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Void effects of a load applied normal to the boundary and moving at a constant velocity along one of the 
coordinate axis in an elastic half space is studied. The analytic expressions for displacement, force stress and 
volume fraction field for concentrated normal point force, uniformly distributed force, linearly distributed force 
and moving concentrated normal force are obtained by employing the eigen value approach after applying the 
integral transforms. A numerical inversion technique has been applied to obtain the solution in the physical 
domain. The numerical results are presented graphically. Some particular cases have been deduced. 
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1. Introduction 
 
 The theory of elasticity concerning the solid elastic material having a distribution of various pores, 
generally known as voids or vacuous pores, received greater attention due to its theoretical and practical 
relevance. The general theory in this respect has been formulated by Nunziato and Cowin (Nunziato and 
Cowin, 1979; Cowin and Nunziato, 1983). They also formulated the linearised version of the above theory 
Cowin and Nunziato (1983) where the voids were included as an additional kinematic variable. This theory 
reduces to the classical theory of elasticity in the limiting case when the void-volume vanishes. This theory 
can play an important role in practical problems of geological and synthetic porous media where the genuine 
elastic theory is inadequate. Some basic problems and a brief account of the theory on voids have been 
introduced by Iesan (1985) and Cowin (1984) respectively. Cowin (1984) presented the inter-relationship 
between this theory of voids and other theories of elasticity. The uniqueness theorem in the theory of elastic 
material with voids has been presented by Chandrasekharaiah (1987a). He investigated plane waves in a 
rotating elastic solid with voids (Chandrasekharaiah, 1987b). Ciarletta and Scalia (1991) discussed some 
theorems in the theory of viscoelastic materials with voids. Recently, different authors (Tvergaard, 1999; 
Scarpetta, 2002; Ciarletta et al., 2003) discussed the problems of elastic materials with voids. However not 
much work has been done to study the effect of sources acting at the surface of elastic material with voids. 
 In the present problem we have obtained the closed form expressions for two dimensional 
displacement, stresses and volume fraction field due to normal point load and a moving normal point load. 
The deformation at any point of the medium due to normal point load is useful to analyze the deformation 
field around mining tremors and drilling into the crust of earth. It can also contribute to theoretical 
consideration of the seismic and volcanic sources since it can account for the deformation field in the entire 
volume surrounding the source region. 
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 The dynamical response to moving loads is of considerable interest in a variety of technological and 
geophysical circumstances and several recent investigations are concerned with this problem. For instance, it 
is of great interest in solid dynamics where ground motions and stresses can be produced by blast waves 
(surface pressure waves due to explosions), or by a supersonic aircraft. This type of investigation is made in 
many branches of engineering, e.g., bridges and railways, beams subjected to pressure waves and piping 
systems subjected to two phase flow. Other applications are encountered within the context of contact 
mechanics like the problem of high velocity rocket sleds sliding over steel guide rails. Different authors 
(Halpern and Christiano, 1986; Nath and Sengupta, 1999; Katz, 2001; Verruijt and Cordova, 2001) have 
discussed the problems of moving load in the theory of elastic solids. 
 
2. Formulation and solution of the problem 
 
 We consider a homogeneous elastic solid with voids in the undeformed state. We take the origin on 
the plane surface and z-axis normally into the medium, which is represented by 0z ≥ . A normal point force 
is assumed to be acting at the origin of the rectangular Cartesian co-ordinates (Fig.1).  
 

 
 

Fig.1. Geometry of the problem. 
 

 If we restrict our analysis to plane strain parallel to the x-z plane with the displacement vector 
( )31 u0u ,,=u  then the field  

 
  ( ) ( )tx δφ , 
 
equations and constitutive relations for such a medium in the absence of body forces and equilibrated forces 
can be written (Cowin and Nunziato, 1983) as 
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 Introducing the dimensionless variables defined by the expressions 
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(where h is the standard length and a is a half width of the strip load) in Eqs (2.1)-(2.2), we obtain (dropping 
the primes) 
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 The initial and radiation conditions are given by 
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 Applying the Laplace transform with respect to time ‘t’ defined by 
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and then the Fourier transform with respect to ‘x’ defined by 
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to Eqs (2.5)-(2.7) and with the help of initial conditions (2.8), we obtain 
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Equations (2.12)-(2.14) may be written as 
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O and I are respectively zero and identity matrix of order 3. 
 To solve Eq.(2.16), we assume 
 
  ( ) ( ) qzepXpzW ,,, ξ=ξ , (2.18) 
 
which leads to the eigen value problem. The characteristic equation corresponding to matrix A is given by 
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which on expansion yields 
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  ( ),312211322321121 abbbbaa ++++−=λ  
 
  ( ) ( ) ( )11312233133111123332112332131231212 babbaababbbbbaaaa −+−+−+−=λ , (2.21) 
 
  ( )13333111223 ababb −=λ . 
 
