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Free transverse vibrations of arectangular plate composed of a monoclinic elastic material are discussed. The
plate is considered to be exponertially varying in density and thickness along one direction of the plate.
Hamilton's principle is used to derive the eguation of motion and its solution is obtained using Chebyshev
collocation technique. Frequency equations are derived for three boundary val ue problems when two edges of the
plate are simply supported and the other two have different possibilities, namdy (i) C—-S—C- S(ii) C—S- S-S
(ili) C— S—F — S where C, Sand F denote the clamped, simply supported and free edge respectively. Effects of
thickness and density variation on modes of vibrations have been analyzed. Numerical computations have been
performed for a specific model of monoclinic plates and the results obtained are compared with those for
orthotropic plates already givenin Lal (2003).
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1. Introduction

Modern engineering structures are based on different types of design, which involve various types of
anisotropic and non-homogeneous materias in the form of their structure components. Depending upon the
requirement, durability and reliability, materials are being developed so that they can be used to give better
strength and efficiency. The equipment used in air-jet, communications and in other similar technologica
industries take into consideration such materials, which not only reduce the weight and size but also are
religble in terms of efficiency, strength and economy. Various problems of free vibrations of plate made up
of an dastic materia with different boundary conditions have been discussed e.g., see Gorman (1982),
Sizlard (1974) and Leissa (1969; 1973) among others. They have used different methods to find out the
frequency equation of the modes of propagation. Appl and Byers (1965) determined the fundamenta
frequencies for simply supported rectangular plates of linearly varying thickness. Jain and Soni (1973)
attempted a problem of free transverse vibrations of rectangular plates of parabolically varying thickness on
the basis of classica theory of plates. They obtained the solution of the equation of motion using Frobenious
method and derived the frequency equation for the plate whose two edges are simply supported. Biswas
(1978) discussed large deflection of a heated orthotropic rectangular plate. He derived the governing
equations using Berger’s assumption and determined the deflection for a simply supported plate. De (1981)
discussed the problem of vibrations of monoclinic crystal plates. Ng and Araar (1989) studied free vibration
and buckling analysis of clamped rectangular plates of variable thickness using Gal erkin method. Sonzogni et
al. (1990) discussed free vibrations of rectangular plates of exponentially varying thickness using the
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optimized Kantorovich method and Finite Element Method. Bhat et al. (1990) discussed numerica
experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-
uniform thickness. Bhat (1991) studied vibrations of rectangular plates on point and line support using
characteristic orthogonal polynomials of the Rayl e gh-Ritz method. Grossi and Bhat (1995) studied natural
frequencies of edge restrained tapered rectangular plates. Sakata et al. (1996) discussed natural frequencies of
orthotropic rectangular plates obtained by on iterative reduction of the partial differential eguation.
Rajaingham et al. (1996) studied vibrations of rectangular plates using plate characteristic functions as shape
functions according to Rayleigh-Ritz method. Lal et al. (1996) studied free transverse vibrations of a thin
rectangular plate of exponentially varying thickness and resting on an eastic foundation of Winkler type.
Using Levy's technique, they derived characteristic equations for three different combinations of the
boundary conditions at the other two edges. Rgaingham et al. (1997) attempted a problem of vibrations of
rectangular plates by reducing the partid differentiad equation into simultaneous ordinary equations.
Bespal ova and Kitaigorodskii (2001) studied features of the free planer vibrations of orthotropic rectangular
plates. They discussed the spectrum of the symmetric planer vibrations of an orthotropic rectangular plate as
a function of the characteristics of orthotropic materias and its dimensions. Hui and Haun-ran (2001)
discussed natural frequency of rectangular orthotropic corrugated —core sandwich plates with all edges
simply supported. They presented a simple approach to reduce the governing equations for orthotropic
corrugated core sandwi ch plates to a single equation containing only one displacement function and obtai ned
the exact solutions of the natural frequencies. Taylor and Govindji (2002) discussed the solution of clamped
rectangular plate problems. The method used by them is based upon the dassica double cosine series
expansion and an implementation of the Sherman-Morrison-Woodbury formula. Numerical solutions of
rectangular plates with various side ratios are presented and compared with the solution generated via
Hencky's method. Recently, Lal (2003) discussed a problem of transverse vibrations of orthotropic non-
uniform rectangular plates with continuously varying density on the basis of the classical plate theory. He
obtai ned the equation of motion and solved it using Chebyshev polynomials and derived frequency equations
for three different combinations of clamped, simply supported and free boundary conditions at the other two
edges of the plate.

