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An improved numerical study on mixed convection from a heated vertical plate embedded in a Newtonian 
fluid saturated sparsely packed porous medium is undertaken by considering the variation of permeability, 
porosity and thermal conductivity. The boundary layer flow in the porous medium is governed by the Lapwood-
Forchheimer-Brinkman extended Darcy model. Similarity transformations are employed and the resulting 
ordinary differential equations are solved numerically by using a shooting algorithm with the Runge-Kutta-
Fehlberg integration scheme to obtain velocity and temperature distributions. Besides, the skin friction and 
Nusselt number are also computed for various physical parameters governing the problem under consideration. It 
is found that the inertial parameter has a significant influence on decreasing the flow field, whereas its influence 
is reversed on the rate of heat transfer for all values of permeability parameter considered. Further, the results 
under the limiting conditions were found to be in good agreement with the existing ones.  
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1. Introduction 
 
 In recent years, considerable attention has been devoted to the study of boundary layer flow behavior 
and heat transfer characteristics of a Newtonian fluid past a vertical plate embedded in a fluid saturated 
porous medium because of its extensive applications in engineering processes, especially in the enhanced 
recovery of petroleum resources and packed bed reactors. Considerable amount of interest has also been 
devoted to the study of transport properties in porous media subject to heat transfer which are characterized 
by highly non-linear coupled partial differential equations. The problem of free convection heat transfer from 
a vertical plate embedded in a fluid saturated porous medium is studied by Cheng and Minkowycz (1977), 
who have obtained the similarity solutions for the problem considered. Cheng (1978) has provided an 
extensive review of early works on free convection in porous media. Nakayama and Koyama (1987) have 
obtained the similarity solution for the problem of free convection in the boundary layer adjacent to a vertical 
plate immersed in a thermally stratified porous medium. The mixed convection boundary layer flow on an 
impermeable vertical surface embedded in a saturated porous medium has been treated by Merkin (1980). 
Hung and Chen (1997) have studied non-Darcy free convection in a thermally stratified fluid saturated porous 
medium along a vertical plate with variable heat flux. Hsieh et al. (1993) have obtained a non-similar solution for 
combined convection from vertical plates in porous media with variable surface temperatures or heat flux. Recently, 
Nield and Bejan (1999) have given an excellent summary of free convection flow in porous media. 
  Several investigators have considered the non-Darcian model in the recent past to study the 
convection and heat transfer rates on bodies embedded in a porous medium for Newtonian fluids. Kumari et 
al. (1990) have investigated the non-Darcian effects on forced convection heat transfer over a flat plate in a 
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highly porous medium. Chen and Ho (1988) have studied the effects of flow inertia on vertical, natural 
convection in saturated, porous media. Hong et al. (1987) have studied analytically the non-Darcian effects 
on a vertical plate natural convection in porous media. They used a combination of Rayleigh and Darcy 
numbers to describe the inertia and boundary terms and obtained similar solutions. They found that these 
effects decrease the velocity and reduce the heat transfer rate. Hassanien et al. (1998) have studied the effects 
of thermal stratification on non-Darcy mixed convection from a vertical flat plate embedded in a porous 
medium. Plumb and Huenefeld (1981) have investigated non-Darcy natural convection from vertical 
isothermal surfaces in saturated porous media. Lai and Kulacki (1987; 1991) have used both Darcy and non-
Darcy models (inertia effect only) to study mixed convection from horizontal and vertical surfaces embedded 
in saturated porous media. Bejan and Poulikakos (1984) have used Forchheimer’s model to study vertical 
boundary layer natural convection in a porous medium.   
  Shwartz and Smith (1953), Benenati and Brosilow (1962) have shown that the permeability of a 
porous medium varies due to the variation of porosity from the wall to the interior of the porous medium. 
Chandrasekhar and Namboodiri (1985) have shown the effectiveness of variable permeability of the porous 
medium on velocity distribution and heat transfer. Recently, Mohammadein and El-Shaer (2004) have 
studied combined free and forced convective flow past a semi-infinite vertical plate embedded in a porous 
medium incorporating variable permeability. Nonetheless, the inertia effects become important in a sparsely 
packed porous medium and hence their effect on free convection problems needs to be investigated.  
  The aim of the present investigation is, therefore, to study systematically the effect of inertial terms 
on combined free and forced convective heat transfer past a semi-infinite vertical plate embedded in a 
saturated porous medium with variable permeability, porosity and thermal conductivity. In this analysis 
coupled non-linear partial differential equations, governing the problem, are first reduced by a similarity 
transformation to the ordinary differential equations and then the resultant boundary value problem is 
converted into the system of five simultaneous equations of first-order for five unknowns. Then these 
equations are solved numerically by a shooting technique with the Runge-Kutta-Fehlberg method to obtain 
horizontal velocity and temperature profiles for various values of physical parameters. The results obtained 
from the present numerical computation under limiting conditions agree well with the existing ones and thus 
verify the accuracy of the method used. 
 
