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A few unique buckling and postbuckling characteristics of short superelastic shape memory alloy (SMA) 
columns are observed experimentally and explained in terms of numerical simulation. Interestingly, it is found 
from the load-deformation curves that during compression the SMA column with slenderness ratio ( )kL  of 38 
exhibits two distinct buckling loads, the other one being higher, completely contrary to the general notion that 
load falls off monotonously for all columns in the postbuckling region. Similarly, for kL  of 28, the SMA 
column can sustain a significantly high load after a distinct change in the mode of deformation. Based on the 
large deformation theory as well as the nonlinear stress-strain relations, the load-deformation curves of the short 
SMA columns have been predicted by using the FEM code ANSYS. Precise and quantitative analyses of these results 
verify the fact that the SMA column’s behavior can be attributed to the special nature of the stress-strain curves.  
 
Keywords: short SMA columns, two modes of deformation, two peak loads, physical nonlinearity, geometrical 

nonlinearity. 
 
1. Introduction  
 
 Shape memory alloy (SMA) columns can exhibit unique behavior unlike the columns made of 
traditional materials (Rahman et al., 2001; Urushiyama et al., 2000). For example, Urushiyama et al. (2000) 
showed by experimental evidence that short columns made of the Cu based SMA carry higher buckling loads 
compared to the steel columns. It was also found that when subjected to axial compression, the curved SMA 
columns have the tendency to become straight before buckling. Again, Rahman et al. (2000; 2001) 
extensively demonstrated the unique buckling and postbuckling behavior for the superelastic SMA columns 
(sometimes termed only as SMA columns hereafter). For example, it was observed from the equilibrium 
configuration path that: (1) for a decreasing value of the slenderness ratio, the buckling load of the SMA 
column increases most significantly and below certain slenderness ratio it is higher than that of the SUS304 
column. The slender superelastic SMA columns, however, buckle elastically at slightly low loads in 
comparison with the Al columns. (2) For higher slenderness ratio, they can sustain the load with least change 
in the magnitude for the postbuckling compression. (3) For a particular range of slenderness ratio, they 
exhibit an increase of the recovery force during unloading. (4) The residual strain is very small and thus 
almost the original shape of a slender column is recovered by unloading. (5) Finally, perhaps the most 
striking observation was- a short SMA column can exhibit two unique peaks of (buckling) load, the second 
peak being higher than the first one.  
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 Later on, Rahman et al. (2005) carried out numerical simulations only for the slender SMA columns, 
in order to explain this unique behavior. Furthermore, Rahman et al. (2006) also studied the buckling of the 
stainless steel columns by similar experiment and numerical simulations.  
 It was concluded that the best results from numerical simulation would be possible, particularly for 
the short SMA columns, if both the tensile and compressive stress-strain curves can be considered 
simultaneously (Rahman et al., 2005).  
 Since the numerical simulation was not carried out previously for the short SMA columns and 
tension-compression asymmetry was not considered during simulation, the present study is therefore devoted 
to studying these factors. In particular, taking into account both the geometrical and physical nonlinearities, 
an attempt is made here for the quantitative analysis of the short SMA columns.  
 Shape memory alloys, also termed functional materials, show two unique capabilities, that is, the 
shape memory effect (SME) and superelasticity (SE), which largely depend on the solid-solid, diffusion-less 
phase transformation process known as the martensitic transformation, from a crystallographically more 
ordered parent phase (austenite) to a crystallographically less ordered product phase (martensite).  
 The phase transformation (from austenite to martensite or vice versa) is typically marked by four 
transition temperatures, named martensite finish ( )fM , martensite start ( )sM , austenite finish ( )fA , and 

austenite start ( )sA . Let us assume, fssf AAMM <<< . For fAT > , the SMA exists in the parent 
austenite phase. Under mechanical loading the SIMT starts when a critical stress is exceeded. When the 
SIMT is over, the SMA exists in the martensite phase. This SIM phase is, however, unstable in the absence 
of stress at this temperature. Consequently, during unloading, again at a critical stress, the reverse phase 
transformation starts (from the SIM to parent phase) and when it is complete the SMA returns to its parent 
austenite phase. The complete loading-unloading cycle shows a typical hysteresis loop (Fig.1), known as 
pseudo-elasticity or superelasticity. The SIMT and the reverse SIMT are marked by a reduction of the 
material stiffness (Fig.1).  
 

 
 

Fig.1. Idealized stress-strain diagram of the superelastic SMA. 
 