2. Problem and derivation of equation of motion

In rectangular Cartesian co-ordinates (X,Y,2z), we consider a rectangular plate of a monoclinic
material of length ‘a’, breadth ‘b’ and thickness h = h(x, y) such that the middle surface of the plateis aong

z=0 and theoriginis at one of the corners of the plate. The z-axis is taken perpendicular to the plate. Let the
components of displacement (u,v,w) be along the Cartesian axes. Following Sizlard (1974), the relation
between these components of displacement are given by

u:-zﬂ—w, v:—zﬂ—w. (2.1)
fix iy
Also the strain components are given by
fu v w
=—, e,y =—, eZZ =—,
5 Y gy 1z
(2.2
eZ:ﬂ_Vv+ﬂ’ ez)(:£+ﬂ_vv’ e :E+E
oy 1z Tz fx Yx Ty

Stress-strain relations for a monoclinic material are given by
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tyx = C11€ T C12€yy +C1385, +Cye tyy = €18 T Cx0€yy +Cp3€,, +Cpp

yy yz'! yy Yz
tzz =C316 C32eyy +C338, + C34eyz ! tyz =Cplux C42eyy tCy3€z + C44eyz ) (2-3)
Ty, = Co5€, +C5€yy s T,y = Ces€x + CopCyy

where Gij (i,j =12, 3,...,6) are dastic constants and other symbols have their usual meanings. The strain
energy V is given by
dVl(te+te+te+te+te+te) (2.9
2 yz©yz Xy xy .

Putting Egs (2.1) to (2.3) into Eq.(2.4) and integrating over the limits of the plate considered, we

obtain
¢ ‘nw'l]w 22w g2 ¢ U
00 T c +C +C, T +AC G——T ded 25
(Ig:lléﬂ 12+C1) 0 Ty ZS'"YZ = Ceeé‘" Ty r_a y.  (25)

Thekinetic energy T of the plateis given by

“aé1Wo
T :—hr O3, = dxdy. (2.6)
ooeTto

The variation of V is given by

3abg 2., q2 200, 2 6
SELp ﬂWﬂ — (012"’021)? \;v‘l] d2vv+‘|]\;v‘|] dzw%"
T120087 B¢ M ™ 2 W W o
7w T°dw 12w T2dwu

+c + 4 gdxdy,

22 fy? %5 gty iy & A Y
and the variation of T is given by
dT:hr(‘I‘)&W:]] dxdy. (2.8)
00

We shdl now obtain the equati on of motion using Hamilton's principle given by

t2
dd_dt =0 (2.9
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where t; and t, areinitial and final values of timeand L =T - V isthe Lagrangian. Substituting Egs (2.7)
and (2.8) into Eq.(2.9), we get

8wl hF o fPwildw TP fPdw

% W E}Cu o C22 w2 W (c12 +c21)
2 2 Z

é Wﬂ dW+ﬂWﬂ dz‘"’f 4cCgg ﬂw‘"dwyudxdydt—
™ > Ty? IX° ® iy TxTy bt

(2.10)

Performing the integration in Eq.(2.10) with respect to ‘t' and eguating the coefficient of dw egual to
zero, we get

he a4 h3 ¢4 h3
11§%+022§11]]T\1v+2(012 CZl+C66)12ﬂ)1]1\];\: +
1i R w11 h° 1w
2 Ve t2o-
+ ﬂx%(C12+C21+C66)12i;ﬂxﬂy2+ ﬂy_lf(Clz"‘Czl )1Zi;ﬂy1]x2+
3 3 3
ﬂgzzh o° \;v+'ﬂ g% h° o7 \év+‘|1 éc h_%'"_‘é"J, (2.11)
&2 1250 w2 1250 g 1250y
12 I h3u'nw ? I 3P‘ﬂw
—ilc Ci2

“mé"%ﬁm -

Thisistherequired equation of motion.
Let us assume that two opposite edges of the plate givenby y=0 and y=b are simply supported

and that the thickness is independent of y i.e, h= h(x). For harmonic vibrations, the deflection function w
(L evy approach) is assumed to be

w(x, y,t) = W(x)sin(ppy/b)exp i wt) (2.12)

where’ p’ isapoditiveinteger and w isthe radian frequency.
Substituting (2.12) into Eq.(11), we get

