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Void effects of a load applied normal to the boundary and moving at a constant velocity along one of the
coordinate axis in an elastic half space is studied. The analytic expressions for displacement, force stress and
volume fraction field for concentrated normal point force, uniformly distributed force, linearly distributed force
and moving concentrated normal force are obtained by employing the eigen value approach after gpplying the
integral transforms. A numerical inversion technique has been applied to obtain the solution in the physical
domain. The numerical results are presented graphically. Some particular cases have been deduced.
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1. Introduction

The theory of dasticity concerning the solid elastic material having a distribution of various pores,
generaly known as voids or vacuous pores, receved greater attention due to its theoretica and practical
relevance. The generd theory in this respect has been formulated by Nunziato and Cowin (Nunziato and
Cowin, 1979; Cowin and Nunziato, 1983). They also formulated the linearised version of the above theory
Cowin and Nunziao (1983) where the voids were included as an additiond kinematic variable. This theory
reduces to the classical theory of dagticity in the limiting case when the void-volume vanishes. This theory
can play an important rolein practical problems of geological and synthetic porous media where the genuine
eastic theory is inadequate. Some basic problems and a brief account of the theory on voids have been
introduced by lesan (1985) and Cowin (1984) respectively. Cowin (1984) presented the inter-relationship
between this theory of voids and other theories of easticity. The uniqueness theorem in the theory of dastic
material with voids has been presented by Chandrasekharaiah (1987a). He investigated plane waves in a
rotating dadgtic solid with voids (Chandrasekharaiah, 1987b). Ciarletta and Scalia (1991) discussed some
theorems in the theory of viscodastic materials with voids. Recently, different authors (Tvergaard, 1999;
Scarpetta, 2002; Ciarletta et al., 2003) discussed the problems of dastic materials with voids. However not
much work has been done to study the effect of sources acting at the surface of elastic material with voids.

In the present problem we have obtained the closed form expressions for two dimensiond
displacement, stresses and volume fraction field due to normal point load and a moving normal point load.
The deformation at any point of the medium due to normal point load is useful to analyze the deformation
field around mining tremors and drilling into the crust of earth. It can aso contribute to theoretical
consideration of the seismic and volcanic sources since it can account for the deformation field in the entire
volume surrounding the source region.
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The dynamical response to moving loads is of considerableinterest in a variety of technologica and
geophysical circumstances and severa recent investigations are concerned with this problem. For instance, it
is of great interest in solid dynamics where ground motions and stresses can be produced by blast waves
(surface pressure waves due to explosions), or by a supersonic aircraft. This type of investigation is madein
many branches of engineering, e.g., bridges and railways, beams subjected to pressure waves and piping
systems subjected to two phase flow. Other applications are encountered within the context of contact
mechanics like the problem of high veocity rocket sleds sliding over sted guide rails. Different authors
(Halpern and Christiano, 1986; Nath and Sengupta, 1999; Katz, 2001; Veruijt and Cordova, 2001) have
discussed the problems of moving load in the theory of eastic solids.

2. Formulation and solution of the problem

We consider a homogeneous dastic solid with voids in the undeformed state. We take the origin on
the plane surface and z-axis normally into the medium, which is represented by z3 0. A normal point force
is assumed to be acting at the origin of the rectangular Cartesian co-ordinates (Fig.1).
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Fig.1. Geometry of the problem.

If we restrict our anaysis to plane strain parale to the x-z plane with the displacement vector
u =(uy,0,us) then thefield

f(x) dlt).

equations and constitutive relations for such a medium in the absence of body forces and equilibrated forces
can be written (Cowin and Nunziato, 1983) as
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I ntroduci ng the dimensionl ess variabl es defined by the expressions
X z u u z
x¢==, z¢==, u :_1, u :_3, ¢t=—7z,
h h i h § h e
(2.9)
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(where h isthe standard length and a is a half width of the strip load) in Egs (2.1)-(2.2), we obtain (dropping

the primes)
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Theinitial and radiation conditions are given by
u (x,z0)=u,(x,20)=0; =13,

y(x,z0)=y(x,z0)=0,

and

ul(x, z,t):u3(x, z,t):y(x, z,t):O, for t>0, when Z® ¥,

Applying the Laplace transform with respect to time ‘t" defined by
¥
{Ui (x, Z, p),V(x, Z, p)} = dui (x, z,t),y (x, z,t)}e' Pt dt, i=13,
0
and then the Fourier transform with respect to ‘X’ defined by