 For sAT <  there is no pseudoelastic recovery and the residual strain can be recovered by heating 
above fA  (SME). For any temperature there exists a critical stress for irreversible plastic slip to occur in the 
material (this critical stress value decreasing with increasing temperature), and if the stress is exceeded, then 
the residual strain cannot be recovered by heating or unloading. At room temperatures, usually, the 
superelastic Nitinol SMA can fully recover up to 6.5% strain as pointed out in Rahman (2001).  
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 The following paragraphs give brief descriptions of the relevant terms, like structural (geometric and 
material) nonlinearity and also the effect of structural nonlinearity on the buckling and postbuckling 
equilibrium configuration paths of a structure. 
 
2. Equations for nonlinear structural analysis 
 
 As far as the deformation of an ideal simple column is concerned, it can be shown that if only the 
geometric nonlinearity is taken into considerations, the load-deflection curve becomes convex upward.  
 On the other hand, in order to demonstrate the effect of nonlinear material stiffness on the 
equilibrium path, the simple and ideal elastic system shown in Figs 2-3 can be analysed (Norris and Wilbur, 
1960). The compressed rod of length L is perfectly rigid and nondeformable. The only way that the system 
can deflect is for the spring to elongate. The spring has bi-linear stiffness. That is, given, θ=λ L , and 

11 Lθ=λ  the stiffness of the spring reduces from K to k if its elongation exceeds 1λ . 
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Fig.2. Buckling of an ideal elastic model. 
 

 The critical load corresponding to the buckling condition that is, KLPcr = , can be identified simply 
by studying the characteristics of the equilibrium configuration path (load-deflection curve) for the system.  
 As P approaches crP  the deflection becomes boundless as shown by the solid straight line of Fig.3. 
In terms of bi-linear spring behavior, the stiffness reduces to k as the spring force exceeds 1kλ  or, 1kLθ . For 
such a spring the above equations are valid only up to the point where θ  equals, 1θ . If the deflection 
exceeds 1θ , the following equations would give crP  
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  ( )11 kLKLF θ−θ+θ= ,  (2.1) 
 
and   ( )θθ−+θθ= 11 1kLKLP . (2.2) 
 
 When the spring force reaches 1KLθ , the load deflection curve breaks down sharply and becomes 
asymptotic to the horizontal line corresponding to kLP = . Importantly, for the present study, the stress-
strain curve of the SMA is highly nonlinear, analogous to such a spring with variable stiffness.  
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Fig.3. Equilibrium configuration paths for the ideal elastic model of Fig.2 with nonlinear material stiffness. 
 
3. Test conditions and experimental procedure 
 
 The materials, configurations and conditions used in this experiment were as follows. Column 
materials: SMA (Ti49.3 at% Ni50.2at% V0.5at%), stainless steel (SUS304), and aluminum. The unsupported 
column lengths were 14 and 19 (mm), while the diameter was 2mm. SMA’s transformation temperatures 
were, C59o− , C34o− , C27o−  and C3o−  for fM , sM , sA  and fA , respectively. The room temperature 

range was C30C23 oo − . An instron machine was used and the speed of the cross-head during loading-
unloading cycle was so adjusted that the strain rate was min.100 . 
 At first, the columns were inserted into the holes of the loading fixtures (Fig.4). During loading, the 
moving fixture moved towards the fixed one until its predetermined final position ( )set∆  was reached. In the 
meantime, the column buckled and had enormous deformations. Immediately after the final point of 
displacement was reached, the moving fixture was moved away from the fixed one, allowing the largely 
deformed column to gradually recover its shape. The unloading process was stopped and the cycle ended 
when P became approximately zero (Fig.5). The values of set∆  were 10% and 5.5%, for the columns with 

28kL =  and 38, respectively, in order to closely observe the interesting ∆−P  curves.  
 Practically, it is difficult to fully eliminate the gap that remains between the loading fixture and the 
column at the beginning of the loading; this gap will affect the displacement reading of the ∆−P  curve of 
the experimental data. Of course, the load-cell reading is more important as far as buckling is concerned and 
it remains unaffected by the displacement reading.  
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∆ = δ/L, k = D/4,
Slenderness ratio = L/k

Fixed

L

PP δ

 
 

Fig.4. Column inserted into the fixture. 
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Fig.5. Experimental procedure. 

