout this paper we use MK SA-units (cf. Jackson, 1983).

2. Balancelaws

We start by stating Maxwell’s equations. Here we use the so-called , statistical formulation”, which
is based on a , dipole-current-loop” modd (see Eringen and Maugin, 1989; Hutter and van de Ven, 1978;
Grot, 1976; Pao, 1978)

curl E =- E (2.1)
It
e
curlH =- ﬂDt +J, (2.2)
divD® =q°, (2.3)
divB =0 (2.4)

where E is the electric field, B the magnetic flux density, H is the magnetic field given by H ot B-M
My

with the magnetization M, D€ is the dielectric displacement given by D®=P +eyE with the electric
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polarization P, J the current density, q° the density of the free eectric charges and €, and m, denote the

did ectric congtant and the permeability in vacuum, respectively.
The balance equations for micropolar continua are well known. Here, we follow essentialy Eringen
(see 1966; 1980; 1997), Kafadar and Eringen (1971). The balance of mass and momentum are

g +rdivv=0, (2.5)

Fd-divT = +f€, (2.6)

respectively, where r is the mass density, T the Cauchy stress tensor®, f the mechanical force density and

f © is the electromagnetic force density which is given by (cf. (Pao, 1978, pp.284-285), (Hutter and van de
Ven, 1978, p.64-65))

fe=qgE+[A+B- [W]P+(divv)P| B +[NB]" M+[RE]P
where E isthe effective electric field strength defined as

E=E+v B, 2.7
A the conductive current density given by

A=J- g%, (2.8)
and M the effective magnetization defined through

M=M+v P. (2.9

The balance of internal spin takes the form
ré-dvN =e:T' +1+I° (2.10)

where s is the specific internal spin, N is the couple stress tensor?, | the mechanical couple density and |1°©
the electromagnetic couple density which is given as [cf. (Pao, 1978, pp.284-285), (Hutter and van de Ven,
1978, p.64-65)]

I*=P"E+M  B.
As usual, we define the specific internal spin s according to
s=Qw, (2.11)

in which the symmetric micro-inertia tensor Q which represents the microstructure of the fluid fulfills the
following relation

! Tisintroduced via t =T » , wheret isthe Cauchy stress vector and n the outer unit normal vector.
2N isintroduced via m = N >n where m isthe couple stress vector and n the outer unit normal vector.
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G- wQ™ - QW' =0. (2.12)

With the kinetic energy density %r v+ %r sxw, the balance of total energy takes the form

r%§é+%vw+%w><sg: div(TTV+ NTw- q)+(f + fe)W+(l+1e)>w+w+we 2.13)

where e denotes the specific internal energy, q the heat flux, w the mechanical energy supply density and w®
the electromagnetic energy production density which is given as [cf. (Pao, 1978, pp.284-285), (Hutter and
van deVen, 1978, p.64-65)]

We = ASE+EXB - M>B +ExP divv.
From Eq.(2.12), the symmetry of Q and the skewsymmetry of Q follows
W{@W): 0.
Thus we abtain from Eq.(2.11)
W>&:W>{®W)+ Sxfy = sxfy . (2.14)

Multiplying Eq.(2.6) by v, Eq.(10) by w and using Egs (2.14), (1.1) and (2.2), we obtain from
Eq.(2.13) the reduced balance of internal energy according to

ré+divg=T:(D+R)+N:(Nw)+AE+ExE- M>B +P>Edivv+w (2.15)

where we introduced the notation R=W - W.
Weinterpret the second law of thermodynamics in the form of the Clausius-Duhem inequality®:

rh+aivE2 Ya g (2.16)
4o q

where h isthe specific entropy and q isthe absolute temperature.

The system (2.1)-(2.4), (2.5), (2.6), (2.10), (2.15) and (2.16) which describes the motion of the body
has far more unknowns than equations. It is rendered determinate by providing appropriate constitutive
relations reflecting the material properties. Towards this end, we will assume that

r,q,Q Ng,v, D, R, (Nw)g, (Rw),, E, B (2.17)

where (Rw)s, (Nw) , - the symmetric and the skewsymmetric parts of Nw are theindependent variables and
thus we provide constitutive relations for

% The second law of thermodynamics can aso be evaluated by the method introduced by Liu and Miiller (1972), Liu
(1972; 2002), for example. We aso refer the reader to Hutter (1975; 1977), Hutter and van de Ven (1978), Ledie
(1979) and Mller and Ruggeri (1993) for different formulations of the second law of thermodynamics.
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ehT,N,q P,M,A, (2.18)
of the form
f=1(r,q,Q Nq,v, D, R, (Nw)s, (Nw) ,, E, B) (2.19)

wheref stands for any of the quantitiesin Eq.(2.18).
Note that one usually introduces the sum D+R and Nw as independent variables [cf. (Eringen,

1999; Leslie, 1979)], while here we use D, R, (Nw)g (symmetric part of Nw) and (Rw), (skewsymmetric
part of Nw) separately. This approach allows us to consider constitutive equations that are not of the same
order in D and R and (Niw) and (Riw) ,, respectively. We will come back to this in section 4.

As pointed out by Eringen in (1980), the micro-inertia tensor Q enlarges the possibilities of
describing new effects remarkably, if it is taken as an independent variable. Indeed, especialy for
electrorheologica fluids that may be considered to have variable micro-inertia, it is recommended to take it
into account.

Both the material and the balance equations are subject to invariance requirements. It is well known
that the mechanica baance laws Egs (2.5), (2.6), (2.10) and (2.15) are forminvariant under Galilean
transformations given by

*

X = QX + Vot + by, t =t (2.20)

where v, by are constant vectors and Q is atime independent orthogonal tensor, while Maxwell’s Egs (2.1)-

(2.4) are forminvariant under Lorentz transformations®. We are interested in non-reativistic effects and it is
wdl-known that there are problems with consistent invariance requirements for all thermo-mechanical and
electro-magnetic balance laws and congtitutive equations in a non-rdativistic situation [cf. (Grot, 1976;
Rajagopal and Ruzicka, 1996; Ruzicka, 2000)]. To avoid these difficulties we shall make the following
invariance requirements. We assume that the quantities (2.18), describing the material properties, are
invariant under Galilean transformations (2.20)°. Moreover we require that al balance laws Egs (2.5), (2.6),
(2.10), (2.15), (2.16) and (2.1)-(2.4) are forminvariant under Galilean transformations (2.20). These two
requirements imply consistent transformation formulae for all necessary quantities [cf. (Ruzicka, 2000)]. In
particular, we obtain from the invariance requirements that the constitutive reations Eq.(2.19) are isotropic
functions of their arguments and that Eq.(2.19) has to be replaced by [cf. (Grot, 1976)]

f=f(r,q,Q,Ng, D, R, (Rw)s, (Nw) ,, E, B) (2.21)

wheref stands for any of the quantitiesin Eq.(2.18).