4
h3d' W W +6h h¢d—+}3h he+ ghn@ - 2(Ci2 ¥ Co1 * 2es) P°p? sHid*W

dx ¢ 1 Cyy 0° X’
6 (c12 +Cyy +2c66) pzzp2 h2h¢—W+T cp pp? 3(012 +021) pzzp2 . 2.13)
C11 b dx T ¢y b? C11 b
2§
 (h2ne+ 2nhe ) 22 Vg

C11 i; =0
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I ntroducing the following non-dimensional variables
X=x/a, Y=y/b, h=ha, W=wa.

Equation (2.13) reducesto

4 s 2.2.2 ] 42
i3 9W 672 W L anohes 6 - o(012 * o 20) p70%a% ol dW
dx* ax® { Cuy b hax
G2 o1 + 2e6) p°p’0% pop AW T pp'a" s slerpten) RPPPR. 1y
C11 b? dX fc b Cu1 b?
To2021
- (2he+ 2nRe). AWl g
Ci1

where prime denotes the differentiation with respect to X .
We assume that the thickness and density of the plate are varying exponentially along the

X -direction and are given by h=he**and r :roebx, where hy, and r, are the thickness and

density respectively of the plate at the end X =0, a and b are the taper and density parameters
respectively.
With these variations, Eq.(2.14) reduces to

d*w d3w daw dw
+B +B +B,— +B,W =0 2.15
dax*  tdx3 Zdx2  dx @15

Bo

where

B,=1, B, =6a,

B. =932- 2(012 +Cy +26q6) p°pa’ B.=-6 (C1p + 1 +2¢46) p*p°a’ a
2 = 2 ’ 3~ 2 ’
Cll b Cll b
4_4_4 2,22 2,2
B, = Co P p4a ) 9(012 +021) p pza a2 - WRelb-2a)x ’ WA = 12ranW

3. Application of the method

We find the solution of Eq.(2.15) using the Chebyshev collocation technique Taking a new
independent variable f defined by f =2X - 1, we see that the range 0£ X £1 is transformed into

- 1£f £1. With thistransformation, Eq.(2.15) reducesto
2
d'w ., d'w by W dw 3.1)

+Va Y VW =0
O g4 Tt Pgf2 Gdf ?
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where v, =2*'B, (i=0,1234).

In order to apply the Chebyshev collocation technique (see Fox, 1957; Fox and Parker, 1968; Snyder,
1969), we assume

m-5
W =d, +d,T; +d;T, +d, T2 + Q dysTy? (3.2)
k=0
where dj (j =12,.., m) are unknown constants, T, (k =0,12,..,m- 5) are Chebyshev polynomials and

TJ denotesthej™ integral of T, with respect to f .
Substituting the value of W given by Eq.(3.2) into Eq.(3.1) and putting

aaZk+1RQ

: k=0,1,2,..,m-5 3.3
PP (k=012 5) @9

fk:CO

into the resulting equation, one can obtain a set of (m— 4) equations in dj(j =12,.., m). This set of
equations can be put in matrix form as

[B][p]=[o] (34)

where [B] isamatrix of order (m- 4)" m and [D] and [0] are column vectors of order m’ 1 and (m- 4)" 1
respectively.

4. Boundary conditions and frequency equations

We shdll consider the following four sets of boundary conditions:
(i) C-C conditions: Clamped at theedges X =0 and X =1.
(if) C-Sconditions: Clamped at the edge X =0 and simply supported at theedge X =1.
(iii) C-F conditions: Clamped at the edge X =0 and freeat theedge X =1.

The boundary conditionsat C,S and F edges are respectively

w:?j-‘)’(vzo, (4.1)
2 2.2.2
w:‘zx\’;’-cglp Eza W =0, 4.2)
and
d?w 2p%a?.  d3W &R, +4ce 9p2p2a’ dw
Z_C%-pp2 W = 3_9%1 66;p p2 Y -0 (43)
dx b dx g Cll ﬂ b dX
where C% :C12—+C21
h .