 
4. Simulation scheme  
 
 A static analysis has been performed by the commercial FEM code ANSYS (Swanson Analysis 
Systems, Inc.), using the half model of the column, as shown in Fig.6. Details of the modelling are explained 
in the appendix. A negligibly small transverse disturbance, necessary for buckling analysis, was assigned by 

yF  (the magnitude was 1N) at any point on the mid-span of the column.  
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Fig.6. Half model of the column used for simulation. 
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 During loading (in terms of ∆ ), the total end displacement ( )set∆  was assigned in a sufficiently 
large number of steps for accurate calculation of the buckling load.  
 The stress-strain (some times abbreviated as ss −  in this paper) curves for the superelastic SMA are 
determined by experiment for sufficiently large strain (Fig.7) and used for the simulation. Poisson’s ratio, 
density and Young’s modulus were found to be 0.33, 33 mkg1056 ×.  and Pa1065 9× , respectively for 
SMA.  
 

 
 

Fig.7. Experimental stress-strain curves for the superelastic SMA ( mm2D = ). 
 
The present simulation scheme uses the following two different kinds of material models.  
 Mooney-Rivlin (M-R) or the Hyperelastic model- Hyperelasticity refers to materials whose stresses 
are derived from their total strains using a strain energy density function. M-R is a material law suitable for 
nearly incompressible natural rubber. For this model, both the tensile and compressive stress-strain data can 
be used simultaneously.  
 The multilinear elastic (MELAS) model- suitable for large strain-this can accurately represent the 
highly nonlinear material behavior by a piece-wise-linear curve, through at most 100 stress-strain points. The 
compressive and tensile ss −  data can not be used simultaneously. Since the present study is concerned with 
only the equilibrium configuration paths of the short SMA columns during loading, interested readers may 



Postbuckling characteristics of the short superelastic ... 947

refer to Rahman (2001) and Rahman et al. (2005), regarding how this model was used to simulate the 
complete loading-unloading cycle for the slender superelastic SMA columns.  
 
5. Results and discussion 
 
5.1. Short SMA column’s unique buckling behavior – qualitative analysis 
 
 As observed, for the SMA column with 28kL = , the load increases after a distinct change in the 
mode of deformation (Fig.8). It should be noted that the term ‘change in the mode of deformation’ is used 
here to refer to the distinct change in the slope of the ∆−P  curve for a column. The portion of the ∆−P  
curve connecting the two modes of deformation contains a point of instability, according to Thompson and 
Hunt (1973). As seen, unlike the Al and SUS304 columns, quite remarkably, this SMA column can sustain a 
significantly high load during its secondary mode of deformation (Fig.8).  
 

 
 

Fig.8. Experimental load-end shortening curves for 28kL =  (After, Rahman et al., 2001). 
 

 On the other hand, for 38kL = , the ∆−P  curve of the SMA column (Fig.9) shows a valley 
between two distinct buckling loads (the second peak being slightly higher than the first one). The above 
characteristic is contrary to the general trend that load falls off monotonously, for any further compression, 
after the first distinct buckling load on the equilibrium configuration path of a column.  
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Fig.9. Experimental load-shortening curves for 38kL =  (After, Rahman et al., 2001). 
 

 Because of large deformation (compression plus bending) the SIMT is initiated within the column 
material. As seen from Fig.7, unlike the tensile ss −  curve, there is no distinct plateau during the SIMT 
process for the compressive ss −  curve. Rather the initiation of the SIMT may be marked by a slight and 
smooth decrease in the material stiffness. It appears, because of this decrease in the material stiffness, the 
highly compressed SMA column (which is prone to buckling if there is any kind of disturbance) gradually 
approaches the first point of instability with increasing value of end shortening. After the SIMT is completed, 
the material stiffness again increases significantly (Fig.7), which in turn increases the resisting moment of 
the bent column. Consequently, during the secondary mode of deformation, the bending effect due to the 
applied load is overcome by the resisting moment until the second point of instability is reached (Figs 8, 9), 
as pointed out in the previous experimental study (Rahman et al., 2001).  
 
5.2. Simulated equilibrium configuration paths – quantitative analysis 
 
 The simulation results for the SMA columns with 28kL =  show that the MELAS model using the 
pure compressive stress-strain curve can predict the column’s peak or, the higher buckling load most 
accurately (Fig.10). On the other hand, the predicted load-end shortening curve based on the tensile ss −  
data, dips a little to a valley and again rises to a higher peak, which remains much lower than the 
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experimental result. The reason can be explained while analyzing the total strain distribution in the same 
column (Fig.11). The initial portions of the ∆−P  curves predicted by the MELAS model merge together 
while those predicted by the M-R model show less stiffness (Fig.10). This is because the input s-s curves are 
slightly modified while the M-R model is used.  
 The M-R model predicts a much lower buckling load than the experimental result as can be seen 
from Fig.10. This is due to an interesting phenomenon, that is, the change in the mode of deformation (after 
the first point of instability, corresponding to a load of 1.92kN) on the ∆−P  curve of this column. 
Incidentally, at this point, the theorems of Thompson and Hunt (1973) seem to apply perfectly. The theorems 
state that the onset of first point (either a limit point or a branching point) of instability is indicated by a 
substantial increase in the displacements for very a small increase of the loading parameter, and thus the 
numerical technique fails to converge to any solution.  
 