 The eigen values of the matrix A are characteristic roots of Eq.(2.20). The vectors ( )pX ,ξ  
corresponding to the eigen values sq  can be determined by solving the homogeneous equation 
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The solution of Eq.(2.18) is given by 
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The transformed displacements and volume fraction field satisfying the radiation conditions (2.9) are given by 
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  ( ) ( ) ( ),expexpexp~ zqDzqDzqDu 3625141 −+−+−=  
 
  ( ) ( ) ( ),expexpexp~ zqDqazqDqazqDqau 3633252214113 −−−−−−=  (2.28) 
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3. Boundary conditions and application 
 
3.1. Mechanical sources on the surface of the half-space 
 
 The boundary conditions in this case are 
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 Using Eq.(2.4) and then applying the Laplace and Fourier transforms from Eqs (2.10) and (2.11) to 
system of Eq.(3.1) and with the help of Eq.(2.28), we get the transformed displacement, stresses and volume 
fraction field as 
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Particular case 
 
 Neglecting the material constants due to the presence of voids ( )0ei =ω=ς=ζ=β=α *****,. , we 
obtain the expressions for normal displacement and force stress for an elastic solid as 
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 The eigen values ( )21p ,=Π± Π  for an elastic solid are given by the equation 
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3.1.1. Concentrated normal force 
 
 In order to determine displacements and stresses due to the concentrated normal force described as 
Dirac delta function ( ) ( )xx δ=φ  must be used. The Fourier transform of ( )xφ  with respect to the pair ( )ξ,x  
will be ( ) 1=ξφ

~ . 
 
3.1.2. Uniformly distributed force 
 
 The solution due to distributed force applied on the half space are obtained by setting 
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in Eq.(3.1). The Fourier transform with respect to the pair ( )ξ,x  for the case of a uniform strip load of unit 
amplitude and width 2a applied at the origin of the coordinate system ( )0zx ==  in dimensionless form after 
suppressing the primes becomes 
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3.1.3. Linearly distributed force 
 
 The solutions due to linearly distributed force are obtained by substituting 
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 The Fourier transform in case of linearly distributed force applied at the origin of the system in 
dimensionless form are 
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 The expressions for displacement, stress and volume fraction field may be obtained as in Eqs (3.2)-

(3.4) and (3.6)-(3.7), by replacing ( )ξφ
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concentrated normal point force, uniformly distributed force and linearly distributed force respectively. 
 
3.2. Problem II: Moving concentrated normal point load 
 
 We consider a concentrated normal point load moving along the surface of an elastic solid with 
voids. The rectangular Cartesian coordinates are introduced having origin on the surface 0z =  and the z- 
axis pointing vertically into the medium. Let us consider a pressure pulse ( )UtxP +  which is moving with a 
constant velocity in the negative x direction for an infinitely long time so that a steady state prevails in the 
neighbourhood of the loading as seen by the observer moving with the load (Fig.2). 
 

 
 

Fig.2. Moving concentrated normal point load. 
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 Using Galilean transformations (Fung, 1968) Utxx +=* , zz =* , tt =*  and introducing 
dimensionless quantities defined by Eq.(2.4) and applying the Fourier transforms defined by Eq.(2.11) in Eqs 
(2.1)-(2.2), we obtain the results in the case of moving load at the surface of elastic solid with voids. 
 The boundary conditions in this case are 
 

  ( )*xFt33 δ−= ,        0t31 = ,        0
t

=
∂
ψ∂  

 
where 
 
  ( ) ( )*xFUtxP δ=+ . 
 
 The expressions for displacement, stress and volume fraction field for an elastic solid with voids and 
an elastic solid in the case of moving normal point load are given by Eqs (3.2)-(3.4) and (3.6)-(3.7) by 

changing 222 Up ξρ−→λ  and Uip ξ−→
ρ
λ  in the expressions (2.15) and ( ) 1→ξφ

~  in Eqs (3.5) and 

(3.8). 
 
4. Inversion of the transform 
 
 The transformed displacements and stresses are functions of z, the parameters of the Laplace and 
Fourier transforms p  and ξ  respectively, and hence are of the form ( )pzf ,,~

ξ . To get the function in the 
physical domain, first we invert the Fourier transform using 
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where ef  and of  are even and odd parts of the function ( )pzf ,,~

ξ  respectively. Thus, expressions (3.2)-

(3.4) and (3.6)-(3.7) yield the transform ( )pzxf ,,  of the function ( )tzxf ,, . 
 Following Honig and Hirdes (1984) the Laplace transform function ( )pzxf ,,  can be inverted to 

( )tzxf ,, . 
 The last step is to evaluate the integral in Eq.(4.1). The method for evaluating this integral by Press 
et al. (1986) involves the use of Rhomberg’s integration with an adaptive step size.  
 
