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The paper deals with the investigation of an elastodynamic response of an infinite orthotropic medium 
containing a central crack under normal impact loading. Laplace and Fourier integral transforms are employed to 
reduce the dimensional wave propagation problem to the solution of a pair of dual integral equations in the 
Laplace transform plane. These integral equations are then reduced to integral differential equations which have 
been solved in the low frequency domain by method of iteration. To determine time dependence of the 
parameters, these equations are inverted to yield the dynamic stress intensity factor (SIF) for normal point force 
loading. These results have been used to obtain the SIF at the crack tip which corresponds to the weight function 
for the crack under normal loading. Analytical expressions of the weight function are used to derive SIF for 
polynomial loading. Numerical results of normalized SIF for a large normalized time variable and for different 
concentrated point force loading at an arbitrary location of the crack surface have been calculated for different 
orthotropic materials. In the present paper, a numerical Laplace inversion technique is used to recover the time 
dependence of the solution. Finally, the results obtained are displayed graphically. 
 
Key words: orthotropy, impact loading, integral transforms, crack, stress intensity factor, weight function. 

 
1. Introduction 
 
 It goes beyond mention that the presence of stress concentration in structural members is of prime 
importance to a design engineer. Geometrical discontinuities such as holes, notches, fillets, grooves and load 
discontinuities are within control of the designer, whereas inherent flaws such as cracks, segregations and 
voids, which are ‘metallurgical or fabrication discontinuities’, cannot be easily controlled. In case of sharp 
cracks, the analyses become formidable. 
 However, the increased usage of composite materials has created greater interest in the problems 
with cracks. Composite materials are by nature anisotropic in the gross sense. Thus the study of an 
anisptropic medium with a crack or cracks is of great importance in fracture analysis. Problems with Griffith 
cracks in orthotropic elastic material were considered by Satpathy and Parhi (1978), Cinar and Erdogan 
(1983), Kassir and Tse (1983), Itou (1989), and many others. The dynamic problems of singular stresses 
around cracks in an orthotropic medium are few in number. This may be due to mathematical complexities of 
such problems. Elastodynamic crack problems were solved by Chen and Sih (1977), Kassir and 
Bandopadhyay (1983), Shindo (1985), Viola and Piva (1986), Gonzalez and Mason (1999). 
 The concept of weight function was introduced by Bueckner (1970; 1973) and Rice (1989). One of 
the main advantages of the weight function theory is that once the weight function for a crack geometry is 
known, the stress intensity factor for the crack under an arbitrary loading system can be obtained simply by 
the weighted average of the loading system with the weight function. This simple and widely applicable 
result has promoted the search for weight functions for different geometries both analytically and 
numerically. 
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 The weight function method allows the calculations of stress intensity factor k for arbitrarily loaded 
cracks. It the weight function is known, the stress intensity factor for a crack whose surfaces are loaded by a 
stress distribution ( )xσ , can be calculated as 
   

  ( ) ( )dxxxkk A

B

x

x
σ= ∫ *  

 
where Ax  and Bx  are the location of the crack tips and ( )xk ∗  is the weight function to be determined for a 
given crack and specimen geometry. 
 In the present paper, the problem under normal impact response of an orthotropic medium with a central 
crack has been investigated. Laplace and Fourier integral transforms are employed to reduce the two dimensional 
wave propagation problem to the solution of a pair of dual integral equations in the Laplace transform plane. 
These integral equations have been reduced to the solution of a set of integral equations which have further been 
reduced to the solution of an integro-differential equation. The iteration method has been used to obtain the low 
frequency solution of the problem. To determine the time dependence of the solution the expressions are inverted 
to yield the dynamic stress intensity factor for normal point force loading. Numerical results for the normalized 
stress intensity factor for normal point loading and for a large normalized time variable have been calculated for 
Graphite-Epoxy and Glass-Epoxy composite materials for different particular cases. These results are displayed 
graphically. As a byproduct the weight function of the crack has been obtained. It is also shown that the weight 
function is really useful to obtain the SIF’s for polynomial loadings. 
 