 
 

Fig.10. Load-end shortening curves (experiment and simulation) for the SMA column. 
 

 The distribution of total strain (in the loading direction), corresponding to the critical state, over the 
entire half-model of the column, is as shown in Fig.11. This strain distribution should be observed in 
conjunction with the stress-strain curves (Fig.7) and also the load-deformation curves (Fig.10). As seen, most 
of the column material is under compression and the maximum compressive strain is as high as 12.2% 
(Fig.11), which justifies the use of only the compressive stress-strain curve for simulation. The maximum 
tensile strains (1.68%) occur in the small regions. Since the asymmetric tension-compression behavior of the 
SMA is significant particularly beyond 1% strain, the simulation result based only on the compressive stress-
strain curve (MELAS model) can be used reliably to predict the buckling behavior for such a short column.  
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Fig.11. Total strain distribution in the loading direction for the SMA column ( )28kL =  based on the 
MELAS model and compressive ss −  curve corresponding to the critical point ( )%.49=∆ . 

 
 Because of large strains (over 6.5%) some parts of this column (Fig.11) will induce permanent 
deformations upon unloading as evidenced by the residual strains shown by the experimental results of Figs 
8 and 9. 
 For 38kL = , both the MELAS model (based on the compressive stress-strain data) and the M-R 
model can predict the ∆−P  curve, including the buckling load, though the valley between the two peaks can 
not be predicted, as shown in Fig.12. It appears that both the tension and compression stress-strain curves of 
SMA are responsible for such a valley, and only a material model similar to the MELAS model but capable 
of handling tension-compression asymmetry can predict the valley between the two unique peak loads. The 
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M-R model predicts a distinct bifurcation point at a position corresponding to the valley of the load-
deformation curve but the load falls during the secondary mode of deformation.  
 

 
 

Fig.12. Load-end shortening curves (experiment and simulation) for the SMA column. 
 
5.3. Accuracy of the results 
 
 The easiest way to check the accuracy of the presented results is to make use of the famous Euler’s 
formula ( 22 LEI4π , symbols having their usual meanings) for both ends-clamped slender SMA columns. 
Using this strategy it was shown in Rahman et al. (2005) that the experimental buckling loads are very close 
to their theoretical values, according to the above formula. For ready reference, Fig.13 is presented. It is 
interesting to note that because of superelastic shape recovery, the force increases remarkably during 
unloading of this slender SMA column (Fig.13). For this slender SMA column, the experimental buckling 
load is 234N and Euler’s formula ( )GPA65E =  gives a load of 285.2N, while from simulation results based 
on MELAS model using compressive stress-strain curve gives a buckling load of 260.7N which is closer to 
the experimental result. This simple comparison in turn verifies the soundness of the same simulation 
scheme applied to the short SMA columns for the present analysis.  
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Fig.13. Load-end shortening curves for a complete cycle (experiment and simulation) for 168kL =  for 
the SMA column using MELAS model and compressive ss −  curve (After, Rahman et al., 2005).  

 
Conclusions 
 
 Using a loading-unloading cycle, some interesting and useful buckling and postbuckling 
characteristics of the superelastic SMA columns were observed experimentally. Those phenomena depend 
largely on the slenderness ratio. For example, the ∆−P  curve for the short SMA column with kL  of 38 
shows two distinct peak loads during loading, the other one being higher, quite contrary to the general notion 
that load falls off monotonously for other columns during any further compression beyond the first peak load. 
Similarly, for kL  of 28, the SMA column can sustain significantly high load (even higher than that of a 
SUS304 column) after a distinct change in the mode of deformation. Thus the short superelastic SMA 
columns can be excellent candidates for any engineering application where high compressive load carrying 
capability is required for a few repeated loading-unloading cycles.  
 A comprehensive simulation scheme has been used incorporating both the physical and geometrical 
nonlinearities in order to predict the equilibrium configuration paths along with the total strain distributions 
in the column materials at different states of loading. 
 In general, present analyses of the results verify the fact that the SMA column’s unique 
behavior could be attributed mainly to the special nature of the stress-strain curves far beyond the 
region of SIMT. During quantitative analysis, theorems of Thompson and Hunt are found to be useful  
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to predict the unique first point of instability of the short SMA columns. A comparison shows the 
simulation scheme used here can predict the experimental buckling load better than theory.  
 