5. Numerical results and discussions 
 
 We take magnesium (Eringen, 1984) as an elastic solid 
 
  33 mKg10741 ×=ρ . ,       210 mN1049 ×=λ . ,       210 mN1004 ×=µ . . 
 
 The void parameters are taken as 
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  N106683 9−×=α .* ,       210 mN10138491 ×=β .* ,       210 mN104751 ×=ς .* , 
 
  23 mN1007870 sec.* −×=ω ,       219 m107531 −×=ζ .* . 
 
 The variations of normal displacement ( )FuU 33 =  and normal force stress ( )FtT 3333 =  for an 
elastic solid with voids (ESWV) and an elastic solid (ES) have been studied and the variations of these 
components with distance x have been shown by (a) solid line (________) for ESWV and dashed line (_ _ _ _) for 
ES at 050t .=  (b) solid line with centered symbol (x__x__x__x) for ESWV and dashed line with centered 
symbol (x_ _ x_ _x) for ES at 10t .=  and (c) solid line with centered symbol (o__o__o__o) for ESWV and 
dashed line with centered symbol (o_ _ o_ _o) for ES at 20t .= . These variations are shown in Figs 3-8. The 
computations are carried out for 01z .=  in the range 010x0 .≤≤  and 2152 cm1001h −×= .  and for one 
value of dimensionless width 01a .= . 
 
6. Discussions for various cases 
 
 (a) Concentrated force: At a particular time, the variations of normal displacement and normal 
force stress are greater for ES as compared to the variations for ESWV. Moreover, the variations of 
all the quantities decrease with an increase in time. It is observed that the values of normal 
displacement for ESWV, very close to the point of application of the source, increase with an increase 
in time but the values of normal force stress at the same point decrease with increase in time. 
However, the values of both the quantities for an ES decrease with time, near the point of application. 
The variations of normal displacement and normal force stress for both ES and ESWV at different 
times are shown in Figs 3 and 4 respectively. 
 

 
 

Fig.3. Variation of normal displacement ( )FuU 33 =  with distance x for concentrated normal force. 
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Fig.4. Variation of normal force stress ( )FtT 3333 =  with distance x for concentrated normal force. 
 

 Figure 5 shows that the variations of volume fraction field for ESWV is oscillatory in nature but the 
magnitude of oscillations decreases with an increase in horizontal distance and time. 
 

 
 

Fig.5. Variation of volume fraction field ( )FvV =  with distance x for concentrated normal force. 
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 (b) Strip loading: The values of all the quantities are larger when strip loads are applied on the 
surface of a solid as compared to the values on the application of concentrated load. However, the variations 
of all the quantities for uniformly distributed load and linearly distributed load are similar in nature with 
difference in magnitudes. The variations of normal displacement, normal force stress and volume fraction 
field in the case of uniformly distributed load are shown in Figs 6-8 respectively. 
 

 
 

Fig.6. Variation of normal displacement ( )FuU 33 =  with distance x for uniformly distributed force. 
 

 
 

Fig.7. Variation of normal force stress ( )FtT 3333 =  with distance x for uniformly distributed force. 
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Fig.8. Variation of volume fraction field ( )FvV =  with distance x for uniformly distributed force. 
 

 (c) Steady state response due to moving load: Although the variations of all the quantities are 
oscillatory in nature but the magnitude of oscillations varies with the magnitude of moving load velocity. The 
variations increase with an increase in magnitude of moving load velocity applied on the surface. Also the 
values of normal displacement and normal force stress for ESWV lie in a short range as compared to the values 
for ES for a particular value of moving load velocity. These variations of normal displacement, normal force 
stress and couple stress for different magnitudes of moving load velocity are shown in Figs 9-11. 
 

 
 

Fig.9. Variation of normal displacement ( )FuU 33 =  with distance x. 
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Fig.10. Variation of normal force stress ( )FtT 3333 =  with distance x. 
 

 
 

Fig.11. Variation of volume fraction field ( )FvV =  with distance x. 
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7. Conclusion 
 
 It is observed that the presence of voids plays a significant role in the study of deformation of a 
body. The values of normal components of displacement and force stress are smaller due to the presence of 
voids. Moreover, it is also observed that the body is deformed to a greater extent on the application of strip 
loading. Also in the case of steady state response the variations of all the quantities increase with an increase 
in magnitude of moving load velocity on the surface of the solid. The problem also finds its application in 
various engineering problems involving elastic solids with voids. 
 
Nomenclature 
 
 F  − magnitude of force applied  
 ijt  − force stress 

 u  − displacement vector 
 U  − magnitude of moving load velocity at the surface of elastic solid with voids 

***** and,,, ζωςβα   − material constant due to the presence of voids 
 ( )tδ  − Dirac delta function 
 µλ,  − material constants 
 ρ  − density of solid 
 ( )xφ  − vertical traction distributed function along x-axis 
 ψ  − volume fraction field 
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