A SUB-PARAMETRIC SHEAR DEFORMABLE ELEMENT FOR FREE VIBRATION ANALYSIS OF THICK/THIN RECTANGULAR PLATES WITH TAPERED THICKNESS

M.C. MANNA^{*} Department of Applied Mechanics Bengal Engineering and Science University Howrah – 711 103, West Bengal, INDIA e-mail: <u>mcmbecdu@lycos.com</u>

A sub-parametric shear deformable element is proposed for free vibration analysis of isotropic plates with linearly varying thickness in one direction. The element has sixteen nodes and thirty-six degrees of freedom. The transverse displacement and bending rotations are taken as independent field variables. The polynomials used to express these variables are of the same order. The geometry of the element is defined by a polynomial of lower order than the polynomials used for field variables. The entire formulation is made based on first-order shear deformation theory (FSDT). The rotary inertia is included in the consistent mass matrix for the analysis. Isotropic plates with different thickness ratios (varying from 0.01 to 0.2), tapered ratios, aspect ratios and boundary conditions are analyzed. The results obtained by the present element show an excellent agreement with the available published results. Some numerical results have been given as new results.

Key words: sub-parametric element, first order shear deformation theory, rotary inertia, tapered thickness, consistent mass matrix.

1. Introduction

Structures of plates have wide applications in ships, aircrafts, bridges, etc. A thorough dynamic study of their behavior and characteristics is essential to assess and use the full potentials of plates. The finite element method (FEM) is one of the most versatile analysis tool in engineering structures (Zienkiewick and Taylor, 1988; Wang *et al.*, 2000). The plate bending is one of the first problems where finite element was successfully applied. A large number of plate bending elements are available in the literature (Batoz *et al.*, 1980; Bhashyam and Gallagher, 1984; Cheung and Chen, 1989; Hrabok and Hrudey, 1984; Hughes and Tezduyaf, 1981; Hughes and Cohen, 1978; Petrolito, 1989; Pugh *et al.*, 1987; Pryor *et al.*, 1970; Rao *et al.*, 1974; Salerno and Goldberg, 1968 and Yuan and Miller, 1989). But use of sub-parametric elements for the analysis of the plate is very rare. Such elements have been rarely applied. In one of these applications, Delpak (1967) used two- and three-dimensional geometry for defining linear shape functions. The variation of the unknown functions (i.e., displacements) was, however, defined by functions including nodal derivatives with respect to global co-ordinates. In another application, Ergatoudis (1966) studied an axis-symmetric shell problem.

In the aeronautical field, analysis of plates with variable thickness has been of great interest due to their utility in aircraft wings. Mizusawa (1993) have used the collocation method with orthogonal polynomials for vibration analysis of rectangular plates of variable thickness. The free vibrations of a wide range of tapered rectangular plates with an arbitrary number of intermediate line supports in one or two directions were invested by Cheung and Zhou (1999). A new set of admissible functions was developed for analysis of tapered plates. Zhou (2002) studied the free vibrations of point-supported rectangular plates with variable thickness using the Rayleigh-Ritz method. Pulmano and Gupta (1976) investigated the frequency

^{*} To whom correspondence should be addressed

parameters of a linear elastic rectangular plate of varying thickness in one direction using the finite strip method.

In the present paper, a new sub-parametric element is proposed for the free vibration analysis of thick/thin plates with varying thickness. Plates having various boundary conditions, thickness ratios (t/b = 0.01, 0.1 and 0.2) and aspect ratios (a/b) are analyzed using the proposed element. The results obtained are compared with those available in literature to show the performance of the element. In all the cases the results obtained are in close agreement with the published analytical solutions.

2. Finite element formulation

The formulation is based on the Reissner-Mindlin plate theory. In this theory it is assumed that the transverse deflection of the plate is small compared to the plate thickness and the normal to the plate mid surface which is taken as the reference plane remains straight but may not remain normal to the deformed mid surface. The proposed element is shown in Fig.1.

Fig.1. Element configuration.

The element has three degrees of freedom (w, θ_x, θ_y) at nodes 1-4 and 9-16. Nodes 1-4 are at the corner points, 5-8 are at midpoints of the sides of the element and 9-16 are at equidistant points from the mid side nodes. The natural co-ordinates of the nodes are (-1, -1), (1, -1), (1, 1), (-1, 1), (0, -1), (1, 0), (0, 1), (-1, 0), (-1/3, -1), (1/3, -1), (1, -1/3), (1, 1/3), (1/3, 1), (-1/3, 1), (-1, 1/3) and (-1, -1/3). The co-ordinates of any point within the element with respect to the global co-ordinate system are given by

$$x = \sum_{i=1}^{8} N_i x_i$$
, $y = \sum N_i y_i$. (2.1)