2. Mathematical formulation 
 
  We consider a semi-infinite vertical heated plate embedded in a sparsely packed Newtonian fluid 
saturated porous medium of variable porosity, permeability and thermal conductivity. The x-coordinate is 
measured along the plate from its leading edge, and the y-coordinate normal to it. Let oU  be the velocity of 
the fluid in the upward direction and the gravitational field, g, is acting in the downward direction. The plate 
is maintained at a uniform temperature wT  which is always greater than the free stream values existing far 
from the plate (i.e., ∞> TTw ). The boundary layer equations governing the conservation of mass, momentum 
and energy can be written in the following form 
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where, u and v are the velocity components along the x and y directions respectively, T is the temperature of 
the fluid, ρ  is the fluid density, µ  is the effective viscosity of the fluid, µ  is the fluid viscosity, ( )yk  is the 
variable permeability of the porous medium, ( )yε  is the porosity of the saturated porous medium, ( )yα  is 
the variable effective thermal diffusivity of the medium, F is the empirical constant of the second-order 
resistance term due to inertial effect, pC  is the specific heat at constant pressure, β  is the coefficient of 
volume expansion and ∞T  is the ambient temperature. 
 The above governing equations need to be solved subject to the following boundary conditions on 
velocity and temperature fields 
 
  0u = ,        0v = ,        wTT =         at        0y = ,  (2.4) 
 
  oUu = ,      0v = ,       ∞= TT          as      ∞→y .  (2.5) 
 
 We now introduce the following dimensionless variables f and θ  as well as the similarity variable η  
(Hady et al., 1996; Mohammadein and El-Shaer, 2004) 
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where a prime represents differentiation with respect to η  and wT  is the plate temperature. 
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Eq.(2.1) is satisfied automatically and the velocity components are given by 
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 Following Chandrasekhara and Namboodiri (1985), the variable permeability ( )ηk , the variable 
porosity ( )ηε and variable effective thermal diffusivity ( )ηα  are given by 
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where ok , oε  and oα  are the permeability, porosity and diffusivity at the edge of the boundary layer 

respectively, ∗σ  is the ratio of the thermal conductivity of the solid to the conductivity of the fluid, d and ∗d  
are treated as constants having values 3.0 and 1.5 respectively. 
 Substituting Eqs (2.6) and (2.7) in Eqs (2.2) and (2.3), we get the following transformed equations 
 

  ( )
( )( ) ( )

( )
( ) 0f1

de1

ed1f1
de1
ed1ff

2
1f 2

212 =′−
+

+β
+′−

+σ

+α
+θ+′′+′′′

η−

η−∗∗

η−

η−∗∗

ReRe
Gr ,  (2.11) 



D.Pal and I.S.Shivakumara 932 

  ( ) ( )
( ) ( )∗η−∗∗

∗η−∗

σ−ε+ε−σ+ε

θ−σε+′′+θ′
−=θ′′

1ed1
1edfEf21

ooo

o
2PrPr   (2.12) 

 

where, 21
o

2
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2
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parameter, ν= xUoRe  is the local Reynolds number and ( ) 23
w vxTTg ∞−β=Gr  is the local Grashof number.  

 The transformed boundary conditions are 
 
  0f = ,          0f =′ ,          1=θ          at          0=η ,  (2.13) 
 
  1f =′ ,         0=θ           as          ∞→η .  (2.14) 
 
 Once the velocity and temperature distributions are known, the skin friction and the rate of heat 
transfer can be calculated respectively by  
 
  τ ( ) Re0f ′′−= ,   (2.15) 
 
  ( )0θ′−=  ReNu   (2.16) 
 
where τ  is the skin friction and Nu is the Nusselt number. 
 