{Gi(x,zp xzp xzp xzp)} e®dx, =13,

«QK

to Egs (2.5)-(2.7) and with the help of initia conditions (2.8), we obtain
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D?Us =by, U3 +ay Dl + by DY, (2.13)
DY =l Uy +ag y +bgy DU, (2.14)
where
b _I p2+X2(I +2n.b b _I p2 +rn(2 _ b*hz
11 m ’ 22 | +2m ’ 23 Z* (I +2n‘b’
b'z" ixb"z" ix(l + ixb"h? d
Py =——, by =- T Ap = ( m) y Q13 = — ., D=—, (2.15)
a a m ne dz

' 2, . « 50
aZl:M, ay = 1*§a x2+\7h2+whp\/|r:+lz pzi.

| +2m a &
Equations (2.12)-(2.14) may be written as
diw(x, z, p): A(x, p) W(x, ya p) (2.16)
2
where
atly O
V 8 |6 ¥ 0
W:m g, A:@ g, V:gu3+,
v “TEa A o
& 5
(2.17)
gbll 0 &30 850 a, 00
AL=¢0 by O B Ap=cay O bzsf-
i 0 agg €0 by 03
O and | arerespectively zero and identity matrix of order 3.
To solve Eq.(2.16), we assume
w(x,z p)= X(x, ple%, (2.18)

which leads to the eigen value problem. The characteristic equation corresponding to matrix A is given by
|A- ql| =0, (2.19)
which on expansion yid ds
A°+140% +1 507 +1 5 =0 (2.20)

where
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I y=- (alZaZl + D3y +0yy + by, + a31),
I 5= aZl(a3la12 - al3b32) +byg (b11b32 - b33a12) +Dyy8g; - A130s5 + by (331 - bll)’ (221)
I 3=byy (blla3l - b33a13)'

The eigen values of the matrix A are characteristic roots of EQ.(2.20). The vectors X(x, p)
corresponding to the eigen values g can be determined by solving the homogeneous equation

[A- al] X(x, p)=0. (2.22)

The set of eigen vectors Xs(x, p) ,S=12......... 6 may be obtained as

a1 (% p)o
X (x,p)=C 9715 2.23
s(xp) éxgz(X, p)E (223
where
&1l 0 &gy o]
¢ N ¢ o7
Xgl(x’ ):Qagqg :’ XgZ(X’ p): ¢ayQg :’ q= qg’ g=123, (2.24)
g by & gbgqgra
210 2 0
Xalkp)=¢- s Xg(xp)=gadf = I=9+3 q=-gg, 9=123, (225)
g by & g b;q; &
and
_ qé By - (b23b11 - a21a13)
g~ N !
g
2
by :w, (2.26)
qg - 83
G2
Ng =dg (a12b23 +313)' Q305 -
The solution of Eq.(2.18) isgiven by
3
W(x, 2, p)= 8 [DsX(x, p)exp(dsz) + DasaXsus (. p)exp(- 052)]. (2.27)

s=1

The transformed displacements and volume fraction field satisfying the radiation conditions (2.9) are given by
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Uy =D, exp(- 632) + Dsexp(- 6,2) + Dgexp(- d32),
Ug =- alqlD4e(p(— qlz)— a2q2D5@(p(- qzz)— az03Dg e(p(- q3z), (2.28)
¥ =b,D,exp(- 0,2)+b,Dsexp(- q,2) +b;Dgexp(- q32).

3. Boundary conditionsand application

3.1. Mechanical sources on the surface of the half-space

The boundary conditionsin this case are

tgs =- F F(x)d(t), ty =0, 11]—3::0 at z=0. (3.2)

Using Eq.(2.4) and then applying the Laplace and Fourier transforms from Egs (2.10) and (2.11) to
system of EQ.(3.1) and with the help of Eq.(2.28), we get the transformed displacement, stresses and volume
fraction field as

Uz =- %[alqlDl e 1 +a,0,D, € ?* +ayq;D;5 € q3z] : (32
to = %[rlDl e W +r,D,e 2 +r;D € q3z] , (3.3
y= %[lel e %% +p,D,e %2 +b,D € qsz] (3.4)
where
_ 1
D=- ?(X)[rlDl +1,0; + r3D3] ’

D¢, 5 = ( 1)Q FF(X)[52,1,1b3,3,2Q3,3,2 - %,3,2b2,1,1Q2,1,1]’

(3.5)
. +2mo o b h? . 2 .. m m
fQ =-IX+E W8 * 5 ~Po  Sp =-IX*+0gdg +iX{Tlodo - 7he
Q=123