The displacement component (w) and the rotations of the normal (θ_x and θ_y) are taken as the independent field variables and are expressed as follows

$$w = \sum_{i=1}^{4} N_{wi} w_{i} + \sum_{i=9}^{16} N_{wi} w_{i} ,$$

$$\theta_{x} = \sum_{i=1}^{4} N_{wi} \theta_{xi} + \sum_{i=9}^{16} N_{wi} \theta_{xi} ,$$

$$\theta_{y} = \sum_{i=1}^{4} N_{wi} \theta_{yi} + \sum_{i=9}^{16} N_{wi} \theta_{yi}$$
(2.2)

where N_i and N_{wi} are the shape functions which are obtained as follows

$$\begin{split} N_{i} &= \frac{l}{4} (l + \xi_{i} \xi) (l + \eta_{i} \eta) (\xi_{i} \xi + \eta_{i} \eta - l) \quad \text{for} \quad i \leq 4, \\ N_{i} &= \frac{l}{2} (l - \xi^{2}) (l + \eta_{i} \eta) \quad \text{for} \quad i = 5,7, \\ N_{i} &= \frac{l}{2} (l + \xi_{i} \xi) (l - \eta^{2}) \quad \text{for} \quad i = 6,8, \\ N_{w9} &= \frac{9}{32} (l - 3\xi) (l - \xi^{2}) (l - \eta), \qquad N_{w10} = \frac{9}{32} (l + 3\xi) (l - \xi^{2}) (l - \eta), \\ N_{w11} &= \frac{9}{32} (l + \xi) (l - 3\eta) (l - \eta^{2}), \qquad N_{w12} = \frac{9}{32} (l + \xi) (l + 3\eta) (l - \eta^{2}), \\ N_{w13} &= \frac{9}{32} (l + 3\xi) (l - \xi^{2}) (l + \eta), \qquad N_{w14} = \frac{9}{32} (l - 3\xi) (l - \xi^{2}) (l + \eta), \end{split}$$
(2.3)
$$N_{w15} &= \frac{9}{32} (l - \xi) (l + 3\eta) (l - \eta^{2}), \qquad N_{w16} = \frac{9}{32} (l - \xi) (l - 3\eta) (l - \eta^{2}), \\ N_{w1} &= N_{I} - \frac{2}{3} (N_{w9} + N_{w16}) - \frac{l}{3} (N_{w10} + N_{w15}), \\ N_{w3} &= N_{3} - \frac{2}{3} (N_{w12} + N_{w13}) - \frac{l}{3} (N_{w11} + N_{w14}), \\ N_{w4} &= N_{4} - \frac{2}{3} (N_{w14} + N_{w15}) - \frac{l}{3} (N_{w13} + N_{w16}). \end{split}$$

Equation (2.2) can be expressed in a matrix form as below

$$\begin{cases} w\\ \theta_x\\ \theta_y \end{cases} = \left[\overline{N}\right] \{\delta\}$$
(2.4)

where

$$\{\delta\}^{T} = \left\{ w_{I}\theta_{xI}\theta_{yI}.....w_{4}\theta_{4}\theta_{4} \middle| w_{9}\theta_{x9}\theta_{y9}.....w_{I6}\theta_{xI6}\theta_{yI6} \right\}, \\ [\overline{N}] = [[\beta_{I}]...[\beta_{4}][\beta_{9}]....[\beta_{I6}]] \quad \text{in which}$$

$$[\beta_{i}] = \begin{bmatrix} N_{wi} & 0 & 0 \\ 0 & N_{wi} & 0 \\ 0 & 0 & N_{wi} \end{bmatrix} \quad \text{for} \quad i = 1,...,4,9,....,16.$$

$$(2.5)$$

As rotations of the normal θ_x and θ_y are independent variables and they are not derivatives of *w*, the effect of shear deformation can be easily incorporated as

$$\begin{cases} \phi_x \\ \phi_y \end{cases} = \begin{cases} \theta_x - \frac{\partial w}{\partial x} \\ \theta_y - \frac{\partial w}{\partial y} \end{cases}$$
(2.6)

where ϕ_x and ϕ_y are average shear strain over the entire plate thickness and θ_x and θ_y are the total rotations of the normal.

The generalized stress-strain relationship may be expressed as

$$\{\sigma\} = [D]\{\varepsilon\}. \tag{2.7}$$

In the above equation the generalized stress vector is

$$\{\sigma\}^T = \{M_x \quad M_y \quad M_{xy} \quad Q_x \quad Q_y\}.$$
(2.8)

The generalized strain vector $\{\epsilon\}$ in terms of displacement fields is

$$\{\varepsilon\} = \begin{cases} -\partial \theta_x / \partial x \\ -\partial \theta_y / \partial y \\ -\partial \theta_x / \partial y - \partial \theta_y / \partial x \\ \partial w / \partial x - \theta_x \\ \partial w / \partial y - \theta_y \end{cases},$$
(2.9)

and the rigidity matrix [D] is given by

$$[D] = \frac{Eh_0^3(y\delta+1)^3}{I2b^3(I-v^2)} \begin{bmatrix} I & v & 0 & 0 & 0 \\ v & I & 0 & 0 & 0 \\ 0 & 0 & \frac{I-v}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{b^2(I-v)}{2kh_0^2(y\delta+1)^2} & 0 \\ 0 & 0 & 0 & 0 & \frac{b^2(I-v)}{2kh_0^2(y\delta+1)^2} \end{bmatrix}, \ k = \pi^2/I2, \ \delta = (h_I - h_0)/h_0,$$

y = ordinate of the Gauss point (see Fig.2).

Fig.2. Geometry of rectangular plates.

Substituting Eq.(2.2) in Eq.(2.9) the strain-displacement relationship may be expressed as

$$\{\varepsilon\} = [B]\{\delta\}$$

where [B] is a (5×36) matrix.

Thus, the element stiffness matrix $[K]^e$ is given by

$$[K]^{e} = \int [B]^{T} [D] [B] |J| d\xi d\eta.$$
(2.10)

In a similar manner, the consistent mass matrix can be expressed as

$$[M]^{e} = \int \left[\overline{N}\right]^{T} \left[\overline{\rho}\right] \left[\overline{N}\right] J \left[d\xi d\eta \right]$$
(2.11)

where

$$= \begin{bmatrix} \rho t_g & 0 & 0\\ 0 & \rho t_g^3 / 12 & 0\\ 0 & 0 & \rho t_g^3 / 12 \end{bmatrix}, \quad t_g = h_0 (y \delta + 1) / b,$$

y = ordinate of the Gauss point (see Fig.2).

