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The paper deals with the investigation of an elastodynamic response of an infinite orthotropic medium
containing a central crack under normal impact loading. Laplace and Fourier integral transforms are employed to
reduce the dimensional wave propagation problem to the solution of a pair of dua integral equations in the
Laplace transform plane. These integral equations are then reduced to integral differential equations which have
been solved in the low frequency domain by method of iteration. To determine time dependence of the
parameters, these equations are inverted to yield the dynamic stress intensity factor (SIF) for normal point force
loading. These results have been used to obtain the SIF at the crack tip which corresponds to the weight function
for the crack under normal loading. Analytical expressions of the weight function are used to derive SIF for
polynomial loading. Numerical results of normalized SIF for a large normalized time variable and for different
concentrated point force loading at an arbitrary location of the crack surface have been calculated for different
orthotropic materials. In the present paper, a numerical Laplace inversion technique is used to recover the time
dependence of the solution. Finally, the results obtained are displayed graphically.
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1. Introduction

It goes beyond mention that the presence of stress concentration in structural members is of prime
importance to a design engineer. Geometrical discontinuities such as holes, notches, fillets, grooves and load
discontinuities are within control of the designer, whereas inherent flaws such as cracks, segregations and
voids, which are ‘metallurgical or fabrication discontinuities’, cannot be easily controlled. In case of sharp
cracks, the anal yses become formidable.

However, the increased usage of composite materias has created greater interest in the problems
with cracks. Composite materias are by nature anisotropic in the gross sense. Thus the study of an
anisptropic medium with a crack or cracks is of great importance in fracture analysis. Problems with Griffith
cracks in orthotropic dastic material were considered by Satpathy and Parhi (1978), Cinar and Erdogan
(1983), Kassir and Tse (1983), Itou (1989), and many others. The dynamic problems of singular stresses
around cracksin an orthotropic medium are few in number. This may be due to mathematical complexities of
such problems. Elastodynamic crack problems were solved by Chen and Sih (1977), Kassr and
Bandopadhyay (1983), Shindo (1985), Violaand Piva (1986), Gonza ez and Mason (1999).

The concept of weight function was introduced by Bueckner (1970; 1973) and Rice (1989). One of
the main advantages of the weight function theory is that once the we ght function for a crack geometry is
known, the stress intensity factor for the crack under an arbitrary loading system can be obtained simply by
the weighted average of the loading system with the weight function. This simple and widdy applicable
result has promoted the search for weight functions for different geometries both anaytically and
numerically.
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The weight function method allows the cd culations of stress intensity factor k for arbitrarily loaded
cracks. It the weight function is known, the stress intensity factor for a crack whose surfaces are loaded by a
stress distributions (x) , can be calculated as

k = QXA k™ (x)s (x)dx

B

where x, and xg arethelocation of the crack tips and k™ (x) is the weight function to be determined for a
given crack and spec men geometry.

In the present paper, the problem under norma impact response of an orthotropic medium with a central
crack has been investigated. Laplace and Fourier integral transforms are employed to reduce the two dimensional
wave propagation problem to the solution of a pair of dual integra eguations in the Laplace transform plane.
These integral equations have been reduced to the solution of a set of integra equations which have further been
reduced to the solution of an integro-differentid equation. The iteration method has been used to obtain the low
frequency solution of the problem. To determine the time dependence of the sol ution the expressions are inverted
to yield the dynamic stress intensity factor for normal point force loading. Numerical results for the normdized
dress intensity factor for normal point loading and for a large normalized time variable have been caculated for
Graphite-Epoxy and Glass-Epoxy composite materias for different particular cases. These results are displayed
graphicaly. As a byproduct the weight function of the crack has been obtained. It is also shown that the weight
functionisredly useful to obtain the SIF s for polynomia loadings.

