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The plane wave propagation in a homogenous isotropic, thermally conducting elastic solid under normal 
initial stresses is studied with two thermal relaxation times. Three types of plane waves, quasi-P, thermal and 
quasi-SV waves, are shown to exist. The dependence of the velocities of these plane waves on the direction of 
propagation is shown graphically for different combinations of normal initial stresses. 
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1. Introduction 
 
 The theory of dynamic thermoelasticity is of much importance in various engineering fields such as 
earthquake engineering, solid dynamics, nuclear reactors, high-energy particle accelerators, etc. The theories 
on generalized thermoelasticity given by Lord and Shulman (1967) and Green and Lindsay (1972) have 
become the center of recent research due to their applications in many modern technological problems. These 
theories lead to further research work on wave propagation in isotropic generalized thermoelastic solids (for 
example, Nayfeh and Nasser (1971); Sinha and Sinha (1974); Montanro (1999); Singh (2000; 2003)). 
 Initial stresses are developed in the medium due to many reasons, resulting from temperature difference, 
quenching, creep slow process, differential external forces, gravity variations, etc. The Earth is assumed under high 
initial stresses. Dey et al. (1984; 1985) studied the propagation of waves in a medium under initial stresses. The 
present research note is an attempt to study the propagation of plane waves in a generalised thermoelastic solid 
under initial stresses with two thermal relaxation times. The numerical work is limited to Lord and Shulman theory. 
 
2. Formulation of the problem 
 
 We consider an isotropic homogeneous thermally conducting medium with normal initial stresses 11S  and 

22S  in two orthogonal directions x and y respectively. Following Biot (1965), Lord and Shulman (1967), Green and 
Lindsay (1972) and Montanaro (1999), the equations of motion in two directions under these stresses may be written as 
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where 
 

  P2B11 +µ+λ= ,          µ+λ= 2B22 ,          
2
PA1 +µ= , 

   (2.4) 

  
2
PA2 −µ= ,             

2
PA3 +µ+λ= ,            1122 SSP −= ,           ( )αµ+λ=β 23 ,           

 
µλ,  are Lame’s constants, ρ  and eC  are respectively the density and specific heat at constant strain, 10 ττ ,  

are thermal relaxation times; K is the thermal conductivity. α  is the coefficient of linear thermal expansion 
and the dot represents time differentiation. The use of symbol ∆ , in Eq.(2.3) makes these fundamental 
equations possible for the two different theories of the generalized thermoelasticity. For the L−S (Lord-
Shulman) theory 01 =τ , 1=∆  and for G−L (Green-Lindsay) theory 01 >τ  and 0=∆ . The thermal 
relaxations 0τ  and 1τ  satisfy the inequality 001 ≥τ≥τ  for the G−L theory only. 
 
3. Propagation of plane waves 
 
 For a plane wave of circular frequency ω , the wave number k and phase velocity c, incident at the 
free boundary 0y =  at an angle θ  with the y-axis, we may assume 
 
  ( )1iPXu exp= ,          ( )1iPYv exp= ,          ( )1iPZT exp=  (3.1) 
 
where X, Y, Z are amplitude factors and  
 
  ( )θ−θ−ω= cossin yxktP1 , (3.2) 
 
is the plane factor. 
 For the wave reflected at 0y = , we assume 
 
  ( )2iPXu exp= ,          ( )2iPYv exp= ,          ( )2iPZT exp=  (3.3) 
 
where   ( )θ−θ−ω= cossin yxktP2 , (3.4) 
 
is the phase factor associated with reflected waves. Making use of Eq.(3.1) or Eq.(3.3) in Eqs (2.1) to (2.3), 
we obtain 
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2
2
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and   
 
  1

0 i −∗ ω−τ=τ ,          1
0 i −ω−∆τ=τ ,          ( )1i1 ωτ+=τ′ . 

 
 Equations (3.5) to (3.7) in X, Y, Z can have a nontrivial solution only if the determinant of their 
coefficients vanishes, i.e. 
 
  0CBA 23 =+ζ+ζ+ζ                                (3.9) 
 
where 
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The three roots 21 ζζ ,  of Eq.(3.9) may be obtained by using Cardan’s method.  
 It may be noted that whether we take the upper sign or lower sign in Eqs (3.5) to (3.7), we get the 
same three values of ζ  by Eq.(3.9). These roots give the analytical expressions for the velocities of 
propagation of quasi−P, thermal and quasi−SV waves respectively. Therefore, in a two-dimensional 
generalized thermoelastic solid with initial stress, there exists three plane waves whose phase velocities 
depend on the direction of propagation, frequency ( )ω  and normal initial stress. 
 