We require that the second law of thermodynamics in the form of the Clausius-Duhem inequality
(2.16) is satisfid in al admissible processes, i.e., processes compatible with the balance laws Egs (2.1)-(2.4),
(2.5), (2.6), (2.10), (2.15) and constitutive relations for Eq.(2.18) in the form (2.21). This requirement places

* For the rotation X we require that it transforms according to X =QX (cf. (Kafadar and Eringen, 1971)). For the
remaining quantities we refer the reader to Rtizicka (2000), section 1.1.

® Note that one usually assumes that the constitutive relations depend on L instead of D, and then one deduces from the
principle of material frame indifference, i.e., (2.20) is replaced by x~ :Q(t)x+c(t), that the dependence on L has to
reduce to a dependence on D only. Moreover, we introduced the quantity R=W - W because it is invariant under the
above transformation but W and W aone are not. In fact, these are the only relevant consequences of the stronger
requirement of material frame indifference for us which cannot be obtained from the requirement that the material
properties are invariant under Galilean transformations (2.20) aone.
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further restrictions on the form of the constitutive rdations. Firstly, introducing the specific free energy y
through

y =e- hqg- EEXP, (2.22)
r

we re-write Eq.(2.16), using Egs (2.5) and (2.15), as

r(f +n&)+ T (D+R)+ N :[Rw]+AsE- Mo - Exp- aNg, 2.23)

Using Eq.(2.21) and computing ¥ in Eq.(2.23) we obtain using again Eq.(2.5)

& 2y 0. ‘*ﬂy h Wi W) r V(g
€ g e'nq+?a81 'nQ(Q+Q r " 3Riq N

RPRUAN 2 WY R - 1 =Y Rw)
rﬂD>4§ r‘"RXI& r‘"(NW)S >(NW)S r‘"(NW)A >(NW)A+ (2.24)

-l +P°>é a’?\/|+r 11% O +T 1 R+ N :[Rw] + AE- —q’;\'qs 0.
a

Since a every fixed point in space and every instant in time the quantities

4 (o), &, R, (Nw)g, (Nw), €, 8,

can be chosen arbitrarily and are independent of the arguments in Eq.(2.21) (cf. Coeman and Noll (1963),
Truesddl and Noll (1965)) and since the inequality (2.24) is linear in EQ.(2.2) we immediately deduce the
following relations

W oo Moo, Moy, W o _W
WNg ° T ' IR TNw)s " 1 \w),
(2.25)
h——ﬂ—y, :-rﬂ—y, M:—r‘"y
flq 1E 1B

Thus, y,h, P and Mare functions of r,q,Q,E and B only. Furthermore, the following residua
entropy i nequality remains

& 2 O p T ReN Rw+AE-r I (WQ +QWT) LR (2.26)
g r g Q q

We can derive further restrictions of the congtitutive relations by evauating the residual entropy

inequality (2.26). Fallowing (Liu and Miller, 1972; Netas and Silhavy, 1991; RaZicka, 1992) we introduce
the equilibrium part of T, N, g, A and y through (cf. Hutter (1977))

E(r.q9.Q,B)=1f(r,q,Q,0,0,0,0,0,0,B),
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y®(r.9.Q.B)=y(.q,Q.0,8),
and the non-equilibrium parts through
f2(r,a,Q,Ng, D, R, (\w)g, (\w) . E, B):= f(r,q,Q,Ng, D, R, (\w)s, (\w),, E, B)+
- fE(I’,q,Q,B)’
y D(r’q’ Q’ E’ B)::y(r’q’Q’E’ B)_ y E(r’q’Q’ B)

where f stands for T, N, g and A. Since Eq.(2.26) has to hold in every process, we consider, at a fixed point
X in space and a fixed instant t, in time, the process r,q,v,w, Q, B, E and for al [0, 1] the rd ated

process T, g,V, W, Q, B, E defined through
Ft,x)=r(t,x), qt,x)=qlt, (1- a)x, +ax), vt x)=avt, x),
w=awtx),  Qft x)=Qft ),
B(t,x)=B((1- a), +at, x), Et,x)=aE(t, x).
Thus, the variables
r,q,Q, Ng, D, R, (Nw)g, (Nw) ., E, B, (2.27)
can be systematically replaced by

r,q,Q,aNg,aD,aR,a(Nw)s,a(lw),,aE,B. (2.28)

Theresidual entropy inequality Eq.(2.26) in the new process reads

?’+r211]]—yl 2.aD+T:aR+N:afw+AxaE+
r o

- r:l'%:(aWQT +QawT)- %3 0

where T, N, q and A are evaluated by Eq.(2.28) and y is evauated a r,q, Q,aE, B. Dividing this
inequality by a and leiting a ® 0 wearrive at

-
e er2W 2 p e ReNE AW+ AL £+
¢ v g

E N E
- le :(WQT +QWT)' (Nq)>q 3.

Q q
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Since the constitutive quantities are evaluated a r,q,Q,B this inequality is linear in
Ng, D, R, Nw, E and W, which can be chosen arbitrarily. Therefore we obtain

E
TE:_rZﬂz I, TE:(-I-E)T’ NEZO,
r
(2.29)
E
Af=0,  gF=o0, —ﬂ%’Q =0,
and the residual entropy inequality
D &
E’erDHZ—'"y 12 D+TP:R+NP :Rw+APE+
T o (2.30)
D N D
7 :(\/VQT +QWT)- (Ra)9® 0.
Q q

Obvioudly, the rdations Eqs (2.29) and (2.30) are equivalent to Eq.(2.26).
Because the free energy y may depend on Q, aso the dectric polarization and the effective

magnetic fidd strength may depend on this quantity. This emphasizes the importance of the micro-inertia,
providing the possibility that effects of microstructure entering Maxwe ' s equati ons through P and M

3. Electrorheological approximation

The equations derived in the last section may be simplifed in view of dectrorheologicd applications.
To this end, it is recommended to carry out an appropriate nondimensionaization with a subsequent
approximation. Note that the dectorheologica approximation given here differs from well-known non-
relativistic approximations insofar, as in the former case we need additional assumptions concerning the
magnetic quantities. These and all other assumptions made in this section are based upon our understanding
of the behaviour of eectrorheologica fluids, both from a theoretical and an experimental point of view (cf.
(Bloodworth, 1994; Bloodworth and Wendt, 1996; Eckart, 2000; RuZi¢ka, 2000; Wunderlich, 2000)).

