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ON PLANE WAVESIN AN ISOTROPIC LINEAR THERMOELASTIC
SOLID WITH INITIAL STRESSES
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The plane wave propagation in a homogenous isotropic, thermaly conducting elastic solid under normal
initial stresses is studied with two thermal relaxation times. Three types of plane waves, quasi-P, thermal and
quasi-SV waves, are shown to exist. The dependence of the velocities of these plane waves on the direction of
propagetion is shown graphically for different combinations of normal initial stresses.
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1. Introduction

The theory of dynamic thermoeasticity is of much importance in various engineering fields such as
earthquake engineering, solid dynamics, nuclear reactors, high-energy particle accelerators, etc. The theories
on generalized thermoelasticity given by Lord and Shulman (1967) and Green and Lindsay (1972) have
become the center of recent research dueto their applications in many modern technologica problems. These
theories lead to further research work on wave propagation in isotropic generdized thermoelastic solids (for
example, Nayfeh and Nasser (1971); Sinhaand Sinha (1974); Montanro (1999); Singh (2000; 2003)).

Initid gresses are developed in the medium due to many reasons, resulting from temperature difference,
guenching, creep dow process, differentid externd forces, gravity variaions, etc. The Earth is assumed under high
initial stresses. Dey et al. (1984; 1985) studied the propagation of waves in a medium under initial stresses. The
present research note is an attempt to study the propagation of plane waves in a generalised thermod astic solid
under initia stresses with two thermal rd axation times. The numerica work islimited to Lord and Shulman theory.

2. Formulation of the problem

We consider an isatropic homogeneous thermally conducting medium with normal initid stresses S;; and
Sy, intwo orthogond directions x and y respedtively. Following Biot (1965), Lord and Shulman (1967), Green and
Lindsay (1972) and Montanaro (1999), the equati ons of motionin two directions under these stresses may bewritten as
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where
P
By =1 +2m+ P, B,, =1 +2m, A1:m+5,
(2.4)
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I, areLame’s constants, r and C, are respectively the density and specific heat at constant strain, tg,t;

are thermal relaxation times; K is the thermal conductivity. a is the coefficient of linear thermal expansion
and the dot represents time differentiation. The use of symbol D, in Eq.(2.3) makes these fundamental
equations possible for the two different theories of the generaized thermoelasticity. For the L- S (Lord-
Shulman) theory t; =0, D=1 and for G-L (Green-Lindsay) theory t; >0 and D=0. The thermal

relaxations t and t, satisfy theinequality t; 3 t, 3 O for the G- L theory only.

3. Propagation of plane waves

For a plane wave of circular frequency w, the wave number k and phase velodity c, incident at the
freeboundary y =0 at anangle q with they-axis, we may assume

u=Xexp(iP), v=Yexp(iR), T=Zexp(iR) (3.1)
where X, Y, Z are amplitude factors and
P, =wt- k(xsinq- ycosq), (3.2

is the plane factor.
For the wavereflected at y =0, we assume

u=Xexp(iP,), v=Yexp(iR,), T=Zexp(iR,) (33)
where P, =wt - k(xsinq— ycosq), (3.9

is the phase factor associated with reflected waves. Making use of Eq.(3.1) or Eq.(3.3) in Egs (2.1) to (2.3),
we obtain
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where
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Dl(Q) = BllSinz g+ A10052 qd,
3.8)

D,(q) =By, cos® g+ Ay sinq,
and
t" =ty - iwl, t =toD-iw?l, te=(1+iwt ).

Equations (3.5) to (3.7) in X, Y, Z can have a nontrivial solution only if the determinant of their
coefficients vanishes, i.e.

z3+Az? +Bz+C=0 (3.9)
where

A:_t}[Dlt*+D2t*+D3+T p],

B:ti*[Dlth*+DlD3+D2D3+DlT pcos’q+D,1 psin®q+

- t"AZsin?qoos? q- 2A,1 psinzqcoszq],

C:ti*[- D1D2D3+D3A323in2qcoszq], (3.10)
and

- b7, +2m+
z=rc®, D3=K/C,, T=—UC, p=tth?, V12:|2_mp_ (3.11)
rCeng r

Thethreeroots z,, z, of Eq.(3.9) may be obtained by using Cardan’s method.