C11
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Applying the boundary conditions given by Eq.(4.1) for the C-C case to Eq.(3.2) after making use of
the transformation f =2X - 1 defined above, one obtains a set of four homogeneous equations in

d;(j =1 2,...m). These equations together with the (m- 4) equations given by (3.4) constitute a system of
m equationsin m unknowns. These equations can be written as

¢B u[D] [o] (4.4)
eBCCU

where [BCC] isamatrix of order 4 m and [0] is acolumn matrix of order m” 1. [B] isamatrix of order
(m— 4)’ m, whose el ements are given by

by =Va: by =Vl +Vs, bys =VaT{ +V5Ty +Vs,

bua =VyTL +VaT +VoT +Vys by =VTE +VaT Vo] +ViTy +Vp,

bue =ViTi! +VaTP +VoT2 + VT +VoTy, by = VT +V3T5 + VT +ViTy +VG Ty,

bug =V,Ts +VaT3 +VoT3 +ViT3 +VoTs,  byg =VTS V3T +VoT4 +VITL +VoTy

byio =VaTe +VaTe +V,TE +ViTe +VoTs,  byyy =ViTg +VaTg +VoTE +ViTg +Vo T,

b1y =V +V5T7 +VoT2 +VIT7 +VoTy . brag =VaTg +VsTg +VoTg +ViTg +VoTg,

by1a =VaTg +VaTg +V,Tg +ViTg +VoTg, by gs =VaTio +VaTi +V,Tih +ViTio +VoTyg
where V,, (i =0,1 2,3, 4) aredefined earlier.

Since by ;,j=1,2,...,m are given in the terms of f , so putting the value of f form Eq.(3.3), we get

b;(i=12..m-4).

4 — 4 4 4 ~ 4 — 4 4 =4 4 4

Tl Tl Tl TO Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO
1 T, TR R T Tt T Ty
1 2 +4 —4 4 4 4 ~ 4 — 4 4 =4 4 4

Tl Tl Tl TO Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO
1 TR TR T AT T T T T Ty

(o Y en ey eny e} eny end

The first two rows of matrix B, are obtained from the boundary conditions (4.1), which must be
satisfied at f =-1 and the last two rows are obtained from the same boundary conditions in (4.1) but these
aresatisfiedatf =1

For anon-trivial solution of Eq.(4.4), we must have
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B

=0. (4.5)
BCC

This is the frequency equation for transverse modes of propagation in the said case. Similarly, from
the boundary conditions (4.2) for C-S conditions, the frequency equation can be obtained as

Bloo (4.6)
BCS
where
A 1 2 4 4 4 4 4 4 4 4 4 4 4
gl Tl Tl Tl TO Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO E
B _@ 1 Tl Tll T03 Tl3 TZ3 T33 T43 T53 T63 T73 T83 T93 T103 U
CS — e u
1 2 4 4 4 4 4 4 4 4 4 4 4 -
f;”!l T1 T1 T1 To T1 Tz T3 T4 T5 T6 T7 T8 T9 T10 E
gRl RZ R3 R4 RS RG R7 R8 RQ R10 Rll R12 R13 R14 R15 fl
where
R, =- ps, R, =- p3Ty, Ry =4- p3Tll’
Ry =4Ty- paTY,  Rs=4T¢- psTy,  Rs =4T{- psTy',
R, =4Tf - psTy, Rg=4T{- psTs, Ry =4T7 - psly,
Rio =4TZ - psTe, Ry =4T¢ - psle. Ry =4T/ - psT/,
Ryz = 4T82 - p3T84’ Ry = 4T92 - p3T94, Rys = 4T1% - p3T1%,
2..2.2
_ ppa
and ps =ch .

The first two rows of matrix B.g are obtained from the boundary conditions (4.1), which must be
satisfied at f =- 1 and the last two rows are obtained from the same boundary conditions given in (4.2) but
these are satisfied atf =1.

And from the boundary conditions (4.3) for C-F conditions, the frequency equati on becomes

=0, 4.7

CF
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T, Tll Tl2 T04 Tl4 Tz4 T34 T44 T54 T64 T74 Ts4 T94 T104 ﬂ
1 Tl Tll T03 Tl3 TZ3 T33 T43 T53 T63 T73 T83 T93 T103 l;l
R R Ry Ry Rs Ry Ry Ry Ro R Ry RuRi RyRis
£S5 % S S S S % S So SuSe S Su S

Ber =

("E‘U > 8) ('D)Q\

where
S, =0, S, =Py S;=ps Ty,
— 1 _ 1 3 _ 1 3 _ 1 3
Sy =4- puTy, S5 =4T5 - paTy S =4T] - paly, S =4T; - paTy
Ss=4T5 - pTs,  So=4T- pT.  Sio=4To - pTo, Sy =4Tg - pTe,
S =4T/ - p T, S =4Tg- paTs. S =4To- psTo.  Si5=4Tio- PsTry.
2.2.2
_ ppa
and p4 =- (2- C%‘)T .