Firstly, we shall assume that the Cauchy stress tensor T and the couple stress tensor N do not depend
on the magnetic flux density B, i.e.,

T=7(r,q,Q Ng D, R (Nw)s, (Nw),, E), (3.2)

N =N(r,q Q Nag, D, R, (Nw)g, (Rw),,E). (3.2)

This assumption reflects the observation that the material properties of an ERF do not change if a
magnetic field is applied, because, surely, the particles in an ERF bear no magnetic properties.
Secondly, we shall assume that

M©°O0 where M=M+v" P, (3.3)
M is the magnetization and P the eectric polarization. This assumption ensures that an apparent

magnetization can only be generated by a moving polarized fluid, see aso (Grot, 1976). This common
assumption is one crucia point to derive the so-caled ,quasi-dectrostatic equations’. In view of Kirwan
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(1986) assumption Miller (1985) aso implies that the specific free energy y , and thus also the polarization
P and the entropy h, areonly functionsof r,q, Q and E.
Thirdly, we shall assume that the fluid is e ectrically non-conducting, i.e.,

A°o0. (3.4)

This assumption may not be fully justified in genera, because some e ectrorheological fluids exhibit
acertain eectrical conductivity which is often due to the content of water. However, many of them are free
of water and have very low dectrical conductivity (for example the polyurethane dispersions described in
detail in Bloodworth (1994) and Bloodworth and Wendt (1996)), and thus we may restrict ourselves to such
a class. Note that in dectrorheological applications like valves and dampers, the effective dectric current
should be as small as possible to guarantee a small power consumption and to avoid Joul e heating.

In order to reach the final eectrorheological approximation and to determine and retain terms that
are dominant and discard others that are insignificant, we will carry out a dimensiona analysis which follows
closdly that performed in Rajagopal and Razicka (1996), Ruzicka (2000).

To this end we may introduce the following dimensi onless quantities®

c-E 5B o.% .1 g.N g.Q
Eo By do To No Qo
\_/:l, f:i, f:i, |3: P, r_:L’ 'F:i, a:i
Vo Lo to €FEo Mo fo o

where the quantities with the subscript ,0” are appropriate characteristic quantities of the problem in
guestion. In typical problems and for many e ectrorheol ogical fluids (cf. (Bloodworth, 1994 and Bloodworth
and Wendt, 1996)), we envisage that

Eo-3{10%- 105N mt, vy -(102%- ms?,
Lo ~5410°% - 10°%)m, ho ~ (102 - 10" Jkg(ms) %, (35)
t0~(10'3-1)s, ro~10%kgm 3.

Thetime t; may either be a characteristic dectric or a hydrodynamic time, depending on the specific
problem. Moreover, r, and h, are the density and the dynamic viscosity of the fluid in the absence of an
eectric fidd, respectivdy. Using EQ.(3.5), the Reynolds number Re:(rOLOVO)/h0 and the Strouhal
number Str = L, /(Voto) liein therange

5x10°3 £ Re £ 5x102 and 5x10"* £ Str £ 5x10°,

respectively. Magnetic quantities are missing in Eq.(3.5). No experimental observation is known to us that
shows that the magnetic fidd plays a significant role in e ectrorheol ogical applications. Usualy, no external
magnetic fied is applied and thus B is only induced by the dectric fidd. We interpret the secondary role of
B in eectrorheol ogical fluids through the assumption that

® In this section, dimensi onless quantities and operators are denoted by a superposed bar.
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E
é% =0(1), (36)

resulting in

By ~ (107 - 10 sm2,

Recall that ¢ » 33108 ms ! denotes the speed of dectromagnetic waves in vacuum. Eqgation (3.6) is

consistent with the assumption that the magnetic flux density is only induced by oscillations of the eectric
field and/or the motion of a polarized body (cf. Tanahashi and Okanaga (1989)).
Let usintroduce a small non-dimensional number e through

e° 103,

which measures the importance of the terms. The situation described above — together with an assumption
that there are only few free charges in the fluid — can thus be summarized as

% :O(e3)- O(e4), V?OZO(e?’)- 0(64),
0
VO% = O(e' 1)— O(e), 22:;; = O(e3), (3.7

Baoof) o) S-of)

The non-dimensionalized system of balance laws may then be approximated by retai ning terms up to

order €2, while neglecting terms of higher order.
Firstly, let us discusstherole of E inthe constitutive relations. It follows from the definition of E,

that

E:E—i:E+V(I’E':0\7’§:E+o(e5) 3.8)
where we used that

V(é':o :o(e5)- o(e7). (3.9

Thus, E can bereplaced by E inal non-dimensionalized constitutive rel ations.
The dimensionless form of Maxwdl’s Egs (2.1)-(2.4) may be obtained by using the definition of H,

D®, Egs(3.3), (3.7) and (3.8)
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o) o) oF)

where we also used the rdation eyny = ¢ 2. Neglecting terms of O(ea), we obtain the eectrorheol ogica
approximation of Maxwell’s equations according to’

div(e,E +P)=0, (3.10)
curl E =0, (3.11)
divB =0, (3.12)
2 e B +curl (v’ P):M (3.13)
My fit

where P:P(r,q,Q,E).

Now we turn to the approximation of the thermo-mechanical balance laws. The conservation of mass

Eq.(2.5) remains unaffected. In the momentum Eq.(2.6) we rewrite the e ectromagnetic force f € on using
(2.7), (3.3), (3.4), (3.7), (3.8) and (3.9), which leads to

oVolo 1V , T oVo i)y - O divT =
&Esty T eE; &Eg
® 0
S 1oy bobn g Vobog oo g, Bobe P g, (314)
. It
€ Eo +
0e3§ ole® (_a ole®

i
m|
|
+
/C)\
mU‘I

R
+

+ YoBo ([§5]y + (divv)p” B +v” (NB]

0|
S

ole®

wherein O(es) only terms coming from Eq.(3.8) are included. This form of the nondimensionaization was
chosen in order to evaluate the relative importance of the various terms that occur in the eectromagnetic

force density f ©. We seethat all underbraced terms on the right-hand side of Eq.(3.14) have to be negl ected.

"Since M =0, we can rewrite Egs (3.10)-(3.13) interms of E, B, H, D® only.
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We shall retain the mechanical force term and the term with the Cauchy stress. Furthermore, one easily

computes that
}_0(1)- ole?)
roVolo _: 1 1 :
eoEgto —:::O(e ) O(e ) if
%o(e'z)- o) if
lo()-ofe?) i
9 o() o) i
%o(e'z)- o) if

if

EZ ~9x10? VZm?,

EZ ~9x10° VvZm 2 (3.15)
EZ2~9x10% VZm?2,

EZ ~9x10? V?m?,

EZ~9x10° VvZm?2 (3.16)

EZ ~9x10% Vv2m2.

Therefore also the first and second term on the | eft-hand side of Eq.(3.14) has to be kept. With regard
to the approximation of the other thermo-mechanical nondimensionaized equations, we only replace E by

E since we have no indication of the behaviour

of the other quantities.