Integration of the above Eqs (2.11) and (2.12) is carried out using the Gauss Quadrature Method.

The element stiffness and consistent mass matrices having an order of thirty-six have been evaluated for all the elements and they have been assembled together to form the overall stiffness [K] and mass matrix [M] respectively. The storage of [K] and [M] has been done in single array following the skyline storage technique. Once [K] and [M] are obtained, the equation of motion of the plate may be expressed as

$$[K] - \omega^2 [M] = 0. (2.12)$$

After incorporating the boundary conditions in the above equation it has been solved by simultaneous iterative technique of Corr and Jennings (1976) to get frequency ω for first few modes.

3. Numerical examples

A number of isotropic rectangular plates (Fig.2) with different boundary conditions (SSCF, SSSS, SSCC, CCCC and FFFC), thickness ratios (h_0/b) , tapered ratios (δ) and aspect ratios (a/b) have been analysed using the proposed element. The study has been made from thin $(h_0/b = 0.01)$ to sufficiently thick $(h_0/b=0.2)$ plates. The convergence study of the element is shown in Tab.1. The first six frequencies obtained by the present analysis have been given in non-dimensional forms in Tabs 1-3 with those of Mizusawa (1993). Mizusawa (1993) has analysed the problems using spline finite strip method considering Mindlin's plate theory. In all examples, the results are given with 12×12 mesh divisions. The first six non-dimensional frequency parameters for clamped and cantilever plates have been displayed in Tabs 4-5 as new results. From the results it is seen that the performance of the present element is good for thick plates $(h_0/b=0.2)$ as well as for thin plates $(h_0/b=0.01)$. The boundary conditions of a plate (Fig.2) with simply supported at edges x = 0 and x = a, clamped at edge y = 0 and free at edge y = b have been symbolised as *SSCF*. Poisson's ratio for the material is taken as 0.3.

4. Conclusions

A shear deformable sub-parametric element is proposed for free vibration analysis of rectangular plates with tapered thickness. The analysis has been performed for thin to very thick plates with different aspect ratios, tapered ratios and boundary conditions. The entire formulation has been made based on first order shear deformation theory. There is no shear-locking problem even for thin plates. Rotary inertia has been taken into account in the present formulation. From Tab.1 it is clear that the convergence of the proposed element is very fast. From the examples it is concluded that the results obtained by the proposed element have an excellent agreement with the available solutions and the sub-parametric finite element formulation is equally effective as the isoparametric finite element formulation.

Thickness	Tapered	Aspect ratio	Courses -	Mode sequences						
ratio (h_0/b)	ratio (δ)	(a/b)	Sources -	1	2	3	4	5	6	
0.01	0.25	0.5	PS-4	12.296	18.370	30.918	46.819	48.694	53.223	
			PS-8	12.213	17.784	28.951	45.443	46.264	51.282	
			PS-12 [#]	12.211	17.769	28.902	45.321	46.217	51.161	
			Ref. ^{\$}	12.212	17.776	28.915	45.335	46.213	51.159	
		2.0	PS-4	25.287	63.623	112.28	130.61	177.29	267.67	
			PS-8	24.651	58.284	108.91	115.64	148.23	196.92	
			PS-12	24.643	58.185	108.84	115.19	147.24	195.52	
			Ref. ^{\$}	24.654	58.195	108.87	115.17	147.24	195.40	
	1.00	0.5	PS-4	17.336	24.187	39.374	61.736	65.090	74.274	
			PS-8	17.202	23.781	37.984	59.111	59.458	71.893	
			PS-12	17.198	23.766	37.941	59.014	59.278	71.731	
			Ref. ^{\$}	17.198	23.771	37.952	59.027	59.251	71.709	
		2.0	PS-4	31.306	85.216	137.68	177.60	217.10	329.59	
			PS-8	30.825	80.637	134.86	163.54	191.65	276.53	
			PS-12	30.821	80.525	134.81	162.81	190.78	272.27	
			Ref. ^{\$}	30.833	80.527	134.85	162.76	190.78	271.96	
0.1	0.25	0.5	PS-4	11.050	15.329	23.287	33.911	35.155	37.928	
			PS-8	11.049	15.322	23.242	33.704	35.135	37.867	
			PS-12	11.049	15.322	23.242	33.700	35.134	37.866	
			Ref. ^{\$}	11.049	15.321	23.239	33.695	35.130	37.860	
		2.0	PS-4	23.855	55.675	100.42	108.46	133.88	181.58	
			PS-8	23.850	55.676	100.36	107.72	132.90	176.86	
			PS-12	23.850	55.675	100.36	107.71	132.89	176.80	
			Ref. ^{\$}	23.850	55.673	100.36	107.71	132.88	176.78	
	1.00	0.5	PS-4	14.441	18.752	27.416	38.832	40.847	44.647	
			PS-8	14.440	18.747	27.374	38.574	40.782	44.561	
			PS-12	14.440	18.746	27.373	38.570	40.781	44.560	
			Ref. ^{\$}	14.438	18.744	27.369	38.563	40.774	44.550	
		2.0	PS-4	29.077	74.676	118.20	145.29	162.55	228.34	
			PS-8	29.075	74.570	118.16	144.30	161.73	223.45	
			PS-12	29.074	74.568	118.16	144.29	161.72	223.40	
			Ref. [*]	29.073	74.565	118.15	144.27	161.71	223.37	
0.2	0.25	0.5	PS-4	9.0406	11.851	16.715	22.702	23.959	25.509	
			PS-8	9.0405	11.849	16.697	22.613	23.951	25.482	
			PS-12	9.0405	11.849	16.697	22.612	23.951	25.482	
			Ref. [*]	9.0392	11.847	16.694	22.606	23.944	25.475	
		2.0	PS-4	22.397	50.627	84.389	93.527	109.50	146.77	
			PS-8	22.395	50.596	84.373	93.196	109.24	144.69	
			PS-12	22.395	50.596	84.373	93.191	109.24	144.65	
			Ref. [*]	22.394	50.592	84.363	93.181	109.22	144.63	
	1.00	0.5	PS-4	10.745	13.277	17.985	23.118	25.952	27.289	
			PS-8	10.745	13.275	17.970	23.063	25.942	27.251	
			PS-12	10.745	13.275	17.970	23.062	25.939	27.251	
			Ref. [*]	10.743	13.272	17.965	23.056	25.931	27.242	
		2.0	PS-4	26.234	63.761	92.108	115.13	122.98	165.88	
			PS-8	26.233	63.727	92.094	114.75	122.74	164.24	
			PS-12	26.233	63.726	92.094	114.74	122.74	164.23	
			Ref. [°]	26.231	63.718	92.080	114.72	122.72	164.19	