2. Formulation of the problem

Consider a plain problem of a central crack of length 2a situated a the mid plane of an infinite
orthotropic medium subjected to a sudden state of loading. Let E;,m; and n; (i, j=123) denote the
engineering constants of the materiad where indices 1, 2, 3 correspond to the directions of a system of
Cartesian co-ordinates chosen to coinc de with the axes of material orthotropy. In the system of co-ordinate
the crack is defined by the rdations |x| £a, y==0. Since the problem under discussion is restricted to the

propagation in the plane, it is readily shown by setting the displacement component a ong the z-direction and
the derivative with respect to z to be zero, that the displacement equations of motion reduceto

2 2 2 2
Cllﬂ_;j+ﬂ_;j+(l+C12)_ﬂ - :izﬂ_; @D

™ Ty Iy Cg 1t

2 2 2 2
szﬂ_\2/+ﬂ_\2/+(1+clz)_ﬂ - :izﬂ_;/ (2.2)

iy W xly cg 1t
at which u, v are the x, y components of the displacement vector, Cgq = Mo with my, being the shear

r
modulus and r is the density of the material, Cij (i, j=1, 2) are non-dimensiond parameters related to the
elasti c constants by the relations

C11 =Cqy/mp ll' (EZ/El)n%ZJ’

Cy =(Eo/E;)Cyy. (233)
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C12 =N12Cp% =N Cyy
for generalized plane stress and by
Cu = (El/mlzD)(l' n23n32),

Cyp = (Eo/mD)(1- nygng ), (2.4)

E, E, o]
Clz—(El/mlz gnZl n13”32 —(Ez/mlz gnlz n23”31 '
o I7]

for plane strain.
The stresses are rel ated to the displacements by the rel ations

Sxx/nhzzcll%"-clz%’

Syy/mlz:CuEJrsz%’ (2.5)
fu v
=41

/M2 v X

In Egs (2.1) and (2.2), the time variable may be removed by applying the Laplace transform

fwngfmemm,

(2.6)

f(t) == " (p)e™dp.

Applying reations Eq.(2.6) to Egs (2.1) and (2.2) and assuming zero initial conditions for the
displacement and ve ocities, the transformed field equations become

120" 12U v LU

+ +( )— p-—=0, (2.7)
Yaxe g2 gy T c2
v 13 Ty LV

+ +(1+C - p°— =0 2.8

2 PYCRN ( lZ)ﬂx‘I]y p c2 (2.8)

where the transformed displacement components, u”~ and v are now functions of the variables x, y and p.

When the salid is subjected to a suddenly applied state of normal loading, the problem of applying
stresses to the surfaces of the crack obtained by utilizing the usua principle of superposition which yields the
following symmetry and boundary conditionson y =0
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s, (x0,t)=-s(x)H(t), IXEa, (2.9
t,y(x.0,t)=0, N<¥, (2.10)
v(x,0,t)=0, IX>a, (2.12)

in which the crack surface traction s(x) is a function of x and H(t) is the Heaviside step function. In

addition al the components of stress and displacement vanish at the remote di stances from the crack region.
In the Laplace transform plane these conditions become

s;y(x, 0,p)=-s(x)/p, INEa, (2.12)
th (% 0,p)=0, N<¥, (2.13)
v'(x,0, p)=0, IX>a. (2.14)

3. Method of solution

To obtain anintegra solution of differential Eqs (2.7) and (2.8) subject to the conditions (2.12)-(2.14), let

u(x, y, p)=Q¥A(s, y,p)sinsxds, (3.1)
N F1
\Y (x, Y, p): Q EB(S, Y, p) cossx ds (3.2

where A and B are arbitary functions. Substituting Eqgs (3.1) and (3.2) into Egs (2.7) and (2.8), the functions
A and B are found to satisfy the simultaneous equations

20
CllS +p—:A' d—A“'(l"'Clz)dB =0, (3.3)
Cig oy’ dy
&, 29
és 2B czzd—B- (1+C)s2 P =0. (3.4)
Cip dy? dy

An appropriate solution of these equations are
=Y.y =Y,y
As.y.p)=A(s p)e " + A (s ple T2, (35)

B(s.y. p)=a1A(s ple ™ +ayA(s ple 7, (36)

inwhich g2, g3 are positive roots of the equation
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szg +e(C12+2C12 C11C22) s” - (1+C22) 2/C2u 2+