Therefore, the electrorheological approximation of the thermo-mechanical balance laws is given by

g +rdivv=0, (3.17)
rd- divT = f +[NE]P, (3.18)
ré+divN =e:TT +1+P" E, (3.19)
&- wQ" - QW' =0, (3.20)
- N _
c,ré- kdivNg- ETY .2 1Y tngq:T:D+r2ﬂ—ytrD+w, (3.21)
SYE g a5 1
D C D
(o pi):D+T2 RN K- r W (wQT +QwT)- M), (3.22)
q

where we used the definition of the specific heat ¢, and of the thermodynamic pressure p according to

2 Ty

y p:_r

- D

o

Moreover c,, P,p,y and YD are functions of r, g, Q and E; while we have for the dissipative

part of thestresstensor T =T (r, g, Q, Ng, D, R, (Nw)s, (Nw) ,, E) and the dissipative part of the couple
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stress tensor N® =NP(r,q,Q,Ng, D, R, (Nw)g, (Nw),, E). In the next section, we will discuss various

formulations for the stress TP and the couple stresstensor N P .

4. Constitutiverelations

Now we will develop constitutive models for the Cauchy and the couple stress. The modes
presented should describe the directional dependence of the material response more accuratel y than previous
ones. Nevertheless, in order to keep the already very long and complicated formulae as simple as possible we
shall drop the dependence of the dependent variables (2.18) on the micro-inertia tensor Q. Moreover, we
keep the dependence on Nq only in the constitutive re ation for ¢ and assume

q=-kNg

where the thermal conductivity k is a positive constant. In al other congtitutive relations we drop the
dependence on Nq . Wealso restrict ourselves to the case of an incompressible ERF, i.e.,

tr D =0.

Thus, in view of Eq.(4.17), we can drop in al constitutive relations the dependence on r, in
particular TE =0. For the stress tensor, which may be split accordingto TP =- pl + S, we assume that the
extra stresstensor Sisof the form

S=5(g, D, R, E).

Note that we drop the dependence of Son Nw for the sake of simplicity.
From representation theorems (cf. appendix of Eringen and Maugin, (1989) and references therein) it
follows that the most general form for Sis given by

S=a,EAE+a;D+a,D?+ay(DEAE+EADE)+ay(D2EAE +EA D2E)+
+a;R?+ay(DR- RD)+a4(REA E +E A RE)+a, RE A RE +
+allRDR+a12(D2R- RD2)+al3(RDR2- RZDR)+

+a,|REA R’E + RZ EA RE|+aR+a;5(DR+RD)+

+a,;;(EADE- DEAE)+a;s(EARE- REA E)+a19(DR2- RZD)+

+a20(EA D?E- D’EA E)+a21(EA R’E- REA E)+a22(DEA D?E- D’EA DE)

where a,,i =1,...22 may be functions of the invariants
q,[E[?, r D2, tr D%, trR, tr(DE A E), tr(DZEA E), tr(E XRZE),
tr(DrR?) tr(D2R?) tr(D2R2DR) tr (E *ORE), tr (E x02RE ) tr (E xRDRE ).

Note that the terms with a, - a,, are generating the symmetric part of S, while the terms with
a5 - &, aregenerating the skewsymmetric part of S.
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On the one hand, the couple stress N shall improve the description of the material behaviour with
respect to the directional dependence on the eectrical field and hence should depend on E. On the other
hand, it should be as simple as possible and in accordance with the classical theories. Thus, we assume that

N P isof the form

N® =N (g, (Rw)s, ((w),, E).

From representation theorems (cf. appendix of Eringen and Maugin, (1989) and references therein) it
follows that the most general form for N ° isgiven by

NP =b,l +b,E A E +h,(Rw)g +b, (Nw)3 +bg((Rw)sE A E + E A (Rw)sE )+

where by, i = L...22 may be functions of thei nvariarts
0 E[*, tr (), tr ()2, tr(Sw)2, ()2, v (w)s E A E),
tr(fw)E A ) (B 4R E) tr (Fw)s (R ) o (R ()3 )
tr (o) ()2 () (Rw) ) ( {ow)s () ),

tr (£ (fw)2 (Nw) o E ) tr (B (fiw) , (i) (Rw)Z E ),

and ( )S and ( )A means the symmetric and skewsymmetric part, respectively. The terms with b, - by, are
generating the symmetric part of NP, while the terms with b5 - by, are generating the skewsymmetric

partof NP.
It would be futile to experimentally determine all these material functions and thus we are | ft with

thetask of simplifying the expressions for the stresses without forsaking the possibility to obtain a model that
can reflect the behaviour of eectrorheological fluids. This section is devoted to a discussion of special
constitutive modds with a view towards developing a theoretical framework that is amenable to anaysis.
Firstly, we may assume that the extra stress Sislinear in D and R and quadratic in E, and the couple stress
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NP islinearin (NW)S, (NW)A and quadratic in E. Then we obtain restrictions on the form of Sand NP,
which are posed by the reduced entropy inequality Eq.(2.30).
Assuming now that Sis linear in D and R and has quadratic growth in E, we get

- —= .7 |E2 —=
a, =ag, a3—a2+a3|E|, ag =y,

= = L= |2 = =
g =asg a15—a6+a7|E|, a,7 =dg, a3 =4y,
a,=ag=ay =ag=ap ~ay ~ap =ajg=ay =0,
A1 A9 Ay Ty Tayxn =0

where &y, ..., ag are functions of q only. Similarly, we obtain from the assumption that N D is linear in
(Nw) , and (Rw)g

by =By +by|E|” + batr (Rw)s + B, E {Rw)s E + bg|E[*tr(Riw)s,
b, =bg +bytr(Nw)s, bs=bg +59|E|2, bs = by,
bg=by, bys=by+blEf°, by =by, by =b,
b, =bg =b, =bg =byy =by; =by, =bys =by, =0,

by =byg =byy =by =byy, =0

where by, .., by are functions of g only. Now, holding the temperature fixed in the Clausius-Duhem
inequality (3.22), we obtain
a,E0E +[&, +7,|E[?| D] + 2| DE|? + 2(ais - @,)DE *RE +
+lag +57|E|2)|R|2 - 2a,|RE[® +(51+BZ|E|2 tr (Riw)s +
By +Bo[EP () + (B, + By Jr () E )+ n
+ B EAW)o E + (B + BolE[2)| (Rw)ef? + 2bag] (Rw)s EJ + |
+ 2(611 - B14)(NW)S E ’(NW)A E+ (512 +513|E|2)| (NW)A|2 +
- 2byg| (Rw) A E[* 2 0.

This inequality has to hold for dl D, R, (Nw)g, (Nw), and E. By specifying and rescaling their
val ues we obtain restrictions on the remaining material parameters®.

8 A similar rescaling argument was used in acompletely different context by Netas and Silhavy (1991), RiaZicka (1992)
and also in Rajagopa and Riazicka (1996), Ruzicka (2000).
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Inequality (4.1) splits into 2 inequalities, one including al terms with D and R and the other
including all terms with (Nw)g and (Rw) 5, which will be discussed separately.