2. Formulation of the problem  
 
 Consider a plain problem of a central crack of length 2 a  situated at the mid plane of an infinite 
orthotropic medium subjected to a sudden state of loading. Let ijiE µ,  and ( )321jiij ,,, =ν  denote the 
engineering constants of the material where indices 1, 2, 3 correspond to the directions of a system of 
Cartesian co-ordinates chosen to coincide with the axes of material orthotropy. In the system of co-ordinate 
the crack is defined by the relations ax ≤ , 0y ±= . Since the problem under discussion is restricted to the 
propagation in the plane, it is readily shown by setting the displacement component along the z-direction and 
the derivative with respect to z to be zero, that the displacement equations of motion reduce to 
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at which u, v are the x, y components of the displacement vector, 
ρ

µ
= 12

SC  with 12µ  being the shear 

modulus and ρ  is the density of the material, ( )21jiCij ,, =  are non-dimensional parameters related to the 
elastic constants by the relations 
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  1121221212 CCC ν=ν=    
 
for generalized plane stress and by 
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for plane strain. 
 The stresses are related to the displacements by the relations 
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 In Eqs (2.1) and (2.2), the time variable may be removed by applying the Laplace transform 
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 Applying relations Eq.(2.6) to Eqs (2.1) and (2.2) and assuming zero initial conditions for the 
displacement and velocities, the transformed field equations become  
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where the transformed displacement components, ∗u  and ∗v  are now functions of the variables x, y and p. 
 When the solid is subjected to a suddenly applied state of normal loading, the problem of applying 
stresses to the surfaces of the crack obtained by utilizing the usual principle of superposition which yields the 
following symmetry and boundary conditions on 0y =  
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  ( ) ( ) ( )tHxt0xyy σ−=σ ,, ,          ax ≤ , (2.9) 
 
  ( ) 0t0xxy =τ ,, ,          ∞<x , (2.10) 
 
  ( ) 0t0xv =,, ,          ax > , (2.11) 
 
in which the crack surface traction ( )xσ  is a function of x and ( )tH  is the Heaviside step function. In 
addition all the components of stress and displacement vanish at the remote distances from the crack region.  
 In the Laplace transform plane these conditions become 
 
  ( ) ( ) pxp0xyy σ−=σ∗ ,, ,          ax ≤ , (2.12) 
 
  ( ) 0p0xxy =τ∗ ,, ,          ∞<x , (2.13) 
 
  ( ) 0p0xv =∗ ,, ,          ax > . (2.14) 
 
3. Method of solution 
 
 To obtain an integral solution of differential Eqs (2.7) and (2.8) subject to the conditions (2.12)-(2.14), let 
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where A and B are arbitary functions. Substituting Eqs (3.1) and (3.2) into Eqs (2.7) and (2.8), the functions 
A and B are found to satisfy the simultaneous equations  
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 An appropriate solution of these equations are 
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and ( )( )21jpsA j ,, =  are arbitrary functions with 
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 The expressions for the displacements in the Laplace transform plane become 
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and the corresponding expression for ( )pyxxy ,,∗τ  is given by 
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where   jjj γ+α=β ,         21j ,= . 
 
 Applying condition (2.13) to the Eq.(3.11) yields  
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 The components of displacements and stresses in the transformed plane are 
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 Introducing the abbreviations 
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where ( )pf ,τ  is the unknown function to be determined. Substituting (3.21) in Eq.(3.19), we get 
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 Using the relation 
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 Equation (3.22) can now be rewritten in the form 
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and ( )0J  is the Bessel function of order zero. Applying a contour integration technique (Fig.1) the integral 
in ( )wvL ,  can be converted to the following finite integrals 
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 The corresponding expression of ( )wvL ,  for vw <  is obtained by interchanging v and w in 
Eq.(3.28). Employing the asymptotic expression of ( )zI0  and ( )zK0  as 
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 We now expand ( )pf ,τ  in the form 
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 Substituting the above Eq.(3.31) and the value of ( )wvL ,  given by Eq.(3.29) in Eq.(3.26) and 

equating the co-efficients of like powers of 
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1 , the following equations are derived 
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 Let us rewrite Eq.(3.32) as 
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 Now for the case of concentrated loading, taking ( ) ( )0xxx −δ=σ , where ( ).δ  is the Dirac delta 
function, the solution of the integral Eq.(3.34) with the help of Cooke’s result (1970) is found to be  
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 Substituting ( )pf0 ,τ  in Eq.(3.33), ( )pf1 ,τ  is obtained as  
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 The stress intensity factor in the p- plane is defined as 
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 Now the quasi-static solution is obtained by using the final value theorem of the Laplace transform, 
which states that 
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This result is in complete agrement with the result of Isida (1972). 
 Therefore 
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Fig.1. Contours of integration for the integral in Eq.(3.28). 
 