3. Numerical method  
 
 Equations (2.11) and (2.12) constitute a highly non-linear coupled boundary value problem (BVP) of 
third and second order respectively. An improved numerical scheme involving a shooting technique with the 
Runge-Kutta-Fehlberg method is developed to solve the resulting nonlinear BVP. Thus, the coupled 
nonlinear boundary value problem of third-order in f and second-order in θ  has been reduced to a system of 
five simultaneous equations of first-order for five unknowns as follows (Vajravelu, 2001) 
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where ff1 = , ff2 ′= , ff3 ′′= , θ=4f , θ′=5f  and a prime denotes differentiation with respect to η .  
  The boundary conditions now become 
 
  0f1 = ,        0f2 = ,        1f4 =         at        0=η ,      (3.2) 
 
  1f2 = ,        0f4 =             as           ∞→η .      (3.3)  
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4. Results and discussion 
 
 The system of first-order differential Eqs (3.1)-(3.3) is solved numerically using the shooting 
technique with the Runge-Kutta-Fehlberg method. In order to know the accuracy of the method used, 
computed values of ( )0f ′′  and ( )0θ′  were obtained for 0=β∗  and compared with those obtained by 

Mohammadein and El-Shaer (2004) in Tab.1 for the variable permeability ( 03d .= , 51d .=∗ ) case and 
good agreement has been obtained with their results. The values tabulated in Tab.1 are for 40o .=ε , 

10.E = , 710.Pr =  with selected values of 2ReGr , ∗σ  and Reσα∗ . The slight deviation in the values 
may be due to the use of the Runge-Kutta-Fehlberg method which has fifth order accuracy whereas, 
Mohammaden and El-Shaer (2004) have used the fourth-order Runge-Kutta method which has only fourth 
order accuracy. Thus the present results are more accurate compared to their results. 
 
Table 1. Results for ( )0f ′′  and ( )0θ′−  for 710.Pr = , 00.=β∗  for variable permeability case.              
 

      ∗σ              2ReGr       Reσα∗  Present result Mohammadein an El-Shaer 
  ( )0f ′′             ( )0θ′−      ( )0f ′′              ( )0θ′−  

    2.0                  0.2                0.0           0.611321         0.381233      0.61215            0.38030 
 
                                                0.1           0.667804         0.386090      0.64526            0.38281 
 
                                                0.5           0.846341         0.417658      0.75527            0.38959 
 
                          0.5                 0.0           0.958156         0.403083      0.95816            0.40308 
 
                                                0.1           0.987898         0.406430      0.97432            0.40325 
 
                          0.2                 0.0           2.415691         0.376339      2.31558            0.40376 
 
    4.0                 0.2                 0.0           0.627031         0.504676      0.62705            0.50459 
 
                                                0.1           0.681575         0.507192      0.65772            0.50664 
 
                                                0.5           0.859094         0.519451      0.76231            0.51242 
 
                           0.5                0.0           0.993653         0.528672      0.99206            0.52979 
 
                                                0.1           1.022091         0.528510      1.00403            0.52940 
 

 
  Table 2 contains the computed values of ( )0f ′′  and ( )0θ′−  for the selected values of Reσα∗  and 

2ReGr  and ∗β  for uniform permeability (UP) and variable permeability (VP) cases. From the table, it is 

observed that an increase in the value of ∗β  is to increase the skin friction for all values of Reσα∗ , ∗σ  and 
2ReGr  for both UP & VP. Further, it is interesting to note that the effect of ∗σ  is to increase the skin 

friction whereas the rate of heat transfer decreases.  
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Table 2. Results for ( )0f ′′  and ( )0θ′−  for the selected values of Reσα∗  and 2ReGr  for 710.Pr =  for 
Uniform Permeability (UP) and Variable Permeability (VP) cases. 

 
Reσα∗          ∗σ           2ReGr            ∗β  ( )0f ′′  ( )0θ′−  

    UP                  VP       UP                      VP 
    0.1             2.0               0.0               0.0       0.451835         0.421933      0.250491            0.363478 
 
                                                              0.1       0.576676         0.564654      0.260377            0.379063 
 
                                                              0.5       0.929158         0.963919      0.357305            0.504579 
 
                                                              0.9      1.192470         1.284032       0.507254            0.796314 
 
                                          0.1               0.0      0.584076         0.549309       0.260956            0.376262 
 
                                                              0.1      0.690510         0.672864       0.267553            0.387279 
 
                                                              0.5      1.007338         1.036579       0.288634            0.412960 
 
                                                              0.9      1.245152         1.327359       0.506892            0.795579 
 
                                         0.2                0.0      0.707080         0.667804       0.269021            0.386090 
 
                                                              0.1      0.798848         0.776034       0.273416            0.393967 
 
                                         2.0                0.1      2.368606         2.259598       0.291978            0.414071 
 
                      4.0              0.0                0.1      0.576676         0.564841       0.217035            0.538623 
 
                                                              0.5      0.929858         0.963919       0.351812            0.731295 
 
                                         0.1                0.1      0.700834         0.671721       0.222808            0.545299 
 