Firstly, we set Nw=0. In the remaining part of Eq.(4.1) we first choose R=0 and thus Eq.(4.1)
reads

a,E *DE + (&, + @[ E? D + 28,|DE[* 2 0.

Thus we are in the same situation as in the case of a linear incompressible non-polar
electrorheologica fluid and we can proceed in the same way [cf. (Ruzi¢ka, 2000), Lemma 1.3.34].
Setting E =0 wege

a,%0. (4.2)
If wereplace D by ¢D, multiplyby ¢! andlet ¢® 0 weobtain
a, =0.
Setting DE =0, rescaling E ® ¢gE , multiplying by g'z, letting ¢® ¥ thenyields
;2 0, (4.3)
and (rescaling E ® ¢E , multiplying by g'z, letting ¢® ¥ )
a;|E[*|D|* +2&,|DE[* ® 0.
Using in this inequality that |DE|2 £§|D|2|E|2, where equality is attained, [cf. Lemma 1.3.7
(Razicka, 2000)] we deduce
a, +§54 30. (4.4)
Now setting D =0 and Nw =0 in Eq.(4.1) we have
(56 +§7|E|2)|R|2 - 2a,|RE|* 2 0,
and we deduce in the same way as above

330, &30, &7, (4.5)

where we used |RE|2£%|R|2|E|2 for the last inequality. Finally, we obtain by rescaing E ® ¢E,

multiplying by g'z, letting ¢ ® ¥ , and by changing the sign of D that
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a,|E|’|D|” + 2a,|DE|” - 2@ - @||DE xRE|+a,|E[*|R* - 2a,|RE[*3 0,

from which we deduce, on choosing D, R, E such that |DE|2 :§|D|2|E|2, |RE|2 =%|R|2|E|2 and
|DE[* :%IDIZIEIZ, IRE[* =%|R|2|E|2, IDE ><RE|:%|D||R||E|2, respectively

= = L4
a9£a3+§a4+a7,

ag +[as - ag|£az+a, +ay, (4.6)
|55 - 58|2 £4(a; +a,)a; - ay).

Secondly, we choose D = R =0. Setting now in the remaining inequality (4.1) (NW)A =0, wearein
a very smilar situation as in the case of a linear compressible non-polar dectrorheologicd fluid [cf.
(Ruzicka, 2000), sec. 1.3.1]. By setting E =0 we get

by tr (Nw)g + 53|tr (NW)S|2 + 58| (NW)S|2

30,
from which we deduce by an appropriate rescaling of (NW)S, choosing tr (NW)S =0 and by choosing
D =1, respectivey,

b, =0, bg 3 0, 3b; +bg 3 0. (4.7)
Rescaling now E ® ¢E, multiplyingby g 2, letting ¢® ¥ , we obtain from Eq.(4.1)

+

b,|E[*tr (Rw)s + (b, + B, )E {Riw)s E tr (Riw)s +bs|E[*Jtr (Rw)s |

+ 5 E {Rw) E + B|E[?| (Rw)s| + 21| (Rw)s E[* 2 0. o)
One sees that the coeffcients in front of thelinear termsin (NW)S haveto vanish, i.e,

b, =bg =0.
Choosing tr (Nw)s =0 we get (cf. Eq.(4.4))

by30, by +§510 30, (4.9)

while (N\w)sE =0 implies

3b; +bg 3 0. (4.10)
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Now we are exactly in the same situation as for a linear compressible non-polar € ectrorheol ogical
fluid. Thus we decompose (Rw)g as

(Rw)g :%(tr(ﬂlw)s)l +G, trG=0
wherenow G and tr (NW)S may be chosen independently. Thus inequality (4.8) can be re-written as

N I~ 1~ 1 1~ 2-— |
tr (NW)s|2|E|2}l bs +§b9 +§b4 +§b7 +§b10g+

(4.11)
N = = A | = C12|~2 L o 2
+[tr (Nw)g||E *GE| b, + b, +byg| +Bg|E[[G|" +2byo[GE[" 2 0
where we a so changed the sign of G. Choosing now G =0 provides
55+18%4+B7 +59+351093 0. (4.12)
3é 3 g

The right-hand side of Eq.(4.11) is a polynomia of second order in |tr (NW)S| and its non-negativity
is equivalent to the condition

2
+|E>GE[” £ 4E[ &b, +%B9 +
e

By +B+ 5By
3 ) (4.13)
+ 15, + 15, + 25, Jbo|EF IS + 2B10jcE]?),
3 3 9 7]

from which we deduce using |GE|2 £ §|E|2|G|2 and

E >GE|2 £ §|E|2|G| where equality is attained in both
inequalities for the same choice of E and G [cf. (Ruzi¢ka, 2000), Lemma 1.3.28]

2
£68hs + 28, +B; +by + 200 S8by + by
Y 3 050 30,

‘57 +B,+ b (4.14)

Setting now in Eq.(4.1) D = R = (Nw)s =0 and varying (Nw) ,, oneimmediately deduces (cf. (4.5))

b;, 30, b330, b33 bys. (4.15)

Decomposing again (Rw)g = % (tr(\w)s)+G, we can vary tr(\w)g and G independently, and
derive from Eq.(4.1) with D = R =0, after rescaling E and on changing the sign of G [cf. (4.11)]
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|tr (Rw) S| |E| ? b9+b4+b7)+ blOH

- [tr (Rw)s| (b +57)+§510 |E>GE| + 4.16)
+ g |E[*[G|* +20;9|GE|? - 2[by; - byy|GE XRiw) 5 E| +
+By3|E[?|(Rw) o[ - 2Bys|(Rw) ,E|* 2 0.
The choice tl’(NW)S =0 yiddsthe analogue of EQ.(4.6), namey
Y
bys £ by +§b10 +by3,
bys + |511 - B14| £ bg +byg + b3, (4.17)
|611 - B14|2 £ 4(59 "‘Blo)(Bls - B15)-
Inequality Eq.(4.16) is quadratic in | tr (Nw)g| and thus we get [cf. (4.13)]
o4 o =
by +by +byo| +|ECE| £ 4(ps +
1 — =), 2+ O 1c12(~12 o 2
+§(b9 +b, + b7)+§b10 T(b9|E| IG? +2b,|GE|* + (4.18)
%)
- 2|511 - B14||GE >(NW)AE| +Bl3|E|2|(NW)A|2 - 2615|(NW)AE|2)’
from which one can deduce [cf. (4.6)]
b, +b; +— blO 566% (b9+b4+b7)+ b10$9+ﬂ510+513'5159’
9 g 3 I}
(4.19)

2

b, +b7+ blO 586% (b9+b4+b7)+ [ (2b9+2b10 |b11 b14|+b13 b15)

Furthermore, we require the extra stress to be symmetric, if E =0, thus choosing @z = 0. For the couple
stresswe choose by = 0. Notethat if either by >0 or by, >0 the couple stress does not vanish, if E =0 .
Summarizing, the constitutive equations for the extra stress and the couple stress, considered in the

remainder of this paper, are
S= (52 +§2|E|2)D +a,(DEAE+EADE)+a;(REAE+EARE)+

(4.20)
+3,|EfR+a,(EADE- DEAE)+a,(EARE- REAE),
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= (B4E {Rw) E +bg|E[*tr (Nw)s)| +btr(Nw)EA E +

EA
+(68+59|E|2 Rw)s + by ((Nw)s EA E +E A (Rw)s E)+ (4.21)

+by (Nw) ,E A E +E A (Rw),, )+(b12+b13|E| XNW +
+by,(E A (\w) E - (Nw)<E A E)+bys(E A (Nw) ,E - (\w),E A E).