The first two rows of matrix B- are obtained from the boundary conditions (4.1), which must be
satisfied at f =- 1 and the last two rows are obtained from the same boundary conditions given in Eq.(4.3)
but these are satisfied at f =1.

5. Numerical results and discussion

Frequency Eqs (4.5)-(4.7) are solved numerically for various values of density parameter b, taper

constant a and aspect ratio dgezgg for first three modes of vibration only. In al computations we have
e Dg

teken m=15, p=1 and hy =0.1cm. The values of eastic constants for rock gypsum as monoclinic
material aretaken as follows (Haussuhl, 1965)

¢, =7.859" 10%erg/cm®, ¢, =Cyy =417 10° erg/cm®,

Cyp =6.287° 10% erg/ecm®,  Cgg =1.044 10° erg/cm® .

Using these values, we have cal culated the value of frequency parameter (W) from Eq.(4.5) (i.e, for
C-C conditions of the plates) at different values of density parameter b, namdy b=-0.5, -0.3,-0.1, 0.0, 0.1,
0.3, 0.5, 1.0 and at two different values of taper parameter a =- 0.5 and a =0.5. The results obtained are
depicted in Fig.1. In this figure, we have depicted only the curve of the first mode of vibrationsin monodinic
and orthotropic plates for C-C conditions of the plates, however higher modes of propagation also exist. We
notethat at a =- 0.5 and b =-0.5, thevalue W is 26.37 for amonodinic plate and 21.53 for an orthotropic
plate, while & a =05 and b=-0.5, the value W is 42.79 for a monodlinic plate and 34.98 for an
orthotropic plate. As the value of density parameter b increases from the value —0.5 to 0.5, the vaue of

frequency parameter W decreases for the monodlinic as well as for orthotropic plates. Thus we conclude that
the frequency of vibrations in the monoclinic plate is higher than that in the orthotropic plate, but havein the
same pattern.
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Figl. (C-C conditions) Variation of first mode of frequency parameter with density parameter. (Soild curve—
Orthotropic plate, Dashed curve — Monoclinic plate).
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Fig.2. (C-C conditions) Variation of second mode of frequency parameter with density parameter. (Soild
curve — Orthotropic plate, Dashed curve — Monoclinic plate).

In Figure 2, we notethat at a =-0.5 and b =-0.5, the value of W is 62.98 for a monoclinic plate
and 56.26 for an orthotropic plate, whileat a =0.5 and b =- 0.5, the value of W is 102.55 for a monoclinic
plate and 91.63 for an orthotropic plate (C-C conditions) for the second mode of vibration. As the value of
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density parameter b increases from the value 0.5 to 0.5, the vd ue of frequency parameter W decreases for

the monoclinic as well as for orthotropic plates. Thus we conclude that the frequency of vibrations in the

monoclinic plateis higher than that in the orthotropic plate, but again in the same pattern asin the first mode.
InFigure 3, we notethat at a =-0.5 and b=-0.5, thevalue of W is 116.08 for a monoclinic plate

and 108.53 for an orthotropic plate, while a8 a =05 and b=-05, the vdue of W is 189.23 for a

monaclinic plate and 176.53 for an orthotropic plate (C-C conditions) for the third mode of vibration. Here
also, the pattern of variation of frequency parameter is found to be similar as was in the first and second
modes of vibrations.

T

lllllljjlllllll

Frequency parametos

L20.00

200.00

II|IIIII||‘IIII|II

L

YUK ||||||||:|||.!rrrr| ||||| ! l||||||1|ll.[|||||'|1|r r||||||4|1ll;

0.5 e -0.% -02 Q.1 0.0 (18] oz a3 o4 0.5
Beta

Fig.3. (C-C conditions) Variation of third mode of frequency parameter with density parameter. (Soild curve
— Orthotropic plate, Dashed curve— Monodinic plate).