                                                              0.5      1.002954         0.028371       0.352147            0.731303 
 
    0.5             2.0              0.2                0.0      0.937729         0.846341       0.336831            0.417658 
 

 
 Figure 1 depicts the velocity distribution for various values of second order resistance for variable 
permeability (VP) and uniform permeability (UP) cases. It is observed that an increase in the value of inertial 
parameter ∗β  leads to an increase in the velocity profile within the boundary layer, while for 50.=β∗ , the 
velocity coincides for both UP and VP cases. It is also important to note that the boundary layer decreases 
with an increase in the value of inertial parameter. Thus, the non-Darcian term has a very significant effect 
on the velocity distribution. Figure 2 exhibits the variation of velocity profiles for various values of ∗σ  for 
both UP and VP. It is clearly seen that the velocity profile increases with an increase in ∗σ  which is 
effective only for UP but its effect diminishes for small values of ∗σ .  
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Fig.1. Velocity profiles for various values of second order resistance for VP and UP. 
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Fig.2. Velocity profiles for various values of ∗σ for VP and UP. 

 
 Figure 3 shows the variation of velocity distribution for three values of 710.Pr = , 3 and 10 for the 
case of VP. It is observed that the velocity profiles decrease as the Prandtl number increases which is very 
significant in the middle of the boundary layer. Further, it is clear that the boundary layer decreases with a 
decrease in the value of Pr. 
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Fig.3. Variation of velocity distribution for various values of the Prandtl number for VP. 
 

 Figure 4 depicts the temperature distribution for various values of the parameter 2ReGr  for the cases of 

UP and VP. It is seen that an increase in the value of 2ReGr  is to decrease the temperature distribution for both 
the cases considered. The temperature is found to be less for VP as compared to UP. It is also observed that the 
effect of VP is more significant on temperature distribution for higher values of 2ReGr . 
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Fig.4. Temperature distribution for various values of 2ReGr  for VP and UP. 
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Fig.5. Temperature profiles for various values of second order resistance for VP and UP. 
  

 Figure 5 displays the distribution of temperature for various values of second order resistance ∗β  for 

UP and VP cases. From this figure it is evident that the temperature profile decreases smoothly for 10.=β∗  

within the boundary layer whereas for higher value of ∗β  the temperature continuously decreases and this 
decrease is very rapid. This shows that the rate of cooling is much faster for higher values of second order 
resistance in both UP and VP cases.  
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Fig.6. Variation of temperature distribution with η for various values of Pr for VP. 
 

 Another interesting feature which is observed from Fig.5 is that the boundary layer decreases with an 
increase in the value of inertial parameter and it is more so in the case of UP as compared to VP for both the 
values of ∗β  considered. Figure 6 gives the variation of temperature distribution within the boundary layer 
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for various values of Pr in the case of VP. The temperature profiles show a typical smooth decreasing pattern 
for 710.Pr =  whereas, for higher values of Pr, the temperature continuously decreases at a steeper rate in the 
flow region and the boundary layer decreases with the increase in Pr. 
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Nomenclature 
 
 pC  – specific heat at constant pressure 
 d – constant defined in Eq.(2.8) 
 ∗d  – constant defined in Eq.(2.9) 
 E – Eckert number 
 f – non-dimensionless stream function  
 F – empirical constant of the second-order resistance term due to inertial effect 
 g – acceleration due to gravity 
 Gr – Grashof number 
 ( )yk  – permeability of the porous medium 
 ok  – permeability of the porous medium at the edge of the boundary layer 
 κ  – thermal conductivity 
 Nu – Nusselt number 
 Pr – Prandtl number 
 Re – Reynolds number 
 T – temperature of the fluid near the plate 
 wT  – temperature of the plate 
 ∞T  – ambient temperature ( )wTT <∞  
 u, v – velocity components along x and y directions 
 oU  – free stream velocity 
 x, y – coordinate axes along and perpendicular to the plate 
 ( )yα  – thermal diffusivity 
 ∗α  – ratio of viscosities 
 oα  – thermal diffusivity at the edge of the boundary layer 
 β  – coefficient of volume expansion 
 ∗β  – inertial parameter 
 ( )yε  – porosity of the saturated porous medium 
 oε  – porosity of the saturated porous medium at the edge of the boundary layer 
 η  – dimensionless similarity variable 
 θ  – dimensionless temperature 
 µ  – viscosity of the fluid 
 µ  – effective viscosity of the fluid  
 ν  – kinematics viscosity of the fluid 
 ρ  – density of fluid 
 σ  – permeability parameter 
 ∗σ  – ratio of thermal conductivity of the solid to the liquid 
 τ  – skin friction 
 ψ  – stream function 
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