Notethat @, - @g, @, - @agand by, bg, b, - by are functions of g only. In the following sections
we assume that al nontrivia inequalities in Egs (4.2), (4.3)-(4.7), (4.9), (4.10), (4.12), (4.14), (4.15) and
(4.17)-(4.19) are strict. These constitutive equations look still complicated, but we do not want to simplify
them before the important case of a viscometric flow is studied.

The system (3.17)-(3.21), with S and NP given above, and Egs (3.10)-(3.13) completed with
appropriate boundary and initial conditi ons describes the behaviour of a micropolar ERF.

5. Viscometric flow

To show the behaviour of the velocity and the importance of the material parameters, a viscometric
flow is studied in this section. We determine analytical solutions in a pressure driven channe flow and a
simple shear flow and illustrate sel ected results.

It is our purpose to show that the micropolar theory may be used for eectrorheologica fluids if a
dependence on the direction of the dectric fidd is to be moddled.

It is not our intention to review or discuss genera results of micropolar theories nor other properties
of eectrorheologica fluids that have been observed.

Before we start the calculations, it is necessary to specify the modd that we want to use. Indeed,
there are , different” micropolar fluids, depending on the choice of the micro-inertia tensor which represents
symmetries of the microstructures in the fluid. In Eringen (1966) and Stokes (1984), isotropic micropolar
fluids are investigated, whil e Eringen studi ed anisotropic micropolar fluids in Eringen (1980). In the former
case, the micro-inertia tensor has a diagonal form and only one (constant) component Q =QI , whilein the
latter case it has in genera six components differing from each other. For the sake of simplicity we are
dealing here with isotropic micropolar fluids. Note that in this case the balance of micro-inertia (2.12)
impliesthat Q ismaterialy constant.

Now let us consider steady state flow configurations aso described in Stokes (1984), where Stokes
studied simple shear flows, channe flows and pipe flows, respectively. The latter case was also studied in
sec. 3 of Eringen (1966)°.

Thus, we investigate a steady state flow of a micropolar ERF between two paralld infinite plates
(compare Eringen (1966) and (1980)) with the following properties

n,=n3=0, n=ny(), W =w,=0,  wy=wy(x,), (5.1)

1 ,
Dy =Dy = Enl'z’ Dj =0 otherwise, (5.2

° Note that if we considered anisotropic micropolar fluids (i.e., rigid particles of arbitrary shape), the motion would
inherently unsteady, as pointed out in Happel and Brenner (1965), p.161. However, if both the trandationa and
rotational Reynolds numbers are small, it is permissible to adopt a quasi-static form of the equations which was aso
assumed in Eringen (1980). Nevertheless, we are not interested in anisotropic micropolar fluids and thus may study
steady state fl ows without any additional restriction.
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R =- Ry :%nu +wz, R; =0 otherwise (5.3)
where we switched to index notation. The flow direction is the positive x, - direction.
Furthermore we assume the (plane) dectric field to be constant with respect to space and time, i.e.,
E, = const., E, = const., E;=0". (5.4)

For the sake of simplicity the temperature is held constant, resulting in constant material parameters.
The boundary conditions are given as

n;(x, =0)=0, ny(x, =h)=Vy, (5.5)

ws(x, =0)=w, ws(x;, =h)=w, (5.6)

where w, and w; are functions of |E|2 such that w, =0 and w; =0 if E =0. Note that the latter

restriction guarantees that w; =0 is a solution of Eq.(5.10) bdow. We have also investigated the wel-
known boundary condition

wz3=-nn;, a x,=0 ad Xx,=h, (5.7)

as is discussed in detail by Kirwan in (1986), for example. Although the solutions using the ,,Neumann
conditions” (5.7) are slightly simpler than solutions with the ,Dirichlet conditions’ (5.6), we found that for
our purposes the latter ones seem to produce ,, more appropriate” sol utions.

From the bal ance of momentum (3.18) it follows, on using (5.1)-(5.4) and f =0, that

Si22=P 1, Sp2=P2- (5.8)

Recall that it follows from the assumptions (5.1)-(5.4), that S;, and S,, calculated from Eq.(4.20)
cannot depend on x, . Now integrating both Eqgs (5.8) to obtain p and compare the resulting terms with each
other, we conclude that the pressure must be given as

p=-Kx; +Sp(x,) (5.9

where K =-S5, , isthe (prescribed) pressure gradient in x, - direction in case of a pressure driven flow.
Using Egs (5.1)-(5.4) and 1 =0, the balance of internal spin (3.19) reduces to

Sy1- Spp +Ngpp =0, (5.10)
provided that the micro-inertiatensor Q;; has a diagonal form (as was aready said).

L et us now compare the shear stresses S;, and S,; in aviscometric flow. From Eq.(4.20) it follows,
on using the simplifications, that

% gurely, the dectric field will be space-dependent in real applications. On the other hand, it can be shown that a
viscometric flow is not possible if the electric field is space-dependent. Thus, we are forced to make this assumption,
else no closed anal ytical solution is possible.



836 W.Eckart and M.Riizicka

2(%) ——[az +(@; +ay) (E1+E2)+38(E1 Ez)]n12+

+I(a7 ag)(E1+E2) S(E Ez)Q n12+w32,

(5.11)

1[_ _ _
Szl(xz)za[az +(a3 +a4)(E12 +E22)' ag|\E? - EZ ]nl,z +
(5.12)

-l w2 ) e - E2fe . vwed

Now it is much clearer to see that the underlined terms are responsible for nonsymmetric shear

stresses. In particular, we obtain for dectric fiedds perpendicular (i.e, S;,(E; =0, E, =Ey)=S? and

dectric fidds parald (i.e, S,(E; = Eg, E, = Ey) = Si7 totheflow direction

1 - B o o )
2 =3 a, +(a;+a,)Ed - a8E§]nl,2 +[(a7 - Ag)ES +a5E02]g§n12 +W3§, (5.13)
St bl s

2 =51@2*@3 +3, )ES +85ES N2 *+|(@7 - &9 )ES - AsES g5 M2 FWs 7, (5.14)

respectively. Clearly, they are not the samein generd, evenif the ve odity fields were the same: directly dueto the
existenceof a5 and ag andindirectly dueto a; - a4, because w; may not bethe samein both cases.
The normal stress differences are given by

_ al 0
Si1- Sy =4asEEygong  twa
e2 [}

_ _ al o]
Sy - Sz =asEiEony ;- 2a5ElEzg§nl,2 W3 r_a

The only relevant couple stress component N, isgiven by Eq.(4.21) as

N, = gi(b8 + blZ) (Bg +Bl3)(E12 + E22)+%(510 +byy - by - b15)EZH : (5.15)

From Eqgs (4.9), (4.15),, 3 and (4.17), it follows that the coefficient in front of w3 » in EqQ.(5.15) is
strictly positive. Introducing the abbreviations

=2 o, + (@ + B2 + £2 ) g (€7 - £3)+
+(@; - 3, )[E2 + E3)- a2 - 3

h, = (&, - 7 )[E2 +E2)- &, (€2 - E2),
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it follows from Eqs (4.2) and (4.6), that
h, >0.