Particular case

Neglecting the material constants due to the presence of voids (i.e, a'=b’=z"=V=w's= O), we
obtai n the expressions for normal displacement and force stress for an dastic solid as
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~ 1 : :
Uz =- D_[pldlDlO e ¥ + p,d,Dy € pzz]’ (3.6)
o
I 1 - Pz - P2z
tys =—[Dp € +r,Dyg € (3.7)
Dy
where
1 ~
D=- ~—[r1®10 + rélDzo]’ Dig20 = ( 1)P Ff (X)Sz,l’
Ff (x)
. g +2mo . . m m
g =-IX+¢ I =padp Sp =-IX+ pédp‘*'xl—ppdp'l—pp, (3.8)
dp — pé B bll
€
Theegenvaues * pp (P = 1,2) for an dastic solid are given by the equation
p* +1 ,p2+1 =0 (3.9)
where
| 4=- (€126 +byy +bsy), | 5 =by1by, . (3.10)

3.1.1. Concentrated normal force

In order to determine displacements and stresses due to the concentrated normal force described as
Dirac delta function f (x) = d(x) must be used. The Fourier transform of f(x) with respect to the pair (x, x)

will be f(x)=1.
3.1.2. Uniformly distributed force

The solution due to distributed force applied on the half space are obtained by setting

él if fa,
fx)=¢ %
@ if |x| >a,
in Eqg.(3.1). The Fourier transform with respect to the pair (x, x) for the case of a uniform strip load of unit

amplitude and width 2a applied at the origin of the coordinate system (x =z= 0) in dimensi onless form after
suppressing the primes becomes

f(x)=[2sin(xha)/x], xt0. (3.11)
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3.1.3. Linearly distributed force

The solutions dueto linearly distributed force are obtained by substituting

¢ it IXE
f(X)=Zl_§ T Kga, (3.12)
g 0 if X > a.

The Fourier transform in case of linearly distributed force applied at the origin of the system in
dimensionless form are

~( ): 2[1- cos(xha)].

f (x (3.13)

x’ha

The expressions for displacement, stress and volume fraction field may be obtained as in Egs (3.2)-

(34) and (3.6)-(3.7), by replacing f(x) by 1, [2sin(xha)/x] and 2[1- cosfxhal]

> in the case of the
x“ha

concentrated normal point force, uniformly distributed force and linearly distributed force respectively.
3.2. Prablem I1: Moving concentrated normal point load

We consider a concentrated normal point load moving aong the surface of an éastic solid with
voids. The rectangular Cartesian coordinates are introduced having origin on the surface z=0 and the z-

axis pointing vertically into the medium. Let us consider a pressure pulse P(x+Ut) which is moving with a

constant velocity in the negative x direction for an infinitely long time so that a steady state prevails in the
nei ghbourhood of the loading as seen by the observer moving with the load (Fig.2).

v

I

Fig.2. Moving concentrated normal point |oad.
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Using Gdlilean transformations (Fung, 1968) x =x+Ut, z =z, t =t and introducing
dimensi onless quantiti es defined by Eq.(2.4) and applying the Fourier transforms defined by Eq.(2.11) in Egs
(2.1)-(2.2), we obtain the results in the case of moving load at the surface of eastic solid with voids.

The boundary conditionsin this case are

t33:'Fd(X*), ty; =0, =
where

P(x+Ut)=Fd(x' ).

The expressions for displacement, stress and volume fraction field for an e astic solid with voids and
an dadtic solid in the case of moving norma point load are given by Egs (3.2)-(3.4) and (3.6)-(3.7) by

changing | p?® -rU?x? and p\/I® -ixU in the expressions (2.15) and f(x)® 1 in Egs (3.5) and
r

(3.9).
4. |nversion of thetransform

The transformed displacements and stresses are functions of z, the parameters of the Laplace and
Fourier transforms p and x respectively, and hence are of the form f(x, ya p). To get the function in the
physical domain, first weinvert the Fourier transform using

*

_ 1 L~
f(x,z p)=— ¢ *fl(x,z p)dx,
(v2.p)=o [ (xzp)
4.2)
1¥
= o qcos(xx) f, - isin(xx)f, }dx

o

where f, and f, are even and odd parts of the function F(x, ya p) respectively. Thus, expressions (3.2)-
(3.4) and (3.6)-(3.7) yidd thetransform f(x, z, p) of thefunction f(x,zt).

Following Honig and Hirdes (1984) the Laplace transform function f(x,z p) can be inverted to
f(x, z,t).

Thelast step isto evaluate the integral in Eq.(4.1). The method for evaluating this integral by Press
et al. (1986) invol ves the use of Rhomberg' s integration with an adaptive step size.