(3.7
+(C115 + pz/Cé)(s + pz/Cg):
and A, (s, p)(j =1 2) are arbitrary functions with
2. P°
Cis™ +—5 - 0]
ai(sp)=—"7r—5—, j=12. (3.8)
: (1+C12)9j
The expressions for the displacements in the Laplace transform plane become
* ¥ & - - U
u (x, Y, p): Q gAle VoY +Ae V2 Esinsxds, (3.9
€ u
R
Vixy.p)=- g aiae T ra me T s, (310)
€ t
and the corresponding expression for t;y(x, Y, p) isgiven by
* \¥ < - y - yl] .
ty (v p)=m2 ) §01A1e T +b,me 2 pinscds (311)
where bj:aj+gj, j=12.
Applying condition (2.13) to the Eq.(3.11) yields
A(s p)=-bA(s, p) where b=b,/b,. (3.12)
The components of displacements and stresses in the transformed plane are
* ¥ A - = U
u'(x,y,p)= Q g 1 - be Y2 jA (s, p)sinsxds, (3.13)
€ u
i . s
(x Y, p ) A gale - ba,e yzyEmcossxds, (3.14)
€ u s

-K

Q
(X Y, p = mlz i 125 - a191022) R B(Clzsz - azgzczz)e- V2 3@0089«18, (3.15)
e u

« ¥ é- -y, yu .
Uyl yp)=m; @ byt "Wie yZyﬂAl(s, p)sinsxds. (3.16)
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I ntroducing the abbreviations

(s.p)= 2222 (s p),

F(s p)= (CIZSZ - szalgl)' b(Clzs2 - Cpa 292)
’ (al - baz)

(3.17)

(3.18)

In view of boundary conditions (2.12) and (2.14), we get the following pair of dual integral equations

for the determination of D(s, p)

(‘; F(s, p)D(s, p)cossxds = - % ’

O£xEa,

¥
QD(S, p)cossxds =0, X>a.
The solution of theintegra Eq.(3.20) istakenin the form
D(s p):} ‘af(t p)sinst dt
) S Q )

where f (t, p) is the unknown function to be determined. Substituting (3.21) in Eq.(3.19), we get

d .a t+x . _ € ~d .a \aFl(s, p)sinSrsinsxds@
dxqf(t’p)logt_ XdT_ZSSl(X) dXQf(t’p)dTQ s H;
O<x<a
where
s(x)
SqUX)= ,
l() H12gp

F (s, p):%ép)- 1®0 a s® ¥,

(Ciz - CuNsag)(ag +Ny)- (Cip - CuNyab)(@g +Ny)

q:

agN, - agN;
2
a¢=- & ji=12,
(1+C12)Nj
1 é 2 u
N12,2 :fécuczz - Ch- 2Cy, i\/ (Cusz -Ch- 2C12) - 4C;1Cx -
2 8 o]

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Using therelation
S|ns>(S|nSr _ X tva ( ) (sv)dvdw
Q \/( 2Xt2 _ Vz)

Equation (3.22) can now be rewritten in the form

d .a t+x S d .a x (t va(vw)dev o
— A f(t, p)log——|dr =265, (x)- — ) f(t, p)drgy ¢ ’ a,
dxq t-x g dxq QQ\/(XZ-WZ)(tZ-VZ)H
(3.26)
O<x<a
where
¥
L(v, W) = (‘asFl(s, p)J0 (S\N)JO(SV)dS, (3.27)

and Jo( ) isthe Bessel function of order zero. Applying a contour integration technique (Fig.1) the integra
in L(v, W) can be converted to the following finite integrals

u
2p® Vo, aqonw(_) vo  amw
Lpww)= eQ@[A]Iog_ Cs g +%[C]IO§ ;K Cs ;dng
(3.28)
w>v
where
[ A]: (Clzh C22algl) (Clzh szgzgz)’ [C] B(Clzﬂ sz“zYz)
ai- ba2 ((11+l3(12)
1
@1:8“[' B, +4/Bf - 452}-' @2:%[' Bl'VBlZ'4BZ}éz,
1 1

[(@)
=
11
('DCD1('D
[N
o
=
+
o
L)
N
o
NS
[ =N}
N |
[(@)
)
11
1(‘D
N[
——
o
=
+
o
L)
N
o
NS
o
N

1
B, = C., [(Clzz +2Cy; - CllCZZ)] “+(1+Cp )]’
22

BZ_CtzaeCl _hzgl ) e i

y
G o
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: Cyh®- 1+ A Cllh -1+ ( 1) of i=12
i ! ! G ’ Y
(1+Cyp,)o (1+Cp)tn
b= Gi-a ’ b= Gy +ay
0;- ay G2 +a2