Now from Egs (5.8), (5.9) and (5.11) we deduce

- Ko G ﬁnl,z, h, 0 (5.16)

where C, is an integration constant. Note that w; is linear in the shear rate n, , which is due to the linear
dependence of Son R and D.
Using Egs (5.11), (5.12) and (5.15) and inserting them in (5.10), the following equation emerges
- hgny o - hyws +zZ,wW3 5, =0 (5.17)
where we have introduced the abbreviations
he =2 (E7 - E2)+ (@, - @, )[E? + E2)
hy = 2(57 - 59)(E12 + Ezz)’
Z, :%(Bs +512)+%[(59 +513)(E12 * E22)+(610 +byy - by, - B15)'522]-
Notethat dueto Eqgs (4.5)s, (4.9)1, (4.15), 5 and (4.17), it follows that
h,>0 for E*O, z,>0. (5.18)

Eliminating w; in Eq.(5.17) by means of Eq.(5.16) and integrating the emerging equation w.r.t. X, ,
alinear ordinary differential equation of second order in n; aoneis obtained,i.e.

Ny - Iiznl =Z,K %3 - 2Z,C,x, +C,

where

5.19
2 2 ihs (5.19)

and Z, = hy
Yo 2zhy

| is an internal lengthscale. Note that due to physical reasons the right-hand side of Eq.(5.19); must be
positive. An appropriate particular solution of Eq.(2.5) and the general solution of the corresponding
homogeneous differential equation can easily be obtained, implying

"' When h, =0, S;, isnot depending on ws ; we can determine n, from Eq.(5.8) without knowledge of ws. The simple
parabolic profile is obtained for a pressure driven flow (and the linear profile for a simple shear flow). Once n; is
known, w; can be determined from Eq.(5.10). Note that the extra stress is still not symmetric.
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np=12|- z,K (212 + X2 )+ 22,C1x, - Gy, (5.20)
nf:=Cscosh X, /I +C,sinhx, /I . (5.21)

Dueto its linearity the general solution of Eq.(2.5) can be obtained by superposition of the particular
and the homogeneous sol uti on.
For the determination of the four unknown constants C;, C,, C; and C, we use the four boundary

conditions (5.5),, 2 and (5.6)1, 2. Using Egs (5.20) and (5.21), we obtain

ng =- |2[21K(2| 2+ X%) 22,C1%, +C2] y

12z, (212 +n2)- zzlclh+cz]%&z/{'))+
cosh(h/1)ar,\, sinh(x,/1)
snh(h1) " sin(h1)

+|2(c2 +2|2le)§:osh(x2/|)- sinh(x, /1)
é
where

C, = g( C,yl +2h, 3ZlC1+W3|h2I)sinh(h/I)+IZZl(ZKIZhl- 2hClh1+Kh2hl) + 629

+Voh, - 2h,14Z,K cosh(h/|)]/[hl|2(cosh(h/|))- 1],
with

C, ::{[2- 2cosh(2h/1)- cosh(h/|)+cosh(3h/|)][|<h| - 2KhI®h,Z; +(w, +w, )h2|] +
+[sinh(30/1)- 3sinh(h/|)]6/0hl+Kh2|2hlzl)}/{2h|2hlzl[sinh(3h/|)- 3sinh(h/1)]+  (5.24)
+[2- 2cosh(2h/1)- cosh(h/|)+cosh(3h/|)](2| - 4 3hlzl)}.

Equation (5.22) together with Egs (5.23) and (5.24) is the analytical solution to our boundary value
problem. The microrotation w4 can now easily be calculated by means of Egs (5.16) and (5.22) and is given as

W3 = -
2
ey cosh(x, /I

N h_z%'zzllz(Cl- Kx2)+I[ZlK(2|2 +h2)- 2Z,C;h+C, ﬁ

e 6 cosh(ty1)d, Vo cosh(x, /1)u
|(c2 2|ZZlK)§|nh(X2/|)'COSh(XZ/I)—Sinh(h/l)H TOW(hZﬂ)%

+ (5.25)

Before we proceed, let us briefly discuss the identification of the material parameters in the
constitutive model. The best way would surely be to measure directly the velocity fidds of the ERF for

different dectric fields and field directions (for example EZ- E5 =0, E,* 0, E, =0, E, 1 0, E; =0
and so on). In redlity, this seems to be unapplicable. However, an acceptable compromise would be to
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measure the flow rate vs. the pressure drop for different dectric fields and fied directions. In asimpler case
without dectric fields, this method has already been pointed out by Stokesin (1984) (see for example p.47).

5.1. Channd and shear flows

Let us now illustrate the above solutions for a specific set of parameter values. It turns out that the
~perfect” parameter choice is not easy to find. As is well-known, a great variety of veocdity profiles is
possible The following pictures have been generated by the following set of parameters

a, =03, a;+a, =1/4, as; =1/16, a,; - ag =14, ag =-7/16,
bg+b;, =0, by +bj3=01, byy+by;- by, - b =001,

This choice was partly guided by the restrictions imposed upon the parameters by the entropy
inequality, compare especialy Eq.(4.6), ;. The signs of ag and a; were chosen due to the following
reason. Comparing Egs (5.13) and (5.14) it can be seen that a5 <0 and ag >0 helps to ensure that the

shear stress SlEZ2 is larger than 51521 for the same eectric field strength Eg; this reflects our impression that

the shear stress should be larger if the dectric field is perpendicular to the flow direction than if it is pardld
toit".

Furthermore, we have chosen w, =w; =0. Although investigations show that these values may
have a strong influence on the vel ocity profiles, we want to point out that for the desired purpose here we do

not necessarily need dependences of thetype w,, = fu([E]Z) and wy = f ([E]Z), respectivey.
Let us now introduce two di mensionless quantities a al [0, 1] and b>0 which are defined via

Ef-Ef _

—=ab —< =D ]_-az ﬂ
H H 2

E: 3 22 (.2a2 - 1)b2.