4. Special cases 
 

(i) For an isotropic and homogeneous medium under normal initial stresses  
 

  0=β ,          0D0K 3 =⇒= ,          0∈= . 
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 The cubic Eq.(3.9) reduces to a quadratic equation which gives the expressions of velocities of 
longitudinal ( )2

LC  and transverse waves ( )2
TC  as obtained by Dey et al. (1984) in an isotropic homogeneous 

medium under normal initial stresses. 
(ii) For an isotropic and homogeneous medium  
 

  0P = ,          0=β ,          0D0K 3 =⇒= ,          0∈= . 
 
 Equation (3.9) reduces to a quadratic equation, which gives the expressions for velocities of 
propagation of P and SV waves in a two-dimensional model of isotropic elastic media. 
 
5. Numerical analysis 
 
 We restrict our study for the case of Lord and Shulman theory only. From Eq.(3.9), we can find the 
square of phase velocities of quasi−P, thermal and quasi-SV waves as ρζ= 1

2
1c , ρζ= 2

2
2c  and 

ρζ= 3
2
3c  respectively. The numerical values of ( )ρµ2

1c , ( )ρµ2
2c  and ( )ρµ2

3c  are computed for 
different combinations of normal initial stress. We introduce normal initial stress parameters as  
 

  
µ

=η
2
S11

1 ,          
µ

=η
2
S22

2 . 

 
 The following parameters in SI units are also used for numerical computations 
 
  1=µλ ,       s0500 .=τ ,       s11 =τ ,       K2930

o=τ ,       3mkg2300=ρ , 
 
  0530.∈= ,      KmsJ10195K 2 o×= . ,       KkgJ1062351C 4

e
o×= . . 

 
 Figures 1 to 3 show a comparison between the velocity curve for cases involving different 
combinations of biaxial initial stresses and the case when the medium is free of initial stresses. The quasi−P 
waves are represented by curves shown in Fig.1, when 5=ω . Deviation of values of velocities of 
longitudinal waves for 401 .−=η  and 802 .=η  (curve 1) from the initial stress free case (curve 2) is 

considerable for the range o900 ≤θ< . The deviation for the case when 801 .=η  and 402 .=η  (curve 3) is 
also significant. 
 The quasi−P is affected due to thermal disturbances. If we neglect thermal disturbances, curves 1, 2, 
3 reduce to curves 4, 5 and 6 respectively. The thermal waves are represented by curves in Fig.2, when 

5=ω . The deviation of ( )ρµ2
2c  for 401 .−=η , 802 .=η  and for 801 .=η , 402 .=η  from the initial 

stress free case (curve 1) are shown by curves 2 and 3 respectively. 
 The quasi−SV waves are represented by curves shown in Fig.3, when 5=ω . Deviations of values of 
velocities of quasi-SV waves for 401 .−=η , 802 .=η  (curve 2) and 801 .=η , 402 .=η  (curve 3) from the 
initial stress free case (curve 1) are considerable. The SV wave remains unaffected by thermal disturbances. 
The curves 4, 5 and 6 show same variations as curves 1, 2 and 3 respectively.   
 It may be pointed here that the above numerical analysis fairly agrees with those of Dey et al. 
(1984). 
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Fig.1. Variations of square of non-dimensional velocity ( )ρµ2
1c  of quasi-P wave with angle of propagation 

for different combinations of 1η  and 2η . 
 

 
 

Fig.2. Variations of square of non-dimensional velocity ( )ρµ2
2c  of thermal wave with angle of propagation 

for different combinations of 1η  and 2η . 
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Fig.3. Variations of square of non-dimensional velocity ( )ρµ2
3c  of quasi-SV with angle of propagation for 

different combinations of 1η  and 2η . 
 
Nomenclature 
 
 c – phase velocity 
 eC  – specific heat at constant strain 
 k – wave number  
 K – thermal conductivity  
 2211 SS ,  – normal initial stresses 
 0T  – uniform temperature 
 α  – coefficient of linear thermal expansion 
 µλ,  – Lame’s constants 
 ρ  – density of medium 
 10 ττ ,  – thermal relaxation times  
 ω  – circular frequency  
 ∈  – thermo-coupling coefficient 
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