Acknowledgments 
 

This work was initiated at the Institute of Fluid Science (IFS), Tohoku University, Japan. 
Constructive suggestions from Professor Jinhao Qiu, IFS, are gratefully acknowledged. The detail analyses 
have been completed at the Department of Mechanical Engineering, Bangladesh University of Engineering 
& Technology, Bangladesh. We thank Sage Publications for the permission to include a Figure (Fig.13. of 
this paper) from Rahman et al. (2005). 
 
Nomenclature 
 
 yF  – perturbing force applied on the mid-span of the model 
 k – least radius of gyration of the cross sectional area 
 L – unsupported length of the columns at 0P =  
 P – axial compressive load 
 yx UU ,  – nodal displacements for the model in the x and y directions, respectively 
 ∆δ,  – displacement of the moving fixture, Lδ  
 
Appendix 
 
Simplified column model  
 
 For simulation, the element type used for the MELAS model was PLANE42 (4 nodes, 2-D space, 
DOF: UX, UY), while for the M-R model, the element type was HYPER56 (hyperelastic mixed U-P solid, 4 
nodes, 2-D space, DOF: UX, UY, UZ). 
 Theoretically, linearly elastic columns having the same slenderness ratio and same cross-
sectional area (but perhaps of different shapes) will exhibit the same buckling characteristics. For a 
circular cross-sectional area, the least radius of gyration is, 4Dkc = . For a rectangular cross-sectional 
area, with its sides b and h ( )hb > , the least radius of gyration is, 46413hkr .= . For the present study, 

mm2D = . Thus, having the same length, the slenderness ratio and area will be the same for the circular 
cross-sectional area and a rectangular cross-sectional area, if, mm7321h .=  and mm8141b .= . The 
geometric half model of the column (with mm7321h .= , and mm8141b .=  in the z-direction), as 
represented in Fig.7, is used for the purpose of simulation. The length of the column inserted between 
the fixture, that is, the value of a was 8mm (Fig.7) and the element size for the finite element meshing 
was 0.20mm. High accuracy of the results using this half model of column can be checked from the 
present study and also from Rahman et al. (2005; 2006). For more precise quantitative analysis of 
nonlinear structural behavior, however, it is important to model the exact correct cross-sectional shape 
(that is the round circular cross-section). 
 
True and nominal stress-strain curves 
 
 For accuracy of the simulation involving large strains, the nominal stress-strain curve was 
changed to the true stress-strain curve. It should be noted that the characteristic plateau for the SIMT in 
tension, as well as the tension-compression asymmetry, starts when the strain is approximately 1%. The 
entire tensile strain data was measured by the strain gage. On the other hand, following Johnson (1972), 
to avoid any chance of bending/buckling of the specimen during the pure compression test, kL  was 
kept less than 12. Thus, strain gage could not be used because of too small gage length ( )mm54.  of the 
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test specimen during the compression test and the strain data were measured only by the displacement of 
the moving fixture. However, the accuracy of simulation results largely depends on the correct stress-
strain data. Particularly, for simulating the behavior of the columns that are not too short, at least the 
initial portion of the stress-strain should be highly accurate. Thus to compromise, while keeping 
continuity of the data, only the initial portion (0 to about 1% strain) of the compressive stress-strain 
curve, was modified to make it identical with the tensile stress-strain curve, until the distinct plateau for 
the SIMT in tension is approached (Fig.7). It is found that based on the modified compressive stress-
strain data, the buckling and postbuckling behavior of the SMA columns can be predicted with 
reasonable accuracy for any kL  (Rahman et al., 2005). 
 For the M-R hyperelastic model, the nominal stress-strain data are required as input. ANSYS 
software at first calculates the 2 terms, 5 terms or, the 9 terms Mooney-Rivlin constants (strain energy 
constant) from the given stress-strain data. Next, based on these constants, the stress-strain data are modified. 
There is no fixed rule for selecting the number of strain energy constant terms. However, modified data, 
which suit the actual data best in tension and compression, should be chosen. Since the 9 terms M-R 
constants show a better match with the experiment, only the load-deformation curves traced by 9 terms 
constants are presented here (Fig.14). Moreover, this model is suitable for incompressible natural rubber and 
recommends Poisson’s ratio of 0.499. It was found that the SMA column’s buckling load increases if the 
Poisson’s ratio is chosen as 0.499 instead the actual value of 0.33. To minimize the number of figures, 
however, those simulation results are not shown in this study. Interested readers may refer to Rahman (2001) 
for more details. 
 

 
 

Fig.14. Calculated stresses based on 9 terms Mooney-Rivlin constants. 
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