Table 1. Convergence study of frequency parameters, $\lambda = \omega a^2 \sqrt{(\rho h_0 / D_0)}$ for rectangular plates: Boundary Conditions (*SSCF*).

PS-12 represents present solution with 12×12 mesh division; Ref.[§] - Mizusawa (1993)

Thickness	Tapered	Aspect		Mode sequences					
ratio (h_0/b)	ratio (δ)	ratio (a/b)	Sources	1	2	3	4	5	6
0.01	0.25	0.5	PS-12	13.817	22.129	35.899	46.531	55.130	55.258
			Ref. ^{\$}	13.817	22.127	35.894	46.530	55.118	55.247
		1.0	PS-12	22.165	55.270	55.336	88.550	110.08	110.50
			Ref. ^{\$}	22.164	55.266	55.332	88.508	110.07	110.49
		2.0	PS-12	55.371	88.681	144.01	188.14	221.28	221.49
			Ref. [*]	55.368	88.656	143.92	188.13	221.06	221.33
	0.50	0.5	PS-12	15.232	24.479	39.651	50.542	60.830	61.229
			Ref. [*]	15.231	24.478	39.646	50.538	60.817	61.216
		1.0	PS-12	24.543	60.930	61.164	97.951	120.53	122.00
			Ref. [*]	24.543	60.925	61.160	97.911	120.50	121.99
		2.0	PS-12	61.187	98.195	159.20	207.89	243.95	244.79
			Ref.*	61.185	98.171	159.11	207.88	243.70	244.64
	1.00	0.5	PS-12	17.905	29.035	46.846	57.424	71.687	72.616
			Ref. [®]	17.904	29.033	46.841	57.416	71.673	72.597
		1.0	PS-12	29.185	71.623	72.392	116.17	139.29	143.96
		2.0	Ref. [®]	29.184	/1.010	/2.388	116.13	139.24	143.95
		2.0	PS-12	/2.361	110.70	188.51	245.84	286.80	289.70
0.1	0.25	0.5	Ref.*	/2.359	110.74	188.40	245.83	280.40	289.33
0.1	0.25	0.5	PS-12	12.506	19.052	28.802	35./1/	40.755	40.790
		1.0	Ref. [*]	12.506	19.050	28.799	35./12	40.748	40.790
		1.0	PS-12	21.223	50.025	50.005	76.208	92.179	92.3/4
		2.0	Ref.	21.223	50.023	50.005	/0.201	92.170	92.304
		2.0	P3-12 Bof ^{\$}	52 852	04.095 04.001	134.40	171.55	200.11	200.20
	0.50	0.5	DS 12	12 529	20 507	20.692	27.602	200.09	42 125
	0.50	0.5	Pof ^{\$}	13.536	20.507	30.082	37.002	43.003	43.123
		1.0	PS 12	13.337	20.303 54 153	54 284	82 027	42.990	45.117
		1.0	Ref ^{\$}	23.282	54 140	54 280	82.027	98.303	98.909
		2.0	PS-12	50 142	03 126	146.65	187.46	216.62	217 14
		2.0	Ref ^{\$}	59 140	93 123	146.65	187.45	216.62	217.14
	1.00	0.5	PS-12	15 347	23.006	33 777	40 542	46 568	46 844
	1.00	0.5	Ref. ^{\$}	15.345	23.003	33.771	40.535	46.558	46.834
		1.0	PS-12	27.119	61.387	61.742	92.023	108.35	109.88
			Ref. ^{\$}	27.118	61.382	61.737	92.011	108.33	109.86
		2.0	PS-12	68.965	108.48	168.76	214.08	245.56	246.97
			Ref. ^{\$}	68.963	108.47	168.74	214.06	245.53	246.95
0.2	0.25	0.5	PS-12	10.188	14.552	20.502	24.506	27.251	27.259
			Ref. ^{\$}	10.186	14.549	20.497	24.500	27.243	27.252
		1.0	PS-12	19.055	40.752	40.765	58.207	68.292	68.340
			Ref. ^{\$}	19.053	40.746	40.759	58.196	68.278	68.326
		2.0	PS-12	50.038	76.220	115.24	143.37	163.01	163.06
			Ref. ^{\$}	50.036	76.213	115.22	143.35	162.98	163.04
	0.50	0.5	PS-12	10.751	15.207	21.204	25.187	27.959	27.984
			Ref. ^{\$}	10.749	15.204	21.199	25.180	27.951	27.976
		1.0	PS-12	20.516	43.002	43.039	60.829	70.931	71.057
			Ref. ^{\$}	20.514	42.995	43.032	60.817	70.916	71.041
		2.0	PS-12	54.177	82.064	122.83	151.90	172.01	172.16
			Ref. [*]	54.173	82.056	122.81	151.88	171.98	172.13
	1.00	0.5	PS-12	11.650	16.212	22.234	26.175	27.399	28.974
			Ref.*	11.648	16.208	22.228	26.167	27.390	28.965
		1.0	PS-12	23.027	46.599	46.667	64.850	74.914	75.129
		2 ^	Ref."	23.025	46.590	46.658	64.834	74.895	75.108
		2.0	PS-12	61.327	92.109	135.43	165.71	186.40	186.67
			Ref."	01.321	92.098	135.41	105.68	186.36	186.63