Figure 4 depicts the variation of W with d when the plate is subjected to C-C conditions. At
d =0.25 with a =b =0.5, thevalues of W are 26.15, 70.93, 138.07 for a monoclinic plate and 25.75, 70.70,

137.45 for an orthotropic plate in the first, second, third modes of vibrations respectively. As the value of d
increases through the values 0.25 to 2.0, the val ues of frequency parameter W increase for the monoclinic as
wdl as for orthotropic plates. Thus we condude that the frequency of vibrations in the monoclinic plate is
higher than that in the orthotropic plate.

Figures 5, 6 and 7 depict the same what is shown in Figs 1, 2 and 3 for C-S conditions of the plates.
Here we conclude tha the frequency of vibrations in the monoclinic plate is higher than that in the
orthotropic plate. Theresultsat b =- 0.5 are summarized as follows:

Modes Monoclinic Orthotropic
| a=-05) 22.18 16.74

(

(a=05) 35.43 25.05
I (@a=-05) 54.39 47.11

(a=05) 87.22 74.13

(@a=-05) 103.06 94.99

(a=05) 166.18 152.08
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Fig.4. (C-C conditions) Variation of frequency parameters with aspect ratio. (Solid curve — orthotropic plate,
Dashed curve — Monaodlinic plate, a =b =0.5).
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Fig.5. (C-S condition) Variation of first mode of frequency parameter with density parameter. (Soild curve —
Orthotropic plate, Dashed curve — Monoclinic plate).
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Fig.6. (C-S conditions) Variaion of second mode of frequency parameter with density parameter. (Soild
curve — Orthotropic plate, Dashed curve — Monoclinic plate).
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Fig.7. (C-S conditions) Variation of third mode of frequency parameter with density parameter. (Soild curve
— Orthotropic plate, Dashed curve— Monodinic plate).

Figure 8 depicts the variation of W with d when the plates are subjected to C-S conditions. At
d =0.25 with a =b =0.5, thevaues of W are 16.77, 56.24, 117.77 for amonodinic plate and 16.14, 55.97,
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117.06 in an orthotropic plate for the first, second, third modes of vibrations respectively. As the value of d
increases through the values 0.25 to 2.0, the val ues of frequency parameter W increase for the monoclinic as
wdl as for orthotropic plates. Thus we conclude that the frequency of vibrations in the monoclinic plate is

higher than that in the orthotropic plate.

180,00 —
150.0C — Third mode A =
140,00 — e
i a 2 e —
T P
T =
E  1o0.00 — -
& 3 -
g = can whe P
2 3 -
g =) 5] — -
% 8000 —] o
3 - L
i 3 i —1
OO0 —) . o = - ——
= -7
40.00 — e
o I 1mn i == —_:_-_'_‘-_'_-_._'_._._'___,_,—-"
2000 ] Lommm = OWT —
100 llIr||l1llli||||||1|||.||||r||||.||.||||||
0.25 0,50 0.75 1.00 1,25 1.50 1.75 2,00
d {=a/b)

Fig.8. (C-S conditions) Variation of frequency parameters with aspect ratio. (Solid curve — orthotropic plate,

Dashed curve — Monaodlinic plate, a =b =0.5).

Figures 9, 10 and 11 depict the same what is presented in Figs 1, 2 and 3 for C-F conditions of the
plates. Here we conclude that the frequency of vibrations in the monoclinic plate is higher than that in the

orthotropic plate. Theresultsat b =- 0.5

aregiven asfollows:

Modes Monoclinic Orthotropic

| (@a=-05) 8.54 7.50
(a=05) 16.59 12.30

I (@a=-05) 27.50 24.80
(a=05) 41.83 36.22

11 (@a=-05) 63.00 59.00
(a=05) 98.19 91.00
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Frequency parameter

alpha = - 0.5

+.00 |1Ir1r[IIIIJ|IIIII|I||II|II|II|I'IIPI|IIIII|IIIII|IiIII|||I||

45 08 03 -0z 01 00 01 02 03 04 05
Bela

Fig.9. (C-F conditions) Variation of first mode of frequency parameter with density parameter. (Soild curve—
Orthotropic plate, Dashed curve — Monoclinic plate).
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Fig.10. (C-F conditions) Variation of second mode of frequency parameter with density parameter. (Soild
curve— Orthatropic plate, Dashed curve — Monocdlinic plate).
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Fig.11. (C-F Conditions) Variation of third mode of frequency parameter with density parameter. (Soild
curve— Orthatropic plate, Dashed curve — Monodlinic plate).