The corresponding expression of L(v, W) for w<v is obtained by interchanging v and w in
Eq.(3.28). Employing the asymptotic expression of Io(z) and Ko(z) as

lo(2)» 1,

Ko(2) » logfE2
ezZg

Equation (3.28) is found to be

p’ Ep” 0
Llv,w)=—P— Io =+0O 329
( )IO gg gc (329)
where
1§ Jeu U
P==¢& Aldn+ dC]dhu (3.30)
ae a
6 Hew
We now expand f(t, p) inthe form
p &p? 0
flt, t Io —ft +0 . (3.31)
(t,p)=fo(t, p)+ ggcs 1(t, p) éng

Substituting the above EQq.(3.31) and the value of L(v, W) given by Eq.(3.29) in Eq.(3.26) and

equating the co-efficients of like powers of Ci , the following equations are derived

S

d fo(t, p)log P X = 264(x), 0<x<a, (3.32)
dxq t- X

d .a t+x] ., _ 4P

e fl(t,p)logt_ Xd = —Qr fo(t, p)dz, 0<x<a. (3.33)

Let us rewrite Eq.(3.32) as
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N =pF(x), O<x<a (3.34)
- X

\a t
Q folt, p)IOQt

where

Fl(X) = % QXS 1(Y)dy

Now for the case of concentrated loading, taking s(x): d(x— xo), where d() is the Dirac delta
function, the solution of the integral Eq.(3.34) with the help of Cooke's result (1970) is found to be

4 tya- x3

nzlvllqu.\/az - tz(xg

folt. p)=

tz).

Substituting f,(t, p) in Eq.(3.33), f,(t, p) isobtained as

fltp)= 2P A%
T p3muap a2 g2

The stress intensity factor in the p- planeis defined as

Ki (%, p)= Lt J2(x-a)s,(x0), (3.35)
and caculated as
4 la? 52 € )
KT(Xo,p) 5 a e "2 - Pp Iogg o @U+O§p O. (3.36)
°p eZ(a - xo)\f 1! c?

Now the quasi-static solution is obtained by using the final value theorem of the Laplace transform,
which states that

* 1 2a
K, (¥ )= Lt Ki(t)= Lt pK  p)=—F——. (3.37)
|( ) oy 1() p®0p |(X0 p) a2 ,—az-xg
Thisresult isin complete agrement with the result of Isida (1972).
Therefore
Ky ft) =1 (‘321- 2—p—log H/a’- ﬂ—ptdp (3.38)
Ki(¥) 2ni g = gcs
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L4ImS

Fig.1. Contours of integration for the integra in Eq.(3.28).

4. Application of weight function to polynomial loading

Re S

We are now in a position to obtain weight function. The weight function is being the stress intensity
factor at the crack tip under point force loading. The corresponding stress intensity factor for the arbitrary

normal loading s(xo) is

K1 (p)= &y K (%0, Ps )iy

Now for constant normal loading s(xo):so weobtain K, (p) as

sovaé Pa? p? @pd 20
K, (p)=—2—aél- —p—zlog§£3;+ogp—2:
P g ™ Cs Cs e Csg

Thisresult isin complete agreement with the result of Baksi et al. (2004).

For linear normal loading s(x,)=s; %o 2
eag

(4.1)

4.2)
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é 2 2 & 29
K|(p):sl\/5ég_ 4Paz P loggP ;33+o€ep_2j. (4.3)
P gn 3" Cs &Cs@ &Cig
For quadratic |oading s(xo):szfé;ae(—.—(:j
edg
é 2 2 & 24
€ p)=222 8L P g G o 2 4
P g2 4 Cs &Cs@ &Csg

In dl the three cases the dynamic SIF are obtained by using Eq.(2.6).

5. Numerical results and discussion

Beng distinctly orthotropic in nature graphite-epoxy and glass-epoxy composite materials are
selected for the numerical computation of the normalized stress intensity factor. The materia constants for
the selected materials are given below:

Materias E; E, m N2
Graphile-Epoxy
Composite 153" 10°Pa 158" 10°Pa  5.52" 10°Pa n,, =0.033
(type 1)
Glass-Epoxy C it
&S ‘(’toy);i”o)mpos'e 9.79° 10°Pa 4237 10°Pa 366 10°Pa Ny, =0.063

Applying the method of Papoulis (1957) the normalized stress intensity factor is calculated for
different concentrated point force normal loadings and large values of normalized time variable

Cst/awhich are depicted through Figs 2-4.