Table 2. Frequency parameters, $\lambda = \omega a^2 \sqrt{(\rho h_0 / D_0)}$ for rectangular plates: Boundary Conditions (SSSS).

Thickness	Tapered	Aspect ratio		Mode sequences					
ratio (h_0/b)	ratio (δ)	(a/b)	Sources	1	2	3	4	5	6
0.01	0.25	0.5	PS-12	15.323	26.458	43.215	47.368	57.796	65.359
			Ref. ^{\$}	15.322	26.453	43.203	47.335	57.749	65.334
		1.0	PS-12	32.444	61.318	77.587	105.93	114.25	144.22
			Ref. ^{\$}	32.441	61.287	77.577	105.81	114.14	144.20
		2.0	PS-12	106.76	129.87	175.60	246.28	284.43	310.65
			Ref. ^{\$}	106.76	129.76	175.16	245.41	284.41	310.31
	0.50	0.5	PS-12	16.895	29.204	47.658	51.720	63.926	72.026
			Ref. [*]	16.894	29.199	47.647	51.703	63.880	72.004
		1.0	PS-12	35.813	67.607	85.592	116.92	125.50	159.02
		• •	Ref. [*]	35.810	67.575	85.582	116.80	125.37	158.99
		2.0	PS-12	117.84	143.34	193.72	271.42	313.75	342.65
	1.00	0.5	Ref. [®]	117.83	143.24	193.30	2/0.30	313./2	342.33
	1.00	0.5	PS-12	19.866	34.443	56.090	59.390	/3.0/0	84.629
		1.0	Ref. [®]	19.865	34.438	56.079	59.369	75.625	84.606
		1.0	PS-12	42.234	79.492	100.79	137.80	140.15	18/.01
		2.0	Ref.	42.231	/9.458	100.78	137.73	145.98	180.99
		2.0	PS-12 Bof ^{\$}	136.92	169.02	220.24	217.02	260.22	405.41
0.1	0.25	0.5	DE 12	136.91	21,200	227.03	25.070	309.33	405.12
0.1	0.25	0.5	PS-12 Bof ^{\$}	13.440	21.290	31.727	35.979	41.527	43.775
		1.0	PS 12	20 337	53 760	64 155	85 162	41.520 04.031	45.705
		1.0	15-12 Ref ^{\$}	29.337	53 755	64 148	85.102	04.017	108.36
		2.0	PS_12	29.333	117 35	156.61	215.05	237.05	256.63
		2.0	Ref ^{\$}	97 411	117.33	156.59	215.05	237.03	256.59
•	0.50	0.5	PS-12	14 490	22.698	33 456	37 911	43 799	45 760
	0.50	0.0	Ref. ^{\$}	14.489	22.695	33.450	37.904	43.791	45.749
		1.0	PS-12	31.777	57.960	68.513	90.795	100.27	114.40
			Ref. ^{\$}	31.775	57.955	68.504	90.782	100.25	114.37
		2.0	PS-12	105.62	127.11	169.40	231.85	253.26	274.06
			Ref. ^{\$}	105.61	127.10	169.39	231.82	253.23	274.02
•	1.00	0.5	PS-12	16.310	25.042	36.208	40.935	47.428	48.832
			Ref. ^{\$}	16.308	25.038	36.201	40.927	47.417	48.819
		1.0	PS-12	36.066	65.238	75.702	100.17	110.54	123.90
			Ref. ^{\$}	36.063	65.231	75.690	100.15	110.52	123.87
		2.0	PS-12	119.99	144.27	191.89	260.97	279.87	302.82
			Ref. ^{\$}	119.98	144.25	191.86	260.93	279.83	302.76
0.2	0.25	0.5	PS-12	10.579	15.290	21.204	24.566	27.416	27.738
			Ref. ^{\$}	10.577	15.287	21.198	24.559	27.408	27.729
		1.0	PS-12	23.884	42.315	46.628	61.160	68.854	72.854
		• •	Ref. [*]	23.880	42.308	46.617	61.146	68.837	72.832
		2.0	PS-12	79.761	95.535	126.30	169.27	172.39	186.51
	0.50		Ref.*	79.748	95.520	126.28	169.23	172.35	186.47
	0.50	0.5	PS-12	11.113	15.854	21.783	25.245	28.116	28.322
		1.0	Ref. [®]	11.111	15.850	21.///	25.238	28.108	28.312
		1.0	PS-12	25.215	44.452	48.340	03.410	/1.400	/4.843
		2.0	Kel."	23.210	44.444	48.328 122.26	03.401	/1.441 170 40	/4.819 102.26
		2.0	r5-12 Pof ^{\$}	04.120 84-110	100.80	133.20	177.81 177.77	178.48 178.41	193.30 102.21
	1.00	0.5	DC 12	04.110	16 700	133.23	26 222	20 115	20 142
	1.00	0.5	F3-12 Pof ^{\$}	11.900	10.709 16 704	22.034 22.627	20.232	29.113 20.106	29.143 20.122
		1.0	pc 12	11.950 27 358	10.704	22.027 50.006	20.225 66 836	29.100	29.132 77 780
		1.0	13-12 Pof ^{\$}	27.330	47.040	50.900	66 878	75 367	77 751
		2.0	PS_12	27.555 90.046	100 43	144 53	187 36	191 37	203 63
		2.0	Ref ^{\$}	90.924	109.43	144 50	187 31	191.37	203.03
				70.744	107.71	111.00	107.01	1/1.04	200.07