It can be concluded from Figs 5-7 and 9-11 that al the three modes of propagation decrease with the
increase of density parameter in both types of plates.

20.00

50,00

Second mode -

300 -

Frequiency narsmetes

IIIII|IIIIIIIIIIII.IIJI[lII]IIJIIII[IJIIII

L0 LN L R L Y B BRI I e

0.5 0.75 500 L.25 L.50 1.7% 4.00

d (= a/b)

Fig.12. (C-F conditions) Variation of frequency parameters with aspect ratio. (Solid curve — orthotropic
plate, Dashed curve— Monoclinic plate, a =b =0.5).
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In Figure 12, we note that when d =0.5, (a =05,b= 0.5) and plates are subjected to C-F
conditions, the value of W is 4.28 for a monoclinic plate and 3.77 for an orthotropic plate for the first mode
of vibration; 24.49 for a monoclinic plate and 23.12 for an orthotropic plate for the second mode of vibration.
As the value of d increases through the values 0.5 to 2.0, the values of frequency parameter W increase for
the monoclinic as wdl as for orthotropic plates. However, they increase much faster with d in the monoclinic
plate than that in the orthotropic plate. Thus we conclude that the frequency of vibrations in the monodinic
plateis higher than that in the orthotropic plate.

Normalized displacements Wy, =W/W,,, ae shown in Figs 13-15 for first three modes of
vibrations for C-C, C-Sand C-F conditions respectively.

1.5 [ -

Nomalised displacement

X

Fig.13. (C-C condition) Normalized displacements of monoclinic plate for the first three modes of vibrations.
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0.4
0.2

0.2 2 3 4 3
-0.4
-6
-0.8

Normalised displacement

Fig.14. (C-Scondition) Normalized displacements of monodinic plate for the first three modes of vibrations.
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05 1

Normalised displacement

Fig.15. (C-F condition) Variation of normalized displacements with X in monoclinic plate for the first three
modes of vibrations.

6. Conclusion

Free transverse vibrations of a rectangular plate composed of a monoclinic materia with
exponentialy varying thickness and density have been studied. The equation of motion is developed using
Hamilton's principle and solved by using Chebyshev polynomids. The frequency equations of the plate are
derived with different boundary conditions namely, C-S-C-S C-S-S-Sand C-SF-S, where C, Sand F denote
the clamped, simply supported and free edge respectively. These equations are then solved numerically for
various combinations of physical parameters. The results show that the values of frequency parameter for the
C-C plate are always greater than those for C-S plate and the val ues of frequency parameter for the C-S plate
are greater than those for C-F plates for the same set of values of various plate parameters. The values of
frequency parameter decrease with an increase of density parameter for first three modes of vibration and for
all the three boundary conditions. However, the values of frequency parameter increase with an increase of
the thickness parameter. A comparison of frequency curves for monodinic and orthotropic plates show that
the values of frequency parameter with respect to density parameter for a monoclinic plate are greater than
those for an orthotropic plate in al the three modes of vibration. A similar behavior is observed with respect
to thickness parameter with the observation that the values of frequency parameter increase faster in a
monaclinic plate than that in an orthotropic plate for the first three modes of vibrations. No appreciable
difference is observed in the normalized displacements of monoclinic and orthotropic plates in al the three
possibilities considered.
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Nomenclature

a —length of the plate
b - breadth of the plate
C —clamped edge

G; — €lastic constants
d —aspect ratio

§; —strantensor

F —free edge
h —thickness of the plate
L —Lagrangian

p — positive integer
S —simply supported edge
T —kinetic energy
tj —stresstensor
u, v, w — Cartesian components of displacement
V —strain energy
X, ¥, Z — Cartesian coordinates
a —taper constant
b —density parameter
r —density
w —radial frequency

References
Appl F.C. and Byers N.R. (1965): Fundamental frequency of simply supported rectangular plates of linear varying
thickness. —J. Appl. Mech., vol.32, No.1, pp.163-167.

Bespalova E.I. and Kitaigorodskii A.B. (2001): Features of the free planer vibrations of orthotropic rectangular plates.
—Int. Applied Mech., vol.37, No.11, pp.1487-1491.