:b2

b is the rdative dectric fidd strength, while a is a ,direction parameter”: for the viscometric flows
investigated here, a=0 and a =1, respectively, reflect the situations when the eectric field is perpendicular
and paralle to the flow direction, respectively.

In Fig.1a, the velocity profile is illustrated as a function of the channd coordinate x, and the

direction parameter a. One dearly sees that the maximum velocity increases if a increases, i.e, if the angle
between the dectric field and the flow direction decreases from 90 to O degrees. This reflects the desired fact
that the flow is hindered much less if the dectric field i s paralld to the flow than if it is perpendicular toiit. In
Fig.1b, the maximum velocity is illustrated as a function of both a and b. Firstly, the maximum ve ocity
decreases if the dectric fidd strength b increases, as it is common for dectrorheological fluids. Secondly, it
shows that with increasing b the dependence on a is more pronounced. This means that for small eectric
field strengths the dependence of the flow on the direction of the dectric field is less pronounced than for
strong e ectric field strengths.

2 This partly assumes that the sign of ny, isthe same as that of (J/Z)nlz +ws3 which cannot be guaranteed for all

cases. However, the results that have been found using the introduced set of parameters will show that this choice is
reasonable.
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Fig.1l. (8): Vdocity profile n, depending on the direction parameter a. (b): Maximum velocity ni™ as a
function of the rdative dectric field strength b and the direction parameter a.

Finally, let us switch to theillustrations of the flow rate Q which is given as

h
Q= Q n; (% )d >, .

In Fig.2a, the flow rate is shown as a function of the pressure gradient K and the direction parameter
a. Duetothelinear constitutive relation, the flow rateis alinear function of K. It increases with increasing a,
as was to be expected from the vel ocity plotsin Fig.1. Furthermoreit should be noted that the dependence on
a is much more pronounced for higher than smaller pressure gradients K. In Fig.2b, the flow rate Q is
diplayed vs. the relative eectric field strength b and the direction parameter a. It can be seen that Q increases
either with decreasing b or increasing a, as was to be expected from the ve ocity plots.

(b)

Fig.2. (a): Flow rate Q as afunction of the pressure gradient K and the direction parameter a. (b): Flow rate
Q asafunction of therelative dectric fidd strength b and the direction parameter a.
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Note that the simple dependencies shown in Figs 1-2 are a direct consequence of the simple
constitutive equation (linear in the shear rate and quadratic in the ectric fidd). It isto be expected that more
complicated (possibly non-monotonous) dependencies on the shear rate and/or the dectric fidd will offer a
great variety of possibilities to describe the behaviour of an e ectrorheologicd fluid more redlistically.

6. Summary and concluding remarks

In this paper, we derived a micropolar theory for eectrorheologica fluids, starting with the
thermomechanical and e ectromagnetic balance equations induding the second law of thermodynamics in
the form of the Clausius-Duhem inequality. Furthermore, we simplified the balance equations in view of
electrorheologica applications using an appropriate non-dimensionalization with a subsequent
approximation. We then introduced constitutive equations both for the Cauchy and the couple stress tensor
and evaluated the restrictions imposed on the material parameters by the entropy inequality. Linear
congtitutive equations were proposed which were discussed in a study of a viscometric flow. Finaly, we
illustrated the velocity and the flow rate depending on the dectric field strength and the direction of the
eectric field.

The tasks of this paper were as follows. Firstly, we wanted to establish a complete framework for
micropolar eectrorheologica fluids including all necessary balance equations, approxi mations and general
congtitutive equations (Sects. 1 — 4). In particular, the constitutive equations and the evaluation of the
restrictions imposed on the materid parameters by the second law of thermodynamics using scaling
arguments (Sect. 4) may serve as a foundation for further studies on micropolar electrorheological
constitutive equations.

Secondly, the main task of this paper was to show that the micropolar theory offers the possibility of
describing the dependence of the electrorheological effect on the direction of the dectric field in an objective
and precise manner based on a sound theory, namdy the framework of rational thermodynamics. In Section
5 we explicitly showed that the velocity (and hence the flow rate) depend on the direction and the absolute
value of the dectric field which enlarges the possibilities of describing eectrorheological fluids in real
applications significantly. To our knowledge, this has not been done before. Changi ng the dependence of the
stress tensors on the shear rate and the dectric field may easily be possible and results in a great varity of
descriptive possibilities of dectrorheological fluids. Thus, this paper may just be the beginning of a
discussion on micropolar eectrorheological constitutive equations.
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Nomenclature

a - direction parameter of the eectric field, ai [0, 1]

b —relative dectric field strength, b>0

B —magnetic flux density

¢ — speed of electromagnetic wavesin vacuo
¢, —Specific heat
C; —integration constants

D —symmetric part of the vel ocity gradient
D€ - dielectric displacement

e —specificinternd energy

g,i=123 —fixed Cartesian basis
E —dectricfield
f —mechanical force density
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f € —electromagnetic force density
fE, P —equilibrium and non-equilibrium parts of
fo — appropriate characteristic quantity of f

— auxiliary quantity defined by (Riw)g :%(tr(ﬁlw)s)l +G, rG=0

G
h —channel height
H —magneticfied
| —identity matrix
J —current density
A —conductive current density
—thermal conductivity
— (constant) pressure gradient
— mechanical couple density

k
K
I
€ _ electromagnetic couple density
| —abbreviation (interna lengthscale)
L —velocity gradient
M —magnetization
M — effective magnetization
N — couple stress tensor
P —electric polarization
g - hest flux
q® -—density of the free electric charges
Q —flow rate
Q -timeindependent orthogonal tensor (Galilean transformation)
Re — Reynolds number
s —gpecificinterna spin
S —extrastresstensor
Str — Strouha number
T — Cauchy stress tensor
v —materia velocity
vg,by —constant vectors (Galilean transformation)
Vy — constant velocity
w —mechanica energy supply density
w€ — electromagnetic energy production density
W — skewsymmetric part of the velocity gradient
X, X,t —coordinates, time
Z, —abbreviation
—constant, af [0, 1]
i —material parametersof S
b;,b, —material parametersof NP
¢ —auxiliary quantity used for scaling
e —small non-dimensional number
e —isotropic third order tensor
eg,my —dielectric constant and permeability in vacuo
E - effectivedectric field strength
z; — abbreviations (containing the material parameters b; )
h — specific entropy
— abbreviations (containing the material parameters a; )
g —absolute temperature
Q —symmetric micro-inertiatensor

=
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— proper orthonormal tensor, rotation

— thermodynamic pressure

— mass density

— gpecific free energy

— microrotationa ve ocity vector

— microrotationa ve ocity tensor

— derivative with respect to x

A —Symmetric and skewsymmetric part of Nw

Z2Ss =< - X

(Rw)s, (R

~
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