Table 3. Frequency parameters, $\lambda = \omega a^2 \sqrt{(\rho h_0 / D_0)}$ for rectangular plates: Boundary Conditions (SSCC).

Thickness	Tapered	Aspect ratio		Mode sequences						
ratio (h_0/b)	ratio (δ)	(a/b)	Sources	1	2	3	4	5	6	
0.01	0.25	0.50	PS-12	27.390	35.590	49.990	70.462	70.597	79.279	
		0.75	PS-12	32.126	53.914	75.241	89.639	95.715	129.64	
		1.00	PS-12	40.327	82.094	82.189	121.35	146.80	147.68	
		1.25	PS-12	52.355	91.946	119.89	156.03	156.69	218.61	
		1.50	PS-12	68.129	105.27	166.62	167.89	201.64	254.10	
		2.00	PS-12	110.24	143.01	201.53	285.43	286.67	319.43	
	0.50	0.50	PS-12	30.040	39.356	55.173	76.162	77.812	87.737	
		0.75	PS-12	35.417	59.518	82.408	98.848	105.82	143.05	
		1.00	PS-12	44.505	90.342	90.683	133.99	100.83	102.07	
		1.23	PS-12	37.788 75.109	101.30	132.23	1/1.49	172.89	241.31	
		2.00	PS-12 PS-12	/3.198	110.15	105.72	164.94 314 26	222.41	279.05	
	1.00	0.50	PS-12	34.850	46 624	65.001	85 824	91 500	103.42	
	1.00	0.30	PS-12	41 636	70 232	95 320	116 33	125 30	168 74	
		1.00	PS-12	52.461	105.72	106.85	158.25	185.83	191.25	
		1.25	PS-12	68.148	119.16	155.74	200.04	203.86	284.95	
		1.50	PS-12	88.674	136.77	215.89	217.23	261.99	324.82	
		2.00	PS-12	143.45	186.00	261.47	368.59	372.19	414.59	
0.1	0.25	0.50	PS-12	20.541	25.802	34.411	43.263	45.385	47.413	
		0.75	PS-12	27.181	42.870	56.105	65.694	68.463	87.503	
		1.00	PS-12	35.647	67.097	67.127	93.412	109.33	110.45	
		1.25	PS-12	47.067	78.706	98.884	124.63	125.26	164.94	
		1.50	PS-12	61.694	92.321	138.07	140.61	162.99	201.47	
		2.00	PS-12	100.40	128.03	175.90	238.45	240.95	261.89	
	0.50	0.50	PS-12	21.649	27.187	36.070	44.698	47.293	49.142	
		0.75	PS-12	29.137	45.611	59.065	69.216	72.056	91.612	
		1.00	PS-12	38.483	71.528	71.610	99.080	115.20	116.46	
		1.25	PS-12	50.944	84.527	105.58	132.66	133.18	174.68	
		1.50	PS-12	66.841	99.558	147.46	150.51	1/3.78	213.87	
	1.00	2.00	PS-12	108.85	138.54	189.04	234.73	238.40	51.690	
	1.00	0.30	PS-12 DS 12	25.590	29.300	56.022 62.702	40.611	JU.170 77.670	07.009	
		1.00	PS-12 PS-12	32.434 13.101	78 821	78 077	108 24	124 30	97.937	
		1.00	PS-12	43.404 57 738	04 415	116 58	145.82	124.39	123.94	
		1.20	PS-12	75 882	112.07	162.89	167.10	191 53	233.95	
		2.00	PS-12	123.68	156.95	213.40	281.50	287.90	308.70	
0.2	0.25	0.50	PS-12	13.701	17.019	22.076	25,758	28.163	28.349	
		0.75	PS-12	20.317	30.207	37.248	43.565	44.818	55.736	
		1.00	PS-12	28.148	48.277	48.281	64.429	73.042	74.079	
		1.25	PS-12	38.007	59.701	71.581	88.244	88.955	112.19	
		1.50	PS-12	50.255	72.303	100.19	104.36	116.87	141.98	
		2.00	PS-12	82.227	103.19	137.67	173.30	181.56	189.56	
	0.50	0.50	PS-12	14.047	17.431	22.551	26.095	28.674	28.757	
		0.75	PS-12	21.143	31.173	38.157	44.669	45.886	56.910	
		1.00	PS-12	29.544	49.945	49.966	66.365	74.963	76.044	
		1.25	PS-12	40.040	62.268	74.103	91.191	91.952	115.19	
		1.50	PS-12 DC 12	33.010 86.769	/5.80/	105./5	108.54	120.90	140.03	
	1.00	2.00	PS-12 DC 12	80./08	108.72	144.5/	1/9.40	189.28	190.55	
	1.00	0.50	PS-12 DC 12	14.342 22 201	10.009	23.230	20.301 16.272	29.317 17 110	29.3/0	
		1.00	FS-12 DC 12	22.304 31 707	52.302	59.430 52 156	40.272 60.175	47.410 77 701	JO.JOJ 78 026	
		1.00	PS 12	13 722	52.371 66.170	52.450 77 770	09.175	06 138	110.950	
		1.50	PS-12	57.353	81 241	108 88	114 89	126 99	153 57	
		2.00	PS-12	93.901	117.46	154.85	188.25	201.13	206.40	