5. Numerical resultsand discussions
We take magnesium (Eringen, 1984) as an eastic solid
r=174" 108Kg/m®, 1 =94 10°N/m?, m=4.0" 10°N/m?.

Thevoid parameters are taken as
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a’ =3668" 10°N, b =113849" 10'°N/m?, V =1475" 10"°N/m?,
w =00787 10 3N sec/m?, 2z  =1.753" 10" ¥m?.

The variations of normal displacement U3 = (u3/F) and normal force stress Tg; = (t33/F) for an
eastic solid with voids (ESWV) and an dastic solid (ES) have been studied and the variaions of these
components with distance x have been shown by (&) solid line ( ) for ESWV and dashed line (----) for
ES a t=0.05 (b) solid line with centered symbol (x—x—x—X) for ESWV and dashed line with centered
symbol (x--x--x) for ES a t=0.1 and (c) solid line with centered symbol (0—0—0—0) for ESWV and
dashed line with centered symbol (0--0--0) for ES at t =0.2. These variations are shown in Figs 3-8. The

computations are carried out for z=1.0 in the range 0£ x£10.0 and h?=1.0" 10" **cm? and for one
value of dimensionless width a=1.0.

6. Discussonsfor various cases

(a) Concentrated force: At a particular time, the variations of normal displacement and normal
force stress are greater for ES as compared to the variations for ESWV. Moreover, the variations of
all the quantities decrease with an increase in time. It is observed that the values of normal
displacement for ESWV, very close to the point of application of the source, increase with an increase
in time but the values of normal force stress at the same point decrease with increase in time.
However, the values of both the quantities for an ES decrease with time, near the point of application.
The variations of normal displacement and normal force stress for both ES and ESWV at different
times are shown in Figs 3 and 4 respectively.
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Fig.3. Variation of normal displacement U 3(: ug/ F) with distance x for concentrated normal force.



875

Defor mations due to mechanical sources in elastic solid with voids

B.0 -,
i
\
\ — ESWW(t=0.05
_ _ ES (t=0.05
1 e ESWWT t=0.1
B.0 1 oo B [(t=0.1
anono ESWt=0.2
1=0.2

" 00 2.0
Fig.4. Variation of normal force stress Tag (: tas/ F) with distance x for concentrated normal force.

Figure 5 shows that the variations of volume fraction field for ESWYV is oscillatory in nature but the
magnitude of oscillations decreases with an increasein horizontal distance and time.
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Fig.5. Variation of volume fraction field V(: v/F) with distance x for concentrated norma force.
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(b) Strip loading: The vadues of al the quantities are larger when strip loads are applied on the
surface of a solid as compared to the va ues on the application of concentrated load. However, the variaions
of all the quantities for uniformly distributed load and linearly distributed load are similar in nature with
difference in magnitudes. The variations of normal displacement, norma force stress and volume fraction
field in the case of uniformly distributed load are shown in Figs 6-8 respectively.
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Fig.6. Variation of normal displacement U3(: u3/F) with distance x for uniformly distributed force.
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Fig.7. Variation of normal force stress Tag (: tas/ F) with distance x for uniformly distributed force.
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Fig.8. Variation of volume fraction field V(: v/ F) with distance x for uniformly distributed force.

() Seady state response due to moving load: Although the variations of all the quantities are
oscillatory in nature but the magnitude of oscillations varies with the magnitude of moving load velocity. The
variations increase with an increase in magnitude of moving load velocity applied on the surface. Also the
values of normal displacement and normal force stressfor ESWV liein a short range as compared to the val ues
for ES for a particular vaue of moving load veocity. These variations of normal displacement, normal force
stress and couple stress for different magnitudes of moving load vel ocity are shown in Figs 9-11.
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Fig.9. Variation of normal displacement U3(: u3/F) with distance x.
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7. Concluson

It is observed that the presence of voids plays a significant role in the study of deformation of a
body. The values of normal components of displacement and force stress are smaller due to the presence of
voids. Moreover, it is also observed that the body is deformed to a greater extent on the application of strip
loading. Also in the case of steady state response the variations of al the quantiti es increase with an increase
in magnitude of moving load velocity on the surface of the solid. The problem also finds its application in
various engineering problems involving eastic solids with voids.

Nomenclature

F - magnitude of force applied
t. - forcedress

u - displacement vector
U - magnitude of moving load velocity at the surface of elastic solid with voids
a ,b* ,\i ,W* andz” - material constant dueto the presence of voids
dft) - Dirac deltafunction
|,m - maeria constants
r - density of solid
f(x) - vertical traction distributed function along x-axis
y - volume fractionfield
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