 
4. Application of weight function to polynomial loading  
 
 We are now in a position to obtain weight function. The weight function is being the stress intensity 
factor at the crack tip under point force loading. The corresponding stress intensity factor for the arbitrary 
normal loading ( )0xσ  is 
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 Now for constant normal loading ( ) 00x σ=σ  we obtain ( )pK I   as 
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This result is in complete agreement with the result of Baksi et al. (2004). 
 

 For linear normal loading ( ) 

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

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a
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 For quadratic loading ( )
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 In all the three cases the dynamic SIF are obtained by using Eq.(2.6). 
 
5. Numerical results and discussion   
 
 Being distinctly orthotropic in nature graphite-epoxy and glass-epoxy composite materials are 
selected for the numerical computation of the normalized stress intensity factor. The material constants for 
the selected materials are given below: 
 

Materials   1E                                      2E                        12µ                                     12ν  
Graphile-Epoxy 
Composite  
             (type 1) 

Pa. 910315 ×        Pa910158 ×        Pa. 910525 ×         033012 .=ν  

Glass-Epoxy Composite 
             (type II ) Pa. 910799 ×       Pa. 910342 ×        Pa. 910663 ×          063012 .=ν  
 
 Applying the method of Papoulis (1957) the normalized stress intensity factor is calculated for 
different concentrated point force normal loadings and large values of normalized time variable 

atCS which are depicted through Figs 2-4. 
 

 
 

Fig.2. Plot of ( ) ( )∞II KtK  vs. atCs  at 60ax0 .= . 
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 It is seen from Fig.2 that the dynamic stress intensity factor ( )tK I at 6.0ax0 =  rises very quickly 
with time, reaching a peak at 111atCS .=  and then decreases in magnitude and tends to the quasi static 
solution for sufficiently large normalized time. Here the overshoot is about 86% and occurs at 111atCS .= . 

The duration of the overshoot is estimated to be approximately sec. 410431 −× . The maximum dynamic 

overshoot is observed due to the factor 
d

0

R

0
C

xa
C
x +

>  i.e., the dilatational wave from 
a
x0−  arrives at ax =  

before the Rayleigh wave from 
a
x0+  does, thus their effects are added and as a result ( )tK1  has an 

overshoot. It is also observed from the figure that as time becomes larger and larger ( )
( ) 1

K
tK

I

I →
∞

. Again by 

using weight function we can easily show ( ) aK 0I σ=∞ . Hence as ∞→t , ( )tK I  tends to a static solution 

a0σ , which is in complete agreement with the result of Shindo et al. (1986). 

 In Fig.3, it is seen that initially ( )tK I  increases with the increase of ( ) 901060
a
x0 ...=  but then from 

47atCS .=  the values of ( )tK I  decrease with the increase in 
a
x0 . The variations of results of ( )tK I  with 

the normalized time are similar. However, if 
a
x0  is very close to 1, numerical difficulties arise in the 

solution. This is due to the discontinuity in ( )pxK 0I ,*  at 1
a
x0 = . 

 

 
 

Fig.3. Plot of ( ) ( )∞II KtK  vs. atCs  for various ax0 . 
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 From Fig.4, it is seen that the features for type II material are similar to that of type I material. Here 
the maximum overshoots are 46.7%, 42.5%, 35.7% and 26% respectively for 807060ax0 .,.,.=  and 0.9 
which are observed at 111atCS .= . 
 

 
  

Fig.4. Plot of ( ) ( )∞II KtK  vs. atCs  for various ax0 . 
 
Nomenclature  
 
 dC  – dilatational wave speed 
 ijC  – non-dimensional parameters 
 RC  – Rayleigh wave speed 
 SC  – shear wave speed 
 ( )tK I  – stress intensity factor in the t-plane 

 ( )pxK 0I ,∗  – stress intensity factor in the p-plane 
 vu,  – x, y components of the displacement vector 

 ∗∗ vu ,  – displacement components in the p-plane 
 ( )⋅δ  – Dirac delta function 
 12µ  – shear modulus   
 ρ  – density 
 xxσ  – stress component along x-axis 
 yyσ  – stress component along y-axis 

 ∗σ xy  – stress component along x-axis in the p-plane 
 xyτ  – shearing stress in the xy-plane 

 ∗τ xy  – shearing stress in the p-plane 
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