Table 4. Frequency parameters, $\lambda = \omega a^2 \sqrt{(\rho h_0 / D_0)}$ for rectangular plates: Boundary Conditions (*CCCC*).

Thickness	Tapered	Aspect ratio			Mode sequences					
ratio (h_0/b)	ratio (δ)	(a/b)	Sources	1	2	3	4	5	6	
0.01	0.25	0.50	PS-12	1.1012	4.4135	6.2626	13.418	17.073	25.012	
		0.75	PS-12	2.4927	7.0904	14.110	22.955	26.876	38.952	
		1.00	PS-12	4.4484	10.084	24.781	30.145	34.890	60.301	
		1.25	PS-12	6.9689	13.406	32.388	40.327	49.454	72.884	
		1.50	PS-12	10.054	17.088	36.749	57.577	66.186	77.654	
-		2.00	PS-12	17.918	25.687	46.626	84.476	102.05	113.50	
	0.50	0.50	PS-12	1.3495	5.1337	7.1523	14.814	19.066	26.681	
		0.75	PS-12	3.0554	8.2156	16.112	25.426	29.097	43.496	
		1.00	PS-12	5.4538	11.667	28.182	33.152	38.846	66.417	
		1.25	PS-12	8.5449	15.52/	35.928	45.914	55.302	/8.501	
		1.50	PS-12	12.329	19.849	40.997	05.702 02.727	/3.900	84.700	
-	1.00	2.00	PS-12	21.9/3	30.095	52.009	92.727	110.40	128.19	
	1.00	0.50	PS-12	1.8020	0.5420	8.8904	17.500	22.904	29.822	
		0.75	PS-12	4.2183	10.428	20.039	30.248	33.421	52.270	
		1.00	PS-12	/.5310	14.812	34.705	39.240 56.019	40.018	/8.181	
		1.23	PS-12 DS 12	17.005	19.709	42.910	20.910 21.625	00.792	09.450 00.150	
		2.00	PS-12 PS-12	30 357	25.456	49.400 64.645	01.033 100.18	00.303 144.66	99.150 157.00	
0.1	0.25	2.00	DS 12	1 0915	2 0067	5 9221	11 420	144.00	20.557	
0.1	0.23	0.30	PS-12 PS-12	1.0813	5.9007	J.0251 13 122	20 318	14.033 24.356	20.557	
		1.00	PS-12	4 3783	0.5544	23.046	20.318	24.330	51 012	
		1.00	PS 12	6 8635	12 784	20.324	27.945	J1.419 11.061	66 202	
		1.25	PS-12	9.9065	16 413	34 649	53 571	60 606	71 778	
		2.00	PS-12	17 664	24 890	44 385	79 427	94 940	104.61	
-	0.50	0.50	PS-12	1 3190	4 4659	6 5431	12 322	15 886	21.903	
	0.50	0.75	PS-12	2.9894	7.5134	14.742	22.089	25.995	36.231	
		1.00	PS-12	5.3415	10.920	25.796	30.337	34.399	55.936	
		1.25	PS-12	8.3754	14.727	33.265	42.046	49.481	70.510	
		1.50	PS-12	12.091	18.986	38.287	60.143	66.711	77.287	
		2.00	PS-12	21.563	29.063	49.733	86.369	106.60	116.28	
-	1.00	0.50	PS-12	1.8005	5.5011	7.8594	13.882	17.978	24.150	
		0.75	PS-12	4.0798	9.3375	17.703	25.277	29.043	40.997	
		1.00	PS-12	7.2919	13.657	30.762	34.949	39.819	63.061	
		1.25	PS-12	11.438	18.549	38.894	50.337	57.721	78. <i>3</i> 87	
		1.50	PS-12	16.515	24.101	45.353	72.149	77.683	87.922	
		2.00	PS-12	29.464	37.481	60.258	99.825	127.85	137.64	
0.2	0.25	0.50	PS-12	1.0424	3.1753	4.9393	8.8630	11.131	14.900	
		0.75	PS-12	2.3605	5.7039	11.125	16.441	20.268	25.427	
		1.00	PS-12	4.2171	8.5383	19.602	24.136	25.856	40.740	
		1.25	PS-12	6.6127	11.690	26.782	31.850	37.346	54.247	
		1.50	PS-12	9.5472	15.188	31.050	45.353	50.764	61.358	
-		2.00	PS-12	17.032	23.366	40.418	70.367	80.356	87.982	
	0.50	0.50	PS-12	1.2577	3.5398	5.3984	9.2962	11.692	15.442	
		0.75	PS-12	2.8469	6.4235	12.155	17.431	21.260	26.705	
		1.00	PS-12	5.0857	9.6683	21.386	25.709	27.607	42.808	
		1.25	PS-12 DC 12	1.9/55	15.304	28.915	54.095 40.504	40.0/1	5/.308	
		1.50	PS-12 DC 12	11.310	17.3/7	33./93 11 601	49.304 75 414	24.288 87 722	04.8/1	
-	1.00	2.00	PS-12	20.349	4 1567	6 1565	/ 3.414	07.723	95.224	
	1.00	0.50	PS-12 DC 12	1.0/48 2 7077	4.130/ 77130	0.1303	9.9813 10.065	12.3/3	10.202	
		1.00	FS-12 DC 12	5.7077	7.7120 11 740	13.033	19.003 28.541	25.007	20./13 16.277	
		1.00	PS 12	10.7050	16 220	24.342 32 701	20.341 30 191	50.510 44 604	40.377 62 118	
		1.25	PS 12	15 217	21 527	32.194 38.806	57.424 56 317	44.004 60.051	71 183	
		2.00	PS-12	27 336	34 018	52 748	84 740	99 <i>841</i>	107 27	
		2.00	1012	27.000	2	52.740	01.740	//.071	10/.2/	