It may be noted that whether we take the upper sign or lower sign in Egs (3.5) to (3.7), we get the
same three values of z by Eq.(3.9). These roots give the analytical expressions for the veocities of

propagation of quasi- P, theema and quasi- SV waves respectively. Therefore, in a two-dimensiond
generalized thermoelastic solid with initial stress, there exists three plane waves whose phase velocities

depend on the direction of propagation, frequency (W) and normal initial stress.

4. Special cases
(i) For anisotropic and homogeneous medium under normal initial stresses

b=0, K=0p D; =0, 1=0.
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The cubic Eq.(3.9) reduces to a quadratic equation which gives the expressions of vdocities of

[ongitudinal (CE) and transverse waves (CTZ) as obtained by Dey et al. (1984) in an isotropic homogeneous

medium under normal initial stresses.
(if) For anisotropic and homogeneous medium

P=0, b=0, K=0p D;=0, 1 =0.

Equation (3.9) reduces to a quadratic equation, which gives the expressions for veocities of
propagation of P and SV waves in atwo-dimensiond model of isotropic eastic media

5. Numerical analyss

We restrict our study for the case of Lord and Shulman theory only. From Eq.(3.9), we can find the
square of phase velocities of quasi- P, thermal and quasi-SV waves as c? =z4/r, c =z,/r and

2 =z,/r respectively. The numerical values of c¢Z/(mr), c3/(mr) and c2/(m'r) are computed for
different combinations of normal initial stress. We introduce normal initial stress parameters as

h :i hzzi

1 om’ 2m’
The following parametersin Sl units are also used for numerical computations
| /m=1, t, =0.05s, t, =1s, ty, =293°K, r :2300kg/m3,

1=0053, K=519"10°J/ms’K, C,=1.6235 10%J/kg’K .

Figures 1 to 3 show a comparison between the velocity curve for cases involving different
combinations of biaxial initial stresses and the case when the medium is free of initid stresses. The quasi- P
waves are represented by curves shown in Fig.l, when w=5. Deviation of values of veocities of
longitudinal waves for h; =-0.4 and h, =0.8 (curve 1) from the initia stress free case (curve 2) is

considerable for the range 0 < g £ 90°. The deviation for the case when h, =0.8 and h, =0.4 (curve 3) is
also significant.

The quasi- P is affected dueto thermal disturbances. If we neglect thermal disturbances, curves 1, 2,
3 reduce to curves 4, 5 and 6 respectivey. The thermal waves are represented by curves in Fig.2, when
w=5. The deviation of c¢2/(mr) for h; =-0.4, h, =0.8 and for h; =0.8, h, =0.4 from the initial
stress free case (curve 1) are shown by curves 2 and 3 respectivey.

The quasi- SV waves are represented by curves shown in Fig.3, when w =5 . Deviations of va ues of
velodities of quasi-SV waves for h; =-0.4, h, =0.8 (curve 2) and h; =0.8, h, =0.4 (curve 3) from the
initial stress free case (curve 1) are considerable. The SV wave remains unaffected by thermal disturbances.
Thecurves 4, 5 and 6 show same variations as curves 1, 2 and 3 respectively.

It may be pointed here that the above numerical analysis fairly agrees with those of Dey et al.
(1984).
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Fig.1. Variations of square of non-dimensional ve ocity cl2 / (rry r ) of quasi-P wave with angle of propagati on
for different combinations of h, and h,.
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Fig.2. Variations of square of non-dimensional ve ocity c% / (rry r ) of thermal wave with angle of propagati on
for different combinations of h, and h,.
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Fig.3. Variations of square of non-dimensional velocity c§ / (m/r) of quasi-SV with angle of propagation for
different combinations of h; and h,, .

Nomenclature

¢ —phase velocity
C. — Specific heat at constant strain

k —wave number
K —therma conductivity
Si1, Sy —normal initial stresses

To — uniformtemperature

a — coefficient of linear thermal expansion
| ,m —Lame's constants

r —density of medium
to,t17 —thermal relaxation times

w —circular frequency
I —thermo-coupling coefficient
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