5
1.8 1
1.8:1
1.4 1
1.2 -

'1 -
0.8
0.6

( graphite - epoxy composite, type | )

Kift) /Ki(=)

0 ; . . |
5 10 15 20 25

Cstfa —

Fig.2. Plot of K, (t)/K,(¥) vs. Cit/a & x,/a=0.6.
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It is seen from Fig.2 that the dynamic stress intensity factor K, (t)at Xo/a=06 rises very quickly

with time, reaching a peak at Cgt/a=11.1 and then decreases in magnitude and tends to the quasi static
solution for sufficiently large normalized time. Here the overshoot is about 86% and occursat Cgt/a=11.1.

The duration of the overshoot is estimated to be approximately 1.43" 10"%sec. The maximum dynamic

+
overshoot is observed due to the factor X > ar% i.e., the dilatational wave from - X arivesat x=a

R d a

before the Rayleigh wave from + 20 does, thus their effects are added and as a result Kl(t) has an
a

overshoot. It is also observed from the figure that as time becomes larger and larger ::7'% ® 1. Again by
|

using weight function we can easily show K, (¥)=sy+/a.Henceas t ® ¥, K, (t) tendsto astatic solution
So\/a , which is in complete agreement with the result of Shindo et al. (1986).

InFig.3, it isseen that initialy K, (t) increases with the increase of 22 =0.6 (0.1)0.9 but then from
a

Cst/a=7.4 the values of K|, (t) decrease with the increase in -2 . The variations of resuts of K, (t) with
a

the normalized time are similar. However, if % is very close to 1, numerical difficulties arise in the
a
solution. This s due to the discontinuity in K] (xy, p) a -2 =1.
a
2'_ — T T T T - .
1 X_Jn FI:I_E_'_'_—i-u_ 'v—'-'_'-'-_'—'_\_\_‘_\_\_‘-‘-\_\_
1.8 an ; _______::——-q________&//r —
g =0 — f““'ﬂﬁ_—_“‘“m_‘mx
16 xpe -0 s _ﬁ“‘“*-?“q::"‘& .
R fae(g— e |
1.J: ™ 0 ..-"'-.-_H-_'_'_'_\_'—_\_\_ Rm‘ﬁxﬁx\:‘.
¥ i -‘-\-\-""‘--. I
8 12 —
e { gruphite-epoxy composite, tvpe 1) i
=]
B B8}
0.6 :_,,.a-f""! _ -
.4 /

E| L i 1 [l i Il i 1 i |
5 B 7 B g 1@ 11 12 13 14 15
Ct/a »

Fig.3. Plot of K, (t)/K, (¥) vs. C t/a for various x,/a.



Weight function for a crack in an orthotropic medium ... 927

From Fig.4, it is seen that the features for type || material are similar to that of type | materid. Here
the maximum overshoots are 46.7%, 42.5%, 35.7% and 26% respectively for x,/a=0.6,0.7,0.8 and 0.9

which are observed at Cgt/a=11.1.

2
1.8
1.6
14
1.2

1 -
0.8
0.6 -
0.4
0.2

0 . . : : . . . . .

5 6 i 8 9 10 11 12 13 14 15

Cstla —»

{ glass-epoxy composite, type I1)

K (1) /K (o)

Fig.4. Plot of K, (t)/K, (¥) vs. C t/a for various x,/a.

Nomenclature

Cq —dilatationa wave speed
Cij —non-dimensional parameters
Cr - Rayleigh wave speed
Cs — shear wave speed
K,(t) —stressintensity factor in thet-plane
K{(xo, p) —stressintensity factor in the p-plane
u,v —X, ycomponents of the displacement vector
u",v"  —displacement components in the p-plane
d(>) —Dirac deltafunction
my, — shear modulus
r —density
— stress component along x-axis
— stress component along y-axis

— stress component along x-axisin the p-plane
— shearing stress in the xy-plane

— shearing stress in the p-plane
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