Table 5. Frequency parameters, $\lambda = \omega a^2 \sqrt{(\rho h_0 / D_0)}$ for rectangular plates: Boundary Conditions (*FFFC*).

Nomenclature

- [B] strain matrix
- C clamped edge
- [D] rigidity matrix
- F free edge
- k warping factor
- $[K]^e$ element stiffness matrix
- N_i shape function for element geometry interpolation
- N_{wi} shape functions for field variable interpolation
 - S simply supported edge
- w, θ_x, θ_y field variables
 - v Poisson' ratio
 - x, y -global coordinates
 - δ tapered ratio
 - $\{\delta\}$ nodal displacement vector
 - $\{\varepsilon\}$ strain matrix
 - ρ density of plate material
 - $\{\sigma\}$ stress matrix
 - ϕ_x, ϕ_y average shear strain
 - ω natural frequency

References

- Batoz J.L., Bathe K.J. and Ho L.W. (1980): A study of three-node triangular plate bending elements. International Journal for Numerical Methods in Engineering, vol.15, pp.1771-1812.
- Bhashyam G.R. and Gallagher R.H. (1984): An approach to the inclusion of transverse shear deformation in finite element plate bending analysis. Computers and Structures, vol.19, pp.35-40.
- Cheung Y.K. and Chen W. (1989): *Hybrid quadrilateral element based on Mindlin/Reissner plate theory.* Computers and Structures, vol.32, pp.327-339.
- Cheung Y.K. and Zhou D. (1999): *Eigen-frequencies of tapered rectangular plates with intermediate line supports.* -' International Journal of Solids and Structures, vol.36, pp.143-166.
- Corr R.B. and Jennings A. (1976): A simultaneous iteration algorithm for symmetric eigenvalue problems. International Journal for Numerical Methods in Engineering, vol.10, pp.647-663.
- Delpak R. (1967): Axi-symmetric vibration of shells of revolution by the finite element methods. M. Sc. Thesis, University of Wales, Swansea.
- Ergatoudis J.G. (1966): *Quadrilateral elements in plane analysis and introduction to solid analysis.* M. Sc. Thesis, University of Wales, Swansea.
- Hughes T.J.R. and Cohen M. (1978): *The heterosis finite element for plate bending*. Computers and Structures, vol.9, pp.445-450.
- Hughes T.J.R. and Tezduyaf T.E. (1981): Finite elements based on Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. Journal of Applied Mechanics, vol.48, pp.587-596.
- Hrabok M.M. and Hrudey T.M. (1984): A review and catalogue of plate bending finite elements. Computers and Structures, vol.19, pp.479-495.
- Mizusawa T. (1993): Vibration of rectangular Mindlin plates with tapered thickness by the spline strip method. Computers and Structures, vol.46, pp.451-463.

- Pryor C.W., Barker R.M. and Frederick D. (1970): *Finite element bending analysis of Reissner plate.* Journal of Engineering Mechanics, ASCE, vol.96, pp.967-983.
- Pulmano V.A. and Gupta R.K. (1976): Vibration of tapered plates by finite strip method. ASME Journal of Engineering Mechanics, vol.102, pp.553-559.
- Pugh E.D.L., Hinton E. and Zienkiewicz O.C. (1987): A study of quadrilateral plate bending elements with reduced integration. – International Journal for Numerical Methods in Engineering, vol.12, pp.1059-1079.
- Petrolito J. (1989): A modified ACM element for thick plate analysis. Computers and Structures, vol.32, pp.1303-1309.
- Rao G.V., Venkataramana J. and Raj I.S. (1974): A high precision triangular plate bending element for the analysis of thick plates. Nuclear. Engineering Design, vol.30, pp.408-412.
- Salerno V.L. and Goldberg M.A. (1968): *Effect of shear deformations on the bending of rectangular plates.* Journal of Applied Mechanics, ASME, vol.27, pp.54-58.
- Wang C.M., Reddy J.N. and Lee K.H. (2000): *Shear deformable beams and plates.* Elsevier Science, Amsterdam Luisiana, New York, Oxford.
- Yuan F.G. and Miller R.E. (1989): A cubic triangular finite element for flat plate with shear. International Journal for Numerical Methods in Engineering, vol.28, pp.109-126.

Zienkiewicz O.C. and Taylor R.L. (1988): The Finite Element Methods (Two Volumes). - New York: McGraw Hill.

Zhou D. (2002): Vibration of point supported rectangular plates with variable thickness using a set of static tapered beam functions. – International Journal of Mechanical Science, vol.44, pp.149-164.

Received: June 20, 2005 Revised: October 31, 2005