Bhat R.B. (1991): Vibration of rectangular plates on point and line support using charateristic orthogonal polynomials
in the Rayleigh — Ritz method. — J. Sound and Vib., vol.149, No.1, pp.170-172.

Bhat R.B., Laura P.A.A., Gutierrez R.G., Cortinez V.H. and Sanzi H.C. (1990): Numerical experiments on the
determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness. — J.
Sound and Vib., vol.138, No.2, pp.205-219.

Biswas P. (1978): Large deflection of heated orthotropic plates. — Indian J. Pure Appl. Math., vol.9, No.10, pp.1027-
1032.

De S. (1981): Vibrations of monoclinic crystal plates. — Acta Geophysica Polonica, vol.29, No.3, pp.197-206.
Fox L. (1957): The Numerical Solutions of Two—point Boundary Val ue Problems. — Oxford University Press.
Fox L. and Parker 1.B. (1968): Chebyshev Polynomialsin Numerical Analysis. — Oxford University Press.
Gorman D.J. (1982): Free Vibration Analysis of Rectangular Plates. — Elsevier, North Holland, Amsterdam.

Gross R.O. and Bhat R.B. (1995): Natural frequencies of edge restrained tapered rectangular plates. — J. Sound and
Vib., vol.185, No.2, pp.335-343.

Haussuhl V.S. (1965): Elastische und Thermoelastische Eigenschaften CaSO,.2H,O (Gips). — Zeitsehrift fur
Kristallographite, Bd 122, pp.311-314.

Hui WU and Huan-ran YU (2001): Natural frequency for rectangular orthotropic corrugated core sandwich plateswith
all edges simply supported. — Applied Mathematics and Mechanics, vol.22, No.9, pp.1019-1027.



900 Y.Kumar and SK.Tomar

Jain R.K. and Soni S.R. (1973): Free vibrations of rectangular plates of parabolically varying thickness. — Indian J.
Pure Appl. Math., vol.4, No.3, pp.267-277.

La R. (2003): Transverse vibrations of orthotropic non-uniform rectangular plates with continuously varying density. —
Indian J. Pure Appl. Math., vol.34, No.4, pp.587-606.

La R., GuptaU.S. and Rastogi S. (1996): Chebyshev polynomialsin the study of vibrations of non-uniform rectangul ar
plates. — Indian J. Pure Appl. Math., vol.27, No.10, pp.1017-1028.

Leissa A.W. (1969): Vibration of Plates. — National Aeronautical and Space Administration, Washington, D.C..
LeissaA.W. (1973): Thefreevibrations of rectangular plates. —J. Sound Vib., vol .31, pp.257-293.

Ng S.F. and Araar Y. (1989): Free vibration and buckling analysis of clamped rectangular plates of variabl e thickness
by the Galerkin method. — J. Sound and Vib., vol.135, No.2, pp.263-274.

Rajalingham C., Bhat R.B. and Xistris G.D. (1996): Vibration of rectangular plates using plate characteristic functions
as shape functions in Rayleigh - Ritz method. — J. Sound and Vib., vol.193, No.2, pp.497-509.

Rajalingham C., Bhat R.B. and Xistris G.D. (1997): Vibration of rectangular plates by reduction of partial differential
equation into simultaneous ordinary differential equations. —J. Sound and Vib., vol.203, No.1, pp.168-180.

Sakata T., Takashahi K. and Bhat R.B. (1996): Natural frequencies of orthotropic rectangular plates by iterative
reduction of the partial differential equation. —J. Sound and Vib., vol.189, No.1, pp.89-101.

Sizlard R. (1974): Theory and Analysis of Plates. — Prentice-Hall Inc., Englewood Cliffs, NJ.
Snyder M.A. (1969): Chebyshev Methods in Numerical Approximations. — Prentice Hall Inc., Englewood Cliffs, NJ.

Sonzogni V.E., Idelsohn S.R., Laura P.A.A. and Cortinez V.H. (1990): Free vibrations of rectangular plates of
exponentially varying thickness and with free edge. — J. Sound and Vib., vol.140, No.3, pp.513-522.

Taylor R.L. and Govindjee S. (2002/9): Solution of Clamped Rectangular Plate Problems. — Technical Report:
UCB/SEMM-2002/09.

Received: May 12, 2005
Revised